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Abstract

Background: In the application of microarray data, how to select a small number of informative genes from thousands
of genes that may contribute to the occurrence of cancers is an important issue. Many researchers use various
computational intelligence methods to analyzed gene expression data.

Results: To achieve efficient gene selection from thousands of candidate genes that can contribute in identifying
cancers, this study aims at developing a novel method utilizing particle swarm optimization combined with a
decision tree as the classifier. This study also compares the performance of our proposed method with other
well-known benchmark classification methods (support vector machine, self-organizing map, back propagation
neural network, C4.5 decision tree, Naive Bayes, CART decision tree, and artificial immune recognition system) and
conducts experiments on 11 gene expression cancer datasets.

Conclusion: Based on statistical analysis, our proposed method outperforms other popular classifiers for all test
datasets, and is compatible to SVM for certain specific datasets. Further, the housekeeping genes with various
expression patterns and tissue-specific genes are identified. These genes provide a high discrimination power on
cancer classification.
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Background
Researchers have tried to analyze thousands of genes
simultaneously by microarray technology to obtain im-
portant information about specific cellular functions of
gene(s) which can be used in cancer diagnosis and
prognosis [1]. The gene selection from gene expression
data are challenging due to the properties of small
sample size, high dimension and high noise. A method
is needed for choosing the important subset of genes
with high classification accuracy. Such method would not
only enable doctors to identify a small subset of biologically
relevant genes for cancers, but will also save computational
costs [2].
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The gene selection method can be divided into three
classes, the wrapper, the filter, and the embedded
approaches. Wrappers utilize learning machine and
search for the best features in the space of all feature
subsets. Despite their simplicity and often having the
best performance results, wrappers highly depend on
the inductive principle of the learning model and may
suffer from excessive computational complexity because
the learning machine has to be retrained for each feature
subset considered [3]. The wrapper method is usually
superior to the filter one since it involves intercorrelation
of individual genes in a multivariate manner, and can
automatically determine the optimal number of feature
genes for a particular classifier. The filter approach usually
employs statistical methods to collect the intrinsic charac-
teristics of genes in discriminating the targeted phenotype
class, such as statistical tests, Wilcoxon’s rank test and
mutual information, to directly select feature genes [4].
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Table 1 Random seed comparison

Visual C# U(0,1)

11_Tumors 1 96.22 97.52

2 95.31 98.32

3 96.72 98.04

4 96.31 97.66

5 97.62 97.57

Avg. 96.44 97.82

(Std.) 0.84 (0.35)

DLBCL 1 91.31 91.88

2 89.70 92.22

3 88.77 91,99

4 88.72 92.87

5 92.99 93.22

Avg. 90.30 92.55

(Std.) 1.83 (0.61)

14_Tumors 1 65.00 74.00

2 63.00 75.00

3 63.00 75.00

4 63.00 74.00

5 67.00 75.00

Avg. 64.20 74.60

(Std.) 1.79 (0.55)
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This approach is easily implemented, but ignores the
complex interaction among genes. Finally, the embedded
method is a catch-all group technique which performs
feature selection as part of the model construction process.
It is similar to the wrapper method, while multiple al-
gorithms can be combined in the embedded method to
perform feature subset selection [5,6]. Genetic algorithms
(GAs) [7] are generally used as the search engine for
feature subset in the embedded method, while other
classification methods, such as estimation of distribution
algorithm (EDA) with SVM [8-13], K nearest neighbors/
genetic algorithms (KNN/GA) [14], genetic algorithms-
support vector machine (GA-SVM) [15] and so forth, are
used to select feature subset.
Particle Swarm Optimization (PSO), developed by

Kennedy and Eberhart [16], is a population-based meta-
heuristic on the basis of stochastic optimization, inspired
by the social behavior of flocks of birds or schools of fish
[17]. PSO has been widely applied in many fields to solve
various optimization problems, including gene selection
[1,2,18-20]. A swarm of particles with randomly initialized
positions would move toward the optimal position along
the search path that is iteratively updated on the basis of
the best particle position and velocity in PSO. The potential
solutions, called particles, are used to represent a candidate
solution for the problem. Among the classifiers given a
specific search algorithm, C4.5 is a decision tree-based
classifier listed in the top 10 most influential data-mining
algorithms [21]. Decision trees are a linear method which
is easy to interpret and understand.
This paper presents a PSO-based algorithm to address

