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Abstract

Background: Binding free energy and binding hot spots at protein-protein interfaces are two important research
areas for understanding protein interactions. Computational methods have been developed previously for accurate
prediction of binding free energy change upon mutation for interfacial residues. However, a large number of
interrupted and unimportant atomic contacts are used in the training phase which caused accuracy loss.

Results: This work proposes a new method, βACVASA, to predict the change of binding free energy after alanine
mutations. βACVASA integrates accessible surface area (ASA) and our newly defined β contacts together into an
atomic contact vector (ACV). A β contact between two atoms is a direct contact without being interrupted by any
other atom between them. A β contact’s potential contribution to protein binding is also supposed to be inversely
proportional to its ASA to follow the water exclusion hypothesis of binding hot spots. Tested on a dataset of 396
alanine mutations, our method is found to be superior in classification performance to many other methods,
including Robetta, FoldX, HotPOINT, an ACV method of β contacts without ASA integration, and ACVASA methods
(similar to βACVASA but based on distance-cutoff contacts). Based on our data analysis and results, we can draw
conclusions that: (i) our method is powerful in the prediction of binding free energy change after alanine mutation;
(ii) β contacts are better than distance-cutoff contacts for modeling the well-organized protein-binding interfaces;
(iii) β contacts usually are only a small fraction number of the distance-based contacts; and (iv) water exclusion is a
necessary condition for a residue to become a binding hot spot.

Conclusions: βACVASA is designed using the advantages of both β contacts and water exclusion. It is an excellent
tool to predict binding free energy changes and binding hot spots after alanine mutation.

Background
A binding hot spot is a small area in a protein binding
interface whosemutation can lead to a big change in bind-
ing free energy. The determination of its accurate location
in the interface is a fundamental problem in structural
biology, and is useful for applications such as rational
drug design and protein engineering [1]. In wet labs, a
residue’s contribution to binding free energy can be deter-
mined through mutation experiments. For example, ala-
nine scanningmutagenesis [2]mutates interfacial residues
individually into an alanine, and thenmeasures the change
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of binding free energy (��G) to quantify the contribution
of the side chain of the mutated residue. Based on these
wet-lab experimental outcomes and databases [3-6], it has
been reported that binding free energy is unevenly dis-
tributed in protein interfaces [7]. In fact, there are always
a small fraction of interfacial residues—the binding hot
spot—whichmake major contribution to the binding [7,8]
with ��G ≥ 2 kcal/mol [3]. But wet-lab experiments
are both time and cost expensive. Reliable computational
methods are thus needed for accurate prediction of bind-
ing free energy change.
FoldX [9,10], Robetta [11,12] and CC/PBSA [13] are

some well-known physics-based methods for this pre-
diction problem. These methods use empirical terms
(such as hydrogen bonds), the van der Waals terms and
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Coulomb electrostatics to learn a linear function for esti-
mating the effect on the change of binding free energy
after residue mutations. However, the predicted energy
by these methods has a large discrepancy from exper-
imentally measured ��G [14]. Thus, other methods
have been proposed to qualitatively identify binding hot
spots. For example, protein sequences are used by [15]
and ISIS [16], while protein tertiary structures are used
together with docking techniques by [17]. Protein qua-
ternary structures have been also widely used [18]. For
example, Hotsprint [19] and HotPOINT [20] generate
rules to identify binding hot spots from features such
as conservation, accessible surface area (ASA), residue
propensity and/or residue pairwise potentials. Machine
learning models are also widely used for predicting bind-
ing hot spots. Decision trees are used in MINERVA [14]
to induce rules at different levels of protein information
including structure, sequence and molecular interactions.
Later, machine learning algorithms SVM and its ensemble
are employed to combine energetic terms such as van der
Waals potentials, solvation energy, hydrogen bonds and
Coulomb electrostatics, and/or other protein sequences
and structure information for a better hot spot prediction
performance. Recently, Bayesian Networks are used to
combine threemain sources of information related to con-
servation, FoldX-calculated ��G and atomic contacts for
a novel probabilisticmodel of binding hot spots prediction
[21]. Very recently, random forests have been proposed to
predict hot spots [22] by using structural neighborhood
properties of mutated residues and other conventional
physicochemical features [23,24]. Besides alanine muta-
tions, hot spots after mutations to any other type of
residues are also investigated [6] and their binding free
energy changes can be predicted [13,25] with good per-
formance. Several of these methods are also assessed in
a community-wide test for predicting mutation effects on
protein-protein interaction affinity [26].
In spite of intensive research, the prediction still needs

