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Abstract

Background: Molecular data, e.g. arising from microarray technology, is often used for predicting survival
probabilities of patients. For multivariate risk prediction models on such high-dimensional data, there are established
techniques that combine parameter estimation and variable selection. One big challenge is to incorporate
interactions into such prediction models. In this feasibility study, we present building blocks for evaluating and
incorporating interactions terms in high-dimensional time-to-event settings, especially for settings in which it is
computationally too expensive to check all possible interactions.

Results: We use a boosting technique for estimation of effects and the following building blocks for pre-selecting
interactions: (1) resampling, (2) random forests and (3) orthogonalization as a data pre-processing step. In a simulation
study, the strategy that uses all building blocks is able to detect true main effects and interactions with high sensitivity
in different kinds of scenarios. The main challenge are interactions composed of variables that do not represent main
effects, but our findings are also promising in this regard. Results on real world data illustrate that effect sizes of
interactions frequently may not be large enough to improve prediction performance, even though the interactions
are potentially of biological relevance.

Conclusion: Screening interactions through random forests is feasible and useful, when one is interested in finding
relevant two-way interactions. The other building blocks also contribute considerably to an enhanced pre-selection of

forest, Time to event settings

interactions. We determined the limits of interaction detection in terms of necessary effect sizes. Our study
emphasizes the importance of making full use of existing methods in addition to establishing new ones.
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Background

As more and more high-dimensional molecular data is
amassed, the importance of biomarker research increases.
Specifically, predictive biomarkers are usually wanted in
order to predict risks associated with diseases. When
building multivariate risk prediction models for finding
such biomarkers, it is desirable to produce sparse models.
The sparsity of the resulting models facilitates the biologi-
cal and statistical interpretation [1-4]. Approaches such as
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componentwise boosting [5] or the LASSO [6-8] achieve
sparsity by performing variable selection and parame-
ter estimation simultaneously. There are two frequently
occurring problems in this context: first, lack of repro-
ducibility of variable selections across different studies, for
example concerning gene expression data [9-11]; second,
no established approaches to account for interactions. The
latter deficit can lead to selection of wrong variables or
biased parameter estimations. The first problem, i.e. the
inability to confirm most of the published gene related sig-
natures, has led to doubts whether signatures should be
produced at all. However, the failure of finding stable sig-
natures could to some extent be ascribed to inadequate
modeling. Approaches that are more comprehensive are
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necessary, for example, combining molecular data with
annotation and clinical information [9,12-15]. One ingre-
dient should be to incorporate promising interactions in
the model. Many tools for modeling interactions exist,
but, as far as we know, no systematic investigations of
potential building blocks are available.

Examples for promising modeling strategies that
can account for interactions are penalized regression
models [16,17], logic regression [18,19], multifactor-
dimensionality reduction [20,21] or random forests
[22,23]. For a comprehensive review regarding interac-
tion (pre-) selection approaches, we refer to [24]. Logic
regression and multifactor-dimensionality reduction are
primarily destined for discrete marker data, e.g., for single
nucleotide polymorphism data. In contrast to that, penal-
ized or regularized regression models cover more general
types of data. Their main property is to put a penalty
on the model parameters, which correspond to marker
effects, for estimation. The usage, for example, of an L;-
penalization forces most of the estimated parameters to
be zero, i.e., the values of the corresponding covariates do
not influence predictions obtained from the fitted model.
Even though these models are primarily used for main
effect selections, there is an increasing interest in incor-
porating interactions [25-27]. When there is no a priori
knowledge, such approaches either require the interac-
tions to be formed by variables that represent main effects
or that interaction terms are created by combining the
covariates in a certain way, e.g., by producing all dis-
tinct two-way interactions (or by coarsening the input
space before producing the interactions [28]). The first
route can lead to false negatives even if the true interac-
tions have relevant marginal effects, and the second one
neglects the fact that it is frequently either not feasible
or computationally too expensive to consider all possi-
ble interactions. Altogether, this means that a screening
method for promising interaction terms is in most cases
necessary, especially for higher order interactions. The
potential of random forests to provide non-parametrical
means for handling various kinds of interaction struc-
tures makes them attractive as an interaction screening
method for penalized regression models. However, apart
from some interesting theoretical results (see [29,30]) and
positive empirical findings regarding prediction perfor-
mances (e.g., [31-33]), the ability to extract information
from random forests is considered problematic. The main
objection is that established variable importance mea-
sures seem to be unable to detect relevant interaction
effects in the absence of strong marginal components
[34-36].

Variable importance measures (VIMs) for random
forests are meant to extract the information contained in
forests. Established