the problem of gene selection. The proposed approach is
an integration of PSO searching algorithm and C4.5
decision tree classifier, called PSODT. Combining PSO
with C4.5 classifier has rarely been investigated by previous
researchers. The performance of our proposed method will
be evaluated by 11 microarray datasets, which consist of 1
dataset from cancer patients of the M2 DB in Taiwan [22]
and 10 from the Gene Expression Model Selector [23]. In
addition, the performance of our proposed method will be
compared with other well-known classifier algorithms, such
as self-organizing map (SOM), C4.5, back propagation
neural network (BPNN), SVM, NaivaBayes (NB), CART
decision tree, and artificial immune recognition system
(AIRS). Statistical test will be employed to discriminate
the difference of all the algorithms in terms of classification
accuracy.

Gene selection and classification
DNA microarray (also commonly known as DNA chip or
biochip) is a collection of microscopic DNA spots attached
to a solid surface and allows researchers to measure the
expression levels of thousands of genes simultaneously in
a single experiment. The DNA microarray is operated by
classifier approaches to compare the gene expression
levels in tissues under different conditions [24]; for in-
stance, the study of Jiang et al. [25] devised an RF-based
method to classify real pre-miRNAs using a hybrid feature
set for the wild type versus mutant, or healthy versus
diseased classes. Batuwita and Palade [26] developed a
classifier named micro-Pred for distinguishing human
pre-miRNA hairpins from both pseudo hairpins and
other ncRNAs. Wang et al. [27] presented a hybrid method
combining GA and SVM to identify the optimal subset of
microarray datasets, and claimed their method was super-
ior to those obtained by microPred and miPred. Further,
Nanni et al [28] recently devised a support vector machine
(SVM) as classifier for microarray gene classification. Their
method combines different feature reduction approaches to
improve classification performance of the accuracy and area
under the receiver operating characteristic (ROC). Park
et al [29] presented a method for inferring combinatorial
Boolean rules of gene sets for cancer classification and
cancer transcriptome. Their study identified a small group
of gene sets that synergistically contribute to the classifica-
tion of samples into their corresponding phenotypic groups
(such as normal and cancer) and reduced the search space
of the possible Boolean rules.
Due to the high computational cost and memory usage

for classifying high dimensional data, appropriate gene



Figure 1 The proposed PSODT for gene selection.
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selection procedure is required to improve classification
performance. As addressed by Tan et al. [30], given the
quantity and complexity of the gene expression data, it is
unlikely to efficiently compute and compare the n ×m gene
expression matrix by manually. Instead, machine learning
and other artificial intelligence techniques have potential to
characterize gene expression data promptly [8,31,32].

Previous study
Some studies have proposed PSO algorithm for gene
selection problems. For instance, Alba et al. [1] presented
Table 2 Microarray datasets employed in the study

Data set Feature size Sample size Class size Particle size

11_Tumors 12601 203 5 126

14_Tumors 10368 50 4 104

9_Tumors 10368 50 4 104

Brain_Tumor1 5727 60 9 57

Brain_Tumor2 12534 174 11 125

Leukemia2 5328 72 3 53

Lung_Cancer 11226 72 3 112

SRBCT 5470 77 2 55

Prostate_Tumor 10510 102 2 105

DLBCL 83 2309 4 10
a modified PSO (geometric PSO) for high-dimensional
microarray data. Both augmented SVM and GA were
proposed for comparison on six public cancer datasets.
Li et al. [23] devised a method of combining PSO with a
GA and adopted SVM as the classifier for gene selection.
Their proposed approach used three benchmark gene
expression datasets for validation: leukemia, colon cancer,
and breast cancer. Mohamad et al. [19] presented an im-
proved binary PSO combined with an SVM classifier to
select a near-optimal subset of informative genes relevant
to cancer classification.
Zhao et al. [33] lately presented a novel hybrid frame-

work (NHF) for gene selection and cancer classification
of high dimensional microarray data by combining the
information gain (IG), F-score, GA, PSO, and SVM. Their
method was compared to PSO-based, GA-based, ant colony
optimization-based, and simulated annealing (SA)-based
Figure 2 An illustration of partial decision tree.