a big improvement. The existing methods usually used
those atomic contacts based on Voronoi diagram or sim-
ply defined by a distance threshold with little considera-
tion on the local atomic organization of the contacts. If
the distance threshold is too large, e.g., larger than 6 Å,
an atomic contact between two atoms i and j may have
no direct contact area, because the space between i and
j can accommodate other atoms. Such interrupted con-
tacts constitute a large proportion of the traditionally used
contacts. It is highly questionable whether they are really
important to protein binding. In fact, important contacts
in hot spot prediction [10,11] or those closely related to
binding hot spots [14] are generally not interrupted, such
as hydrogen bonds, salt bridges and π − π contacts.
To overcome these drawbacks, we propose a novel clas-

sifier βACVASA for predicting ��G and binding hot

spots. The main idea of βACVASA is to use atomic con-
tact vector (ACV) of β contacts (that’s why our classi-
fier is named βACV for short) instead of distance-cutoff
contacts. β contact, found on β-skeletons [27], is our
newly defined contact [28]. A β contact between two
atoms restricts that there is no other atoms between these
two atoms, and requires that the two atoms should have
enough direct contact area to form an interaction. The
definition of β contacts can filter out a lot of unimportant
and interrupted distance-cutoff contacts. Our analysis has
found that β contacts are only a small fraction number of
those contacts based on a distance threshold [28], but they
are effective to distinguish crystal packing from homod-
imers [28] and to predict protein-ligand binding affinity
[29].
Another important idea is that the relative ASA prop-

erties are integrated by our βACV classifier based on
the water exclusion hypothesis of binding hot spots. The
water exclusion hypothesis states that the topological
shape of a binding hot spot and its surrounding residues
can be characterized as an O-ring structure [3]. Few
residues on the O-ring, which are largely exposed to bulk
solvent water, can contribute significantly to the protein
binding. Thus in βACV, the energy contribution of a
β contact to protein binding is required to be inversely
proportional to its ASA.
Our βACVASA was tested on a dataset of 396 alanine

mutations to show its superior performance. We com-
pared βACVASA with the following methods: (i) ACV
methods using distance-cutoff contacts to reveal the
importance of β contacts to protein binding; (ii) a βACV
method without ASA integration to confirm whether
the water exclusion theory is necessary for binding hot
spots; and (iii) several widely-used state-of-the-art meth-
ods such as Robetta, FoldX, HotPOINT and KFC to show
the overall better prediction capability of βACVASA.

Methods
Dataset
The data stored in the ASEdb database [3] and the muta-
tions in BID [4] having ��G measurements are both
used for evaluating our method. In total, our dataset con-
tains 22 protein-protein complexes (detailed in Additional
file 1: Table S2). All of them have quaternary structures
in PDB and meet the following three requirements. First,
no redundancy exists among these protein complexes.
Given two protein complexes (e.g., interacted pair A and
B, and interacted pair C and D), a sequence identity is
calculated through BLAST with the default setting for
A and C, A and D, B and C, and B and D, denoted by
S(A,C), S(A,D), S(B,C) and S(B,D) respectively. These
two protein complexes are redundant if S(A,C) ≥ 40%
and S(B,D) ≥ 40%, or S(A,D) ≥ 40% and S(B,C) ≥ 40%.
According to this criterion, most of the protein complexes
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in our dataset are non-redundant. For those redundant
complexes, the mutations in the similar proteins must be
in different positions. Our requirement on this sequence
identity is reasonable, since atomic contacts and ASAused
in this work are derived from complexes only, rather than
from sequences (such as required by conservation scores).
Secondly, only alanine mutations are considered. Thirdly,
mutated atoms before mutation must have at least one
distance-cutoff atomic contact with the partner proteins.
The mutated atoms are those atoms except N, CA, C, O
and CB. Under these requirements, our dataset has 396
alanine mutations (detailed in Additional file 1: Table S3).
Of these mutations, 86 are binding hot spot residues
having ��G ≥ 2 kcal/mol.