Table 3 Classification accuracy for 10 microarray datasets (%)

Data set Run no. SVM SOM BPNN C4.5 NB CART AIRS PSODT

11_Tumors 1 93.85 78.76 69.38 90.31 80.3 84.73 59.61 97.52

2 93.79 79.22 69.12 91.22 80.79 85.22 59.61 98.32

3 94.22 78.98 69.74 90.87 80.79 84.73 56.65 98.04

4 94.01 77.22 68.99 89.81 80.47 86.21 56.65 97.66

5 93.60 77,81 69.21 88.72 80.30 84.73 60.59 97.57

Avg. 93.89 78.55 69.29 90.19 80.53 85.12 58.62 97.82

(Std.) (0.23) (0.90) (0.29) (0.98) (0.25) (0.64) (1.84) (0.35)

14_Tumors 1 60.00 40.00 28.00 48.00 72.00 56.00 54.00 74.00

2 62.00 40.00 30.00 48.00 70.00 54.00 54.00 75.00

3 60.00 40.00 28.00 48.00 72.00 54.00 52.00 75.00

4 60.00 40.00 28.00 48.00 74.00 56.00 52.00 74.00

5 62.00 40.00 29.00 48.00 70.00 54.00 54.00 75.00

Avg. 60.80 40.00 28.60 48.00 71.60 54.80 53.20 74.60

(Std.) (1.10) (0.00) (0.89) (0.00) (1.67) (1.10) (1.10) (0.55)

9_Tumors 1 76.00 40.00 34.00 52.00 70.00 62.00 48.00 74.00

2 76.00 40.00 34.00 52.00 70.00 62.00 46.00 74.00

3 76.00 40.00 34.00 52.00 70.00 62.00 46.00 74.00

4 76.00 40.00 34.00 52.00 70.00 64.00 46.00 74.00

5 76.00 40.00 34.00 52.00 70.00 60.00 46.00 74.00

Avg. 76.00 40.00 34.00 52.00 70.00 62.00 46.40 74.00

(Std.) (0.00) (0.00) (0.00) (0.00) (0.00) (1.41) (0.89) (0.00)

Brain_Tumor1 1 49.20 18.33 15.00 41.67 41.67 30.00 33.33 56.34

2 49.71 19.72 15.21 41.89 41.33 28.33 35.00 57.22

3 49.06 18.34 15.30 42.00 41.67 30.00 31.67 57.31

4 48.78 17.78 15.23 41.79 41.67 33.34 30.00 56.96

5 49.22 18.40 15.00 41.98 40.67 30.00 35.00 57.33

Avg. 49.19 18.51 15.15 41.87 41.40 30.33 33.00 57.03

(Std.) (0.34) (0.72) (0.14) (0.14) (0.43) (1.83) (2.17) (0.41)

Brain_Tumor2 1 83.03 50.00 25.28 74.12 81.61 71.24 48.28 85.75

2 83.77 48.21 25.22 73.98 85.06 71.84 47.7 86.22

3 83.21 49.77 25.28 74.22 84.48 70.11 44.83 86.52

4 83.70 49.21 25.31 74.29 81.61 71.24 45.98 86.13

5 84.01 49.80 25.30 74.22 83.33 69.54 48.28 85.70

Avg. 83.54 49.40 25.28 74.17 83.22 70.79 47.01 86.06

(Std.) (0.41) (0.73) (0.03) (0.12) (1.59) (0.94) (1.54) (0.34)

Leukemia2 1 93.89 60.86 50.10 90.29 93.06 84.72 47.22 100.00

2 94.22 60.73 50.01 90.33 93.06 84.72 44.44 100.00

3 93.71 60.80 50.22 90.21 94.44 83.33 48.61 100.00

4 93.72 60.78 50.19 90.76 93.06 84.72 45.67 100.00

5 93.80 62.09 50.31 90.52 94.44 81.94 47.22 100.00

Avg. 93.87 61.05 50.17 90.42 93.61 83.89 46.63 100.00

(Std.) (0.21) (0.58) (0.12) (0.22) (0.76) (1.24) (1.61) (0.00)

Lung_Cancer 1 98.27 68.19 39.14 90.29 93.06 73.61 57.72 100.00

2 98.22 68.27 39.24 90.31 93.06 73.61 55.78 100.00
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Table 3 Classification accuracy for 10 microarray datasets (%) (Continued)

3 97.43 67.85 39.17 90.22 93.06 73.61 57.72 100.00

4 97.47 68.33 38.79 90.54 91.67 73.61 55.56 100.00

5 97.12 68.12 39.01 90.31 93.06 73.61 57.72 100.00

Avg. 97.70 68.15 39.07 90.33 92.78 73.61 56.90 100.00

(Std.) (0.51) (0.19) (0.18) (0.12) (0.62) (0.00) (1.13) (0.00)

SRBCT 1 96.62 67.67 83.08 78.00 80.52 87.01 51.95 92.49

2 95.42 68.07 83.19 78.66 80.52 85.12 53.64 93.21

3 96.01 68.31 82.86 78.21 79.22 85.42 53.05 93.08

4 95.55 67.90 82.99 77.97 81.82 87.01 53.24 92.82

5 96.01 67.21 83.01 77.90 81.82 88.32 51.95 93.10

Avg. 95.92 67.83 83.03 78.15 80.78 86.58 52.77 92.94

5 (Std.) (0.47) (0.42) (0.12) (0.31) 1.09 1.31 0.77 (0.29)

Prostate_Tumor 1 88.04 66.71 56.62 88.14 62.75 82.35 51.96 94.10

2 87.91 67.51 56.77 88.14 62.75 83.33 52.94 94.64

3 87.11 66.88 56.49 88.18 61.76 82.35 52.94 94.21

4 88.23 67.02 56.80 88.14 62.75 82.35 52.75 94.49

5 87.03 68.07 56.92 88.14 61.76 82.35 51.96 94.11

Avg. 87.66 67.24 56.72 88.15 62.35 82.55 52.51 94.31

(Std.) (0.55) (0.55) (0.17) (0.02) 0.54 0.44 0.51 (0.24)

DLBCL 1 88.42 51.47 35.88 79.34 85.11 73.49 50.6 91.88

2 88.71 52.28 34.71 79.21 86.75 69.88 53.01 92.22

3 89.09 51.77 34.98 79.44 85.11 69.88 54.93 91,99

4 88.68 51.29 35.06 79.83 84.34 69.88 53.37 92.87

5 88.97 51.49 35.78 79.20 85.11 69.88 54.21 93.22

Avg. 88.77 51.66 35.28 79.40 85.28 70.60 53.22 92.55

(Std.) (0.26) (0.39) (0.52) (0.26) 0.88 1.61 1.65 (0.61)

Classification Accuracy (%)
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Figure 3 95% confidence interval of the mean for classification accuracy.
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Table 4 ANOVA for average classification accuracy

SS DF MS F P

Method 88638 7 12662.61 2.254880 0.029801

Dataset 76054 9 8450.40 1.504796 0.144956

Method × Dataset 22367 63 355.04 0.063223 1.000000

Error 1802622 321 5615.65
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methods on five benchmark data sets: leukemia, lung car-
cinoma, colon, breast, and brain cancers. Chen et al. [18]
used PSO+ 1NN for feature selection and tested their
algorithm against 8 benchmark datasets from UC Irvine
Machine Learning Repository as well as to a real case of
obstructive sleep apnea. Previous research all indicates that
PSO is promising to solve the gene selection problem.

Methods
We integrated PSO algorithm with the C4.5 classifier to
address the gene selection problem (refer to Appendix 1 &
2 at [34]). The important genes were proposed using
PSO algorithm, and then C4.5 was employed as a fitness
function of the PSO algorithm to verify the efficiency of
the selected genes.

Solution/particle representation and initialization
A particle represents a potential solution (i.e., gene subset)
in an n-dimensional space. The particles used binary digits
string with length n, the total number of genes for gene
selection. The bits consisted of 0 and 1 digits, which
correspond to non-selected and selected gene, respect-
ively. Each particle was coded as binary alphabetical
string. For instance, a particle of ‘11000’ contains five
genes where only the first and the second gene were se-
lected. We updated the dimension d of particle i by xnewid ¼
1; if sigmoid vnewid

� �
> U 0; 1ð Þ

0; otherwise
where the sigmoid vnewid

� �
is

1
= 1þ e−v

new
id

� ��
.