Atomic β contacts in protein binding interfaces
Atomic β contact is a recently proposed notion of atomic
contacts for modeling the well-organized protein 3D
structures [28]. Its detail can be found in [28]. For easy
reference, we give a brief description of β contacts and
a simple method to produce β contacts from a protein
quaternary structure.

Atomicβ contacts: a definition
Given a quaternary structure of a protein complex p, a β

contact between two atoms i and j in p requires that (i)
the spatial distance between i and j is less than a thresh-
old Td plus the sum of their van derWaals radii defined by
[30] (distance-cutoff contacts for short), (ii) i and j share
a Voronoi facet in p’s Voronoi diagram, and (iii) the con-
tact cannot break p’s β-skeleton. The β-skeleton [27] of
a discrete set p is an undirected graph in computational
geometry. In this graph, two points i and j have an edge
if angle ikj is sharper than a threshold determined by β ,
∀k ∈ p, k �= i, j. This angle threshold is denoted as ∠β ,
which actually defines a forbidden region fr of the contact
between i and j, e.g., the gray regions in Figure 1. When
β = 1, namely ∠β = 90°, fr is the sphere with the mid-
point of i and j as the center and with c’s length as the
diameter as shown in Figure 1(b). This sphere is similar to

van der Waals radii of atoms. The forbidden region fr of
a β contact usually does not cover any other atoms. Oth-
erwise, if there is an atom k in fr, for example as shown
in Figure 1(a) when ∠β = 90° or in Figure 1(c) when
∠β = 75°, the contact between i and j is not a β contact. A
β contact suggests that its two atoms should have enough
direct contact area to form an important interaction. The
number of atomic β contacts in protein binding interfaces
is only a small fraction number of distance-based contacts
or less than half the number of contacts in the Voronoi
diagrams when Td = 3.3 as found by [28]. Interestingly,
the use of β contacts can achieve better prediction perfor-
mance for distinguishing false binding of crystal packing
from homodimers.

Amethod to produceβ contacts
A protein complex p can be represented as an atomic
β contact graph b(p), if all of the heavy atoms are rep-
resented by nodes, and the β contacts are represented
by edges. To produce b(p) for p, Qhull is first used to
obtain the Delaunay triangulation [31] for all nodes. After
that, the distance threshold Td is used to remove those
atomic contacts whose distances are too large. Td is set as
3.3 Å (the diameter of a water molecule 2.8 Å plus 0.5 Å).
This threshold is an insensitive factor to β contacts when
it is large enough. Please refer to the Additional file 1
for an analysis of β contacts under several different Tds.
Thirdly, each atomic contact is checked to guarantee that
it satisfies the β skeleton requirements. To sharpen the
difference of those mutations with higher ��G and those
with lower ��G, the angle threshold ∠β is set as 75° in
this work, whose forbidden region fr is larger than that of
∠β = 90° as shown in Figure 1(b) and (c). That is, ∠β =
75° is a stricter condition than using ∠β = 90° to produce
β contacts. The rationale to choose the stricter condition
∠β = 75° is illustrated in the following situation. Assume
(i) A, B and C are the center points of three atoms with
van der Waals radii 1.8 Å (for example, the radius of com-
mon Carbon atoms in protein structures), (ii) there is a
covalent bond between A and B (AB for short) with spatial

Figure 1 Examples of β contacts and non-β contacts. Three points, denoted by i, j and k, represent atoms. The dashed circles represent the van
der Waals spheres in 2D space. The lines in yellow are of interest.
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distance 1.5 Å, and a non-covalent bond between A and
C (AC for short) and one between B and C (BC for short),
and (iii) the van der Waals sphere of A and that of C are
circumscribed each other with the spatial distance 3.6 Å,
and the same for the van derWaals sphere of A and that of
C. Then, the angle ∠ABC = 78°. A stricter threshold than
78° is 75°, which was chosen by this work.

Our predictionmethods
This section describes how to construct our βACVASA
classifier, including how to define βACV and how to
integrate ASA into βACV.