We used a random function to initialize the particle
population of PSO. Seeding PSO with a good initial can
Table 5 p-value of multiple comparison for average classifica

SVM SOM BPNN C4.5

SVM 0.000000 0.000000 0.00000

SOM 0.000000 0.000000 0.00000

BPNN 0.000000 0.000000 0.00000

C4.5 0.000000 0.000000 0.000000

NB 0.000035 0.000000 0.000000 0.06684

CART 0.000000 0.000000 0.000000 0.03992

AIRS 0.000000 0.003209 0.000061 0.00000

PSODT 0.005543 0.000000 0.000000 0.00000
lead to a better result. This study has examined two
generators of random seeds to initiate solutions: the first
is generated by using Visual C# random seed function
and the second is from a uniform distribution with a
range from 0 to 1, denoted as of U(0,1). The result (as
shown in Table 1) reveals that U(0,1) outperforms Visual
C# random seed generator. In this study, a probability
of 0.5 is randomly assigned to bit values 0 and 1. If U
(0,1)>0.5, then x0id ¼ 1; otherwise, x0id ¼ 0.

Fitness function and PSO procedure
The PSO fitness function is based on the classification
accuracy measured by the C4.5 classifier. Figure 1 shows
the procedure of applying PSODT on gene selection.

Results and discussion
Experimental setting
This study used 10 microarray cancer datasets (with diverse
sizes, features, and classes) and conducted numerical
experiments to evaluate the performance of our proposed
method. The 10 datasets were obtained from GEMS [23],
including 11_Tumors, 14_Tumors, 9_Tumors, Brain_-
Tumor1, Brain_Tumor2, Leukemia2, Lung_Cancer, SRBCT,
Prostate_Tumor, and DLBCL. In GEMS dataset, these
types of cancer belong in the top 10 in terms of cancer
incidences and deaths in USA in 2012. Table 2 summarizes
the characteristics of those microarray datasets. In addition,
five sets of cDNA clones were selected and used individu-
ally for this purpose (refer to [34]).
The PSO parameters are chosen by a survey on several

related research articles concerning the utilization of PSO.
Such parameter setting was optimized by literatures (refer
to [35-37]). Moreover, we conducted many trials to test
such parameter setting which shows the best objective
value. The parameters used for PSODT are as follows.
The number of particles in the population was set to the
one-tenth number of genes (features) (refer to the field
of ‘particle size” in Table 2). The parameter, c1 and c2,
were both set at 2, whereas the parameter, lower (vmin) and
upper bounds (vmax), were set at −4 and 4, respectively.
tion accuracy

NB CART AIRS PSODT

0 0.000035 0.000000 0.000000 0.005543

0 0.000000 0.000000 0.003209 0.000000

0 0.000000 0.000000 0.000061 0.000000

0.066845 0.039928 0.000000 0.000000

5 0.000114 0.000000 0.000000

8 0.000114 0.000000 0.000000

0 0.000000 0.000000 0.000000

0 0.000000 0.000000 0.000000



Table 7 The arrays of cancers

# Cancer Sample size

1 Bladder 94

2 Liver 107

3 Cervix Uteri 148

4 Prostate 166

5 Lung 222

6 Brain 250

7 Lymph Node 280

8 Kidney 301

9 Ovary 331

10 Colon 437

11 Blood 503

12 Bone Marrow 676

13 Breast 1817
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The inertia weight (w) was set at 0.4. Random factors, r1
and r2, are within [0, 1] interval. The process was repeated
until either the fitness of the given particle was 1.0 or the
number of the iterations was achieved by the default value
of T = 100. Table 2 shows the summarization of microarray
dataset characteristics.

Cross-validation
To guarantee the impartial comparison of the classifi-
cation results and avoid generating random results,
this study adopted a five-fold cross-validation strategy.
Cross-validation is a statistical method by dividing data
into two segments for evaluating and comparing learning
algorithms. One part used to learn or train a model
and the other used to validate the model. Stone [38]
and Geisser [39] employed cross-validation as means
for choosing proper model parameters, as opposed to
using cross-validation purely for estimating model per-
formance [40-42]. K-fold cross-validation is used to evalu-
ate algorithms. In this study we set K = 5, and the details
are stated as follows: in each iteration, the algorithms
apply K folds of data to earn one or more models, and
subsequently the learned models are asked to predict
the data in the validation fold. The performance of the
algorithm on each fold is tracked by its accuracy. Upon
completion, the K samples of the accuracy is available
for validation.

An illustration of the resulting cancer classifier structure
Figure 2 demonstrates a sample decision tree for classifying
three female cancers (i.e., ovary, cervix uteri and uterus).
The genes causing cancers led to a classification tree with
four terminal nodes (or clusters of cancer). For instance,
218934_s_at, 206166_s_at and 212341_at are identified
as splitters. 218934_s_at are strongly associated with the
three cancers; the first branch of the tree is based on
218934_s_at: a high score (i.e., 218934_s_at > 2.7133)
implies the occurrence of uterus cancer (Node 1). When
218934_s_at < = 2.7133 (Node 2), 206166_s_at > 2.5063
Table 6 CPU time (in sec.)

Data set SVM SOM BPNN

11_Tumors 6.63 33.57 252.10 2

14_Tumors 0.63 3.90 31.16

9_Tumors 0.63 4.57 36.08

Brain_Tumor1 1.17 5.24 42.14

Brain_Tumor2 8.35 38.11 295.33 3

Leukemia2 0.53 2.86 23.73

Lung_Cancer 0.98 5.64 44.21

SRBCT 0.31 2.77 21.23

Prostate_Tumor 1.12 8.37 64.40

DLBCL 0.30 1.64 13.66
implies the occurrence of cervix uteri cancer (Node 3),
and when 206166_s_at < = 2.5063 (Node 4) and 212341_
at < = 10.026, it implies the occurrence of ovary cancer
(Node 5); otherwise, 212341_at > 10.026 implies again
the occurrence of cervix uteri cancer (Node 6).

Benchmark results with other classification algorithms
To confirm effectiveness of our proposed PSODT, this
study compares its accuracy with the other seven popular
classification algorithms (i.e., SVM, SOM, BPNN, C4.5,
BN, CART, and AIRS). Table 3 shows the accuracy of our
proposed method as compared to the other four algo-
rithms. Five-fold cross-validation is applied on the datasets
and the average and standard deviations were obtained.
Our proposed method was superior to the others, except it
is compatible to SVM for two datasets, 9_Tumors and
SRBCT. The stability (convergence) shows that the stand-
ard deviation of PSODT is less than 1%. Figure 3 shows the
averaged classification accuracy in 95% confidence interval
(with respect to the 10 datasets) which indicates that
C4.5 NB CART AIRS PSODT

7.53 36.21 110.75 50.90 1203.80

2.06 5.70 10.62 14.12 139.53

3.21 5.21 14.21 15.69 164.05

3.93 5.73 17.66 10.37 186.45

5.49 32.02 160.34 45.73 1348.20

1.43 5.51 8.33 20.51 101.29

3.13 9.12 19.88 21.00 198.62

1.37 5.52 8.53 14.99 99.10

2.87 13.08 18.34 34.66 300.58

1.11 3.22 5.90 15.21 58.06



Table 8 Classification accuracies for each run using PSODT

Data set Run no. Classification
accuracy (%)

No. selected
genes

13 cancer 1 97.26 135

2 98.72 100

3 97.25 134

4 97.79 135

5 97.39 126

Avg. 97.68 126

(Std.) (0.62) (15.02)
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PSODT outperformed the other algorithms. This study
used two-way ANOVA to determine whether the eight
algorithms were significantly different in terms of average
classification accuracy. The result fulfills the ANOVA as-
sumptions on normality, homoscedasticity and independ-
ence. In ANOVA analysis, the classification algorithms
defined as “factor”, whereas the datasets were defined as
“block”. Table 4 lists the ANOVA results for average clas-
sification accuracy. The results showed significant differ-
ences of classification accuracy among the 8 algorithms.
Further, to determine if each pair of the five algorithms
differed from each other, Fisher’s test was used in this
study, as shown in Table 5. The p-values demonstrate that
our proposed method exhibits differences in mean classifi-
cation accuracy as compared with the other algorithms,
except it is compatible with SVM. Table 6 shows the com-
putational time for each algorithm. Although the time
consumed by the proposed tree based algorithm is signifi-
cantly larger than the others, it is within a reasonable
range even for the large-sized datasets.
In summary, SVM classification method which is gen-

erally considered as one of the most powerful machine
learning classifiers is based on the statistical learning
theory [43]. However, the structure of SVM is a black
box system which does not provide insights on the reasons
of a classification or explanations similar to ANN. SOM is
one of the categories of ANN algorithms for supervised
learning. BPNN is a common type of ANN and capable
to recognize complex patterns in data. However, all
these abovementioned classifiers are black box systems
Table 9 Classification accuracy for 13 sets of cancer microarra

Data set Run no. SVM SOM BPNN

13 cancer 1 72.46 52.60 42.58

2 72.46 52.77 41.77

3 72.51 51.39 42.59

4 72.51 52.60 42.33

5 73.62 52.60 43.33

Avg. 72.71 52.39 42.52

(Std.) (0.51) (0.56) (0.56)
and nonlinear models. NB classifier considers each of these
features to contribute independently to the probability, re-
gardless of the presence or absence of the other features.
CART may be no good binary split on an attribute that has
a good multi-way split [44], which may lead to inferior
trees. AIRS have many parameters that is not easy to find
the optimum combination of parameters. Instead, C4.5 is
a classifier that creates a decision tree based on rules, and
is a linearly method simple to understand and interpret.
This study integrates the nonlinear search capability of
PSO and linearly separable advantage of DT.