βACV: a vector representation for interfacial alanine
mutations
We use an atomic contact vector (ACV) [32] of β con-
tacts to represent an interfacial alanine mutation. We also
use β contacts of the interfacial bound water molecules to
update the vector, and use the atomic environment of the
mutation to expand the basic vector.

Constructing a basic βACV vector: To produce a basic
βACV for an alanine mutation mutalar of residue r in a
protein complex p, we build the β contact graph b(p) for p.
We then remove the coordinates of themutated atoms in r
to get a quaternary structure resulted from the mutation,
denoted by pmut

r . Then, we produce another β contact
graph b(pmut

r ) for pmut
r .

By the mutation mutalar , some contacts in b(p) may dis-
appear in b(pmut

r ), namely those mutated contacts, while
some new contacts can be formed in b(pmut

r ), called new
contacts. Both of those mutated and new contacts are
represented in a βACV vector. As the heavy atoms from
the 20 standard residues are grouped into 8 atomic types
(shown in Additional file 1: Table S4) by this work, our
βACV vector has 36 pairs of atomic types as elements.
The value v(Ti,Tj) of each element in βACV with atomic
types Ti and Tj is calculated, using Equation 1.

v(Ti,Tj) =
∑

(x,y)∈M(Ti,Tj)

1
d2

(x,y)
−

∑
(x′,y′)∈N(Ti,Tj)

1
d2

(x′ ,y′)
(1)

where x and x′ are of the atomic type Ti, y and y′ are of
the atomic type Tj, (x, y) and (x′, y′) are two atomic pairs,
d(∗, ∗) is the spatial distance between a pair of atoms, and
M(Ti,Tj)(or N(Ti,Tj)) is the set of all those mutated (or
the set of all those new) contacts whose atomic types are
Ti and Tj. Here term d2(∗, ∗) is specially used to follow the
same idea as Coulomb’s law which also uses the inverse of
squared distance. Note that the other common contacts
between b(p) and b(pmut

r ) are not used in βACV. Alanine
mutations of Ala are assumed to have insignificant ��G
and alanine mutations of Gly are not considered.
It can be seen that a basic βACV considers all muta-

ted contacts and new contacts, including both across-

interface contacts and those contacts from the same pro-
teins or same biological units. However, atomic contacts
between covalent-bond nearby atoms are not used in
Equation 1. The covalent-bond nearby atoms of a given
atom i are those atoms that have not more than three
covalent-bond steps from i. For example, suppose i −
j − k − l − m, where − indicates a covalent bond.
From i, the covalent-bond step is 0 to i, is 1 to j, is 2 to k,
is 3 to l and is 4 to m, respectively. Thus, i, j, k and l are
covalent-bond nearby atoms of i, whilem is not. In βACV,
the contacts between i and its covalent-bond nearby
atoms are excluded fromM orN in Equation 1. This is rea-
sonable, because spatially close distances between i and
its covalent-bond nearby atoms are more likely due to the
rigidity of their covalent bonds.

Bound water molecules in protein interfaces: Pro-
tein folding and binding occur in a solvent environment
in vivo. Water molecules are heavily involved in protein
binding and sometimes they can form a compulsory part
of the protein interfaces. In this work, a water molecule
in PDB is considered as a part of a binding interface if
(i) it has at least 3 potential hydrogen-bonds contacts, or
(ii) it has 2 potential hydrogen-bond contacts and also has
at least 2 other contacts with spatial distances less than
4 Å. A potential hydrogen-bond contact is required to
have a spatial distance less than 3.2 Å between a hydrogen
donor (such as a nitrogen atom) and a hydrogen accep-
tor (such as an oxygen atom). Water molecules under
this requirement, named bound watermolecules, are such
closely involved in protein folding and binding that they
can play an integral part. Bound water molecules are then
grouped into the Oxygen atomic type with more than one
hydrogen atom (shown in Additional file 1: Table S4) to
update the values of the elements in the basic βACV vec-
tor. We did not consider the contacts between any two
water molecules.

The neighbourhood atoms of mutated residues: Infor-
mation of neighbourhood atoms of mutalar is used to
expand the basic βACV vector. Assume that S is a set
of atoms which have β contacts with the mutated atoms
under∠β = 90°. For each atom in S including themutated
atoms, its nearby atoms are added into S. Then, an atomic
vector with the above 8 atomic types is also used to rep-
resent those atoms in S in the bound state. The value of
its element Tk is calculated using v(Tk)b in Equation 2.
Similarly, v(Tk)u in Equation 2 is used to calculate another
atomic vector for representing the atoms in S in the
unbound state.

v(Tk)b =
∑

j∈S,tj=Tk
Elocj ; v(Tk)u =

∑
j∈S,tj=Tk

Elocj (u)

(2)
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where Elocj (or Elocj (u)) is the relative local ASA of atom j
in the bound (or unbound) state calculated via Equation 6
below. Water molecules were not considered here. Thus,
each basic βACV vector is now expanded by another 16
atomic types for representing surrounding information
of mutated atoms. So, the expanded βACV is a vector
representation with 52 elements.

βACVASA: integrating thewater exclusion hypothesis into
βACV
Solvent water is compulsory for protein binding, but
water exclusion—small accessible surface area (ASA)—
is a necessary condition for a residue to become bind-
ing hot spot [3,33,34]. Few highly exposed residues can
make significant contribution to protein binding strength
[34]. Thus, we integrate ASA information into each
atomic pair of βACV in Equation 1, and name the
method βACVASA. We note that except Equation 1, the
other definitions in βACVASA are the same as those in
βACV.
Given a protein complex p, we take the following steps

to integrate the water exclusion theory into Equation 1.
The first step is to use NACCESS [30] to produce ASA for
all of the atoms and residues in both bound and unbound
states. For p in the bound state, we then define special
ASA terms for an atom i using Equation 3, and for a
residue Ri using Equation 4 and Equation 5.

Ei =
√
ASAi
50

Bi = max(0, 1 − Ei) (3)

EbbRi =
√√√√ ASAbb

Ri
max(ASAbb

Ri )
Bbb
Ri = max(0, 1 − EbbRi ) (4)

EscRi =
√

ASAsc
Ri

max(ASAsc
Ri)

Bsc
Ri = max(0, 1 − EscRi) (5)

In Equation 3, ASAi is accessible surface area of atom
i, while Ei is its relative ASA, and Bi is its relative ASA
burial compared to the maximum ASA, where number
50 is roughly half of NACCESS-calculated ASA of a sin-
gle water molecule without any neighbor atoms (the ASA
of a water molecule is 98.47 = 4 × 3.14 × 2.82 Å2).
In Equations 4 and 5, ASAbb

Ri and ASAsc
Ri are accessible

surface area of backbone atoms (i.e., bb) and of side-
chain atoms (i.e., sc) for a residue Ri, while E∗

Ri and B∗
Ri

are the relative ASA and the relative ASA burial of ∗ ∈
{bb, sc}. max(ASAbb

Ri ) and max(ASAsc
Ri) are the maximum

ASA of backbone atoms and of side-chain atoms for the
residue type of Ri, which are calculated in a triplet of
ALA-Ri-ALA by NACCESS. These backbone atoms and
side-chain atoms are defined in the same way as those
in [30].

We compute the local ASA Eloci and local ASA burial
Bloc
i of an atom i via Equation 6.

Eloci =
{
Ei × EbbRi if i is a backbone atom of Ri
Ei × EscRi if i is a side-chain atom of Ri

Bloc
i =

{
Bi × Bbb

Ri if i is a backbone atom of Ri
Bi × Bsc

Ri if i is a side-chain atom of Ri
(6)

where the multiplication of relative ASA burial of both
atom i and its residue is used to calculate local ASA burial
Bloc
i . This is because relative ASA of both an atom and

its residue are critical in describing the accessibility of an
atom. For example, an atommay be buriedwith small ASA
but its covalent-bond atoms might be exposed. When rel-
ative ASA of atoms or residues are used individually, the
performance was worse (data not shown).
To integrate water exclusion theory into Equation 1, we

determine the value v(Ti,Tj) of each element in βACVASA
through Equation 7 instead of Equation 1.

v(Ti,Tj) =
∑

(x,y)∈M(Ti,Tj)

Bloc
x × Bloc

y

d2(x,y)

−
∑

(x′,y′)∈N(Ti,Tj)

Bloc
x′ × Bloc

y′

d2
(x′ ,y′)

(7)

where T∗, x, y, x′, y′, M and N have the same meaning as
those in Equation 1.