Model justification by a clinical dataset
This study investigated a set of clinical practice data includ-
ing 13 actual cancer cases from the M2 data bank in Taiwan
[22]. The raw intensity data of cancer (CEL files) generated
using Affymetrix HG-U133A and HG-U133 plus 2.0
platforms were retrieved from Array Express and Gene ex-
pression omnibus (GEO). Arrays performed with samples
other than human clinical specimens, such as cell lines,
primary cells, and transformed cells, were excluded.
All raw data of microarray (5,335 samples) were pre-

processed using three different algorithms: Affymetrix
Microarray Suite 5 (MAS5), robust multi-chip average
(RMA), and GC-robust multi-chip average (GCRMA) as
implemented in the Bioconductor packages. RMA and
GCRMA processed data on a multi-array basis. All of the
arrays of the same platform were uniformly pre-processed
to reduce variance. The cancer microarray consisted of 13
cancer types, namely, bladder, blood, bone marrow, brain,
breast, cervix uterus, colon, kidney, liver, lung, lymph
node, ovary, and prostate. The information of each cancer
is shown in Table 7.
Table 8 presents the classification accuracy of PSODT for

each run and the number of genes selected. The accuracy
of PSODT and SVM were 97.26 and 72.46, respectively.
The test results on the 13 cancer microarrays for all
benchmark algorithms are shown in Table 9. The results
indicated that PSODT outperformed the SVM and other
benchmark methods.
To perform a five-fold cross-validation, we selected five

independent sets of cDNA clones (refer to supplementary
y (%)

C4.5 NB CART AIRS PSODT

93.14 94.21 91.42 50.41 97.26

93.25 93.78 90.54 52.31 98.72

93.26 93.60 91.77 53.33 97.25

93.25 94.81 92.04 53.85 97.79

93.25 94.02 91.09 53.71 97.39

93.23 94.08 91.37 52.72 97.68

(0.05) (0.47) (0.59) (1.43) (0.62)
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Tables one to five of Appendix three at [34]). A total of
453 cDNA clones were selected at least once. Among
the lists of cDNA clones, a number of them were se-
lected multiple times. The genes being selected multiple
times (with Frequency ≥ 4) indicate that the expression
levels of these genes provide a high discrimination
power among the tumors of different anatomical origin.
Therefore, these genes are likely to be the tissue-specific
genes. Alternatively, such expression differences may be
generated result from organ- or tissue-specific malignant
transformation.
Conclusions
We proposed a novel method to identify tissue-specific
genes as well as housekeeping genes with altered expression
patterns that provide a high discrimination power on
cancer classification. These genes may play as an im-
portant role in diagnosis and/or pathogenesis of various
types of tumors. Eleven cancer datasets were used to
test the performance of the proposed method, and a
five-fold cross-validation method was used to justify the
performance of our proposed method. Our proposed
approach achieved a higher accuracy as compared with
all the other methods.
This proposed method has integrated with the nonlinear

search capability of PSO and linearly separable advantage
of DT to apply to microarray cancer datasets for gene
selection. Hawse have identified representative cancer
genes (453 genes) from numerous microarray data (65,000
genes) that can reduce costs. In addition, we compared
our proposed method with four well-known algorithms
using a variety of datasets (diverse sizes and numbers of
classes and features). Consequently, our proposed method
outperformed all the other benchmark methods and is
compatible to SVM for certain specific datasets.
Further studies to be further conducted are suggested

as follows. First, PSO may result in better solutions by
optimizing parameter settings; therefore, self-adaptation
parameters of particle size, number of iterations, and
constant weight factors are worth developing. Second,
adding hybrid search algorithms in PSO algorithm may
improve its performance; for example, swarms with mixed
particles may further enhance the effectiveness. Third, the
improvement in the execution time for large-sized data
sets could be treated as a research subject in the future.
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