Comparison of β contacts with distance-cutoff
contacts: To compare the performance of β contacts
with distance-cutoff contacts for predicting ��G,
ACVASA based on distance-cutoff contacts is constructed
in a similar way to constructing βACVASA. To further
show the importance of β contacts in protein binding
interfaces, nonβACVASA is also constructed for alanine
mutations at the setting of ∠β = 90°. In nonβACVASA,
the values of its elements are the difference of the val-
ues of the 52 elements between ACVASA and βACVASA.
To highlight the advantage of β contacts, ACVASA is
also evaluated with different spatial distance thresholds
(from 2.9 Å to 5 Å) for defining atomic contacts across
interfaces and within binding sites.
Our βACVASA classifier and its variants described

above are summarized in Table 1.

Table 1 Description of βACVASA and its variantmethods

Methods Description (of the representation for an
alanine mutation)

βACV An ACV of β contacts without ASA integration

βACVASA An ACV of β contacts with ASA integration

ACVASA An ACV of distance-cutoff contacts with ASA integration

nonβACVASA The difference of βACVASA and ACVASA
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Ridge regression: predict��G and binding hot spots
Ridge regression in Matlab is used here to learn a rela-
tion between atomic contact vectors and ��G. By this
regression, values in each column are normalized for
the training dataset. Ridge regression minimizes average
square error SE between the experimental (��Ge

i ) and
the predicted��Gp

i in the training data withN mutations

where SE =
∑

i(��Ge
i−��Gp

i )
2

N−1 .
In our evaluation, leave-one-out cross-validation is used

for all of the 396 mutations, and then the correlation coef-
ficient R and average standard deviation δ = √

SE are
calculated. Under this evaluation framework, there is one
outlier prediction by βACVASA and one outlier by βACV
for the whole dataset with 396 mutations. These outliers
have less than -3 kcal/mol predicted ��G, or more than
11 kcal/mol predicted��G, as shown in Additional file 1:
Table S3. This may be due to limited alanine mutations of
a high ��G in the dataset.
In this work, predicted hot spot residues are those

residue mutations with a predicted ��G ≥2 kcal/mol,
same as the true hot spot definition.

Hot spot prediction and evaluationmeasures
βACVASA is also assessed by applying to the classification
problem of binding hot spots. Classification performance
is measured by precision(p.), recall(r.), accuracy(acc.) and
F1 whose definitions are given in Equation 8.

precision(p.) = TP
TP + FP

recall(r.) = TP
TP + FN

accuracy(acc.) = TP + TN
TP + TN + FP + FN

F1 = 2 × precision × recall
precision + recall

(8)

where binding hot spots are considered as the true cases,
while non-hot spots as the false cases; TP, FP, TN and FN
are true positives, false positives, true negatives and false
negatives, respectively. Hence, precision is the number of
correct hot spot predictions divided by the number of pos-
itive predictions, recall is the fraction of correct hot spot
predictions over all hot spots, while accuracy is the num-
ber of correctly predicted hot spots and non-hot spots
divided by the number of all mutations. These measures
are also used in [14,20,35] with the same definitions.

Results and discussion
β contacts are better than distance-cutoff contacts for
predicting��G
Our βACVASA classifier is compared with ACVASA and
with nonβACVASA to show the importance of β con-
tacts in the prediction of ��G under alanine mutations.

The prediction results are presented in Figure 2(a), (b)
and (c).
It can be seen from Figure 2(a) and (b) that βACVASA

has a better ��G prediction performance according to
both correlation coefficient R and average standard devi-
ation δ. The number of β contacts used by βACVASA
is only a small fraction of the number of distance-cutoff
contacts used by ACVASA. For example, there are 54,286
distance-cutoff contacts across binding interfaces for the
22 protein complexes, but there are only 9,830 β contacts
across the binding interfaces (∠β = 90°), and 4,096 β

contacts under the setting of ∠β = 75° which is actually
used by βACVASA. So, βACVASA uses only 7.55% number
of distance-cutoff atomic contacts but it achieves a better
prediction performance.
The comparison between βACVASA and nonβACVASA

(Figure 2(a) and (c)) further suggests the importance of β

contacts in ��G prediction. In Figure 2(c), nonβACVASA
has much lower R (0.469) and a higher δ (1.486) than
βACVASA, but nonβACVASA uses all non-β contacts of
∠β = 90°, that is, 81.8% number of distance-cutoff atomic
contacts.
A lot of alanine mutations are not binding hot spot

residues, having a small ��G, i.e., <2 kcal/mol. These
mutations heavily affect the calculation of R and δ. On
the other hand, the prediction of residue mutations with
a high ��G is more important. Thus, the classification
performance for these binding hot spots is also assessed.
The results are shown in Table 2. It is noted that F1 is not
the objective function to be optimized in the regression
process.
In Table 2 among βACVASA, ACVASA and non

βACVASA, βACVASA has the highest precision, recall,
F1 and accuracy, while nonβACVASA has the lowest.
For example, βACVASA’s F1 is 0.604, 0.122 higher than
nonβACVASA’s F1. However, ACVASA and nonβACVASA
show quite similar performances. The reason would be
that non-β contacts (used by nonβACVASA) are often
dominant in distance-cutoff contacts (used by ACVASA).
The performances of ACVASA with different spatial dis-

tance thresholds are shown in Table 3. We can see that the
performance has a growing tendency when the threshold
increases. Nevertheless, the best performance of ACVASA
(F1 = 0.5 in Table 2) is much lower than that of βACVASA
(F1 = 0.604). Of special interest, when the spatial dis-
tance threshold is set at 3.6 Å, ACVASA has a number
of distance-cutoff contacts nearly the same as the num-
ber of our used β contacts. In this special case of almost
the same number of contacts used, ACVASA has much
worse performance than βACVASA, and only about half
of the distance-based contacts are β contacts across the
22 protein-protein binding interfaces. These results affirm
that β contacts are advantageous over distance-based
contacts for predicting binding hot spot residues.
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Figure 2 ��G predicted by different methods. In (a)-(d), ‘o’ represents non-polar residues, while ‘x’ represents polar residues. R is the Pearson
correlation coefficient and δ is the average standard deviation. R is specially calculated for (a) and (d) based on the data set after removing the one
outlier prediction. R is slightly changed to 0.543 or 0.515 respectively when the outlier is not removed. The two diagonal red lines represent
y = x ± 1.5.

Water exclusion is a necessary condition of hot spot
binding
Literature work has reported that water exclusion is a
necessary condition for an interfacial residue to become
a hot spot residue [3,33]. To confirm the importance of
water exclusion in the prediction of ��G, the perfor-
mance by βACV when ASA is not integrated is assessed.

Table 2 Prediction performances by differentmethods for
the same set of binding hot spots

Methods Precision Recall F1 Accuracy

βACVASA 0.615 0.593 0.604 0.830

ACVASA 0.526 0.477 0.500 0.793

nonβACVASA 0.513 0.454 0.482 0.788

βACV 0.564 0.616 0.589 0.813

FoldX 0.400 0.488 0.440 0.730

Robetta 0.526 0.465 0.494 0.793

HotPOINT 0.439 0.547 0.487 0.750

KFC2a 0.443 0.767 0.562 0.740

KFC2b 0.521 0.570 0.544 0.793

Table 3 Prediction performance and the numbers of used
contacts by βACVASA and ACVASA

Methods Distance1 #contacts2 Precision Recall F1 Accuracy

βACVASA 2,881 0.615 0.593 0.604 0.830

ACVASA 2.9 347 0.486 0.419 0.450 0.778

3.0 513 0.465 0.382 0.420 0.770

3.1 715 0.394 0.302 0.342 0.747

3.2 966 0.487 0.442 0.463 0.778

3.3 1,293 0.450 0.419 0.434 0.763

3.42 1,884 0.438 0.372 0.403 0.760

3.5 2,394 0.494 0.442 0.466 0.780

3.55 2,789 0.443 0.407 0.424 0.760

3.6 3,123 0.437 0.360 0.395 0.760

4 7,542 0.463 0.430 0.446 0.768

4.5 15,389 0.482 0.465 0.473 0.775

5 26,752 0.488 0.465 0.476 0.778

1: The spatial distance threshold of two atoms.
2: The number of atomic contacts involving in the 396 mutations, including
mutated contacts and new contacts.
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This prediction performance is shown in Figure 2(d)
and Table 2. Comparing Figure 2(d) with Figure 2(a),
βACVASA has a better regression performance than
βACV indeed. It also has a better F1 performance as
seen in Table 2. These results confirm that water exclu-
sion plays an important role in hot spot prediction, and it
should be a necessary condition for an interfacial residue
to become a binding hot spot residue in protein-protein
complexes.

Ourmethod βACVASA is superior to several widely-used
methods
Our βACVASA classifier is also assessed against the state-
of-the-art methods FoldX [9,10], Robetta [11], HotPOINT
[20] and KFC [36]. The prediction performances of
these previous methods were obtained through their web
servers (Robetta, HotPOINT and KFC) or the standalone
executable program (FoldX with default settings).

Comparison results
Figures 2(e) and 2(f ) show that the prediction perfor-
mance of FoldX and Robetta are much worse than our
βACVASA. These two methods have a R of 0.324 or 0.485,
much smaller than βACVASA’s 0.569; their δ is 1.788 or
1.554, much larger than βACVASA’s 1.349. Table 2 also
shows their classification performance on the 396 muta-
tions: FoldX’s F1 is 0.44, while Robetta’s F1 is 0.494, both
worse than βACVASA’s 0.604. From Table 2, our method
also has better classification performance than Hot-
POINT and KFC. Other performance comparison results
are provided in the Additional file 1 when tested on BID
(including protein-peptide interfacial residues) or under
the leave-one-complex-out cross-validation framework.

An example of hot spot predictions
We use 3HFM as a case study to illustrate the difference
of the binding hot spot prediction results by βACVASA,

FoldX and Robetta. The 3HFM complex is an antibody-
antigen binding between HyHEL-10 and hen egg white
lysozyme. According to ASEdb, a total of 25 alanine muta-
tions were experimented, 11 of which have ��G more
than 2 kcal/mol.
Our βACVASA correctly identified 9 binding hot spot

residues with a recall of 0.818, but made 3 false positive
predictions with a precision of 0.75 (Figure 3). This gives
an F1 of 0.783. However, FoldX made only one hot spot
prediction which is correct with a recall of 0.091, and
Robetta has a recall of 0.455 (5 out of 11) and a precision
of 0.833 (5 out of 6), namely an F1 of 0.588. Both of these
methods have a lower prediction performance than our
βACVASA. What is more important is that the four posi-
tive predictions correctly made only by our βACVASA, not
by FoldX or Robetta, have a high ��G, such as Trp in
position 98 of Chain H (��G = 5.5 kcal/mol) and Tyr in
position 50 of Chain L (��G = 4.6 kcal/mol). Please refer
to Additional file 1: Table S3 for detail.

Conclusion
A new classifier βACVASA has been proposed to pre-
dict ��G and binding hot spot residues. The novel idea
of this classifier is to integrate the water exclusion the-
ory into β contacts. Tested on a data set of 396 alanine
mutations, βACVASA has been found to outperformmany
other methods. This confirms that β contacts are truly
better than traditional distance-cutoff contacts to cap-
ture the energetic characteristics of protein folding and
binding. This also confirms that water exclusion is a nec-
essary condition for a residue to become a binding hot
spot residue.

Availability of supporting data
All the supporting data are included as additional files.

Figure 3 Prediction results by βACVASA for the residues in the interface between Chain Y and Chain HL(together) in 3HFM. In (a) and (b),
the true predicted hot spot residues are in magenta, the false predicted non-hot spot residues are in yellow, the false predicted hot spot residues
are in orange, while the true predicted non-hot spots are in cyan; X-YZZ stands for residue Y in position ZZ of Chain X.
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Additional file

Additional file 1: This additional file covers an analysis on β contacts
of different Tds, more evaluation results and related discussions
(including the statistical significance of the difference among
Figure 2(a) to 2(d), the dataset and evaluation on BID, the evaluation
under leave-one-complex-out cross-validation, and a discussion on
using the 396 mutations), the groups of atomic types, and the detail
of our dataset.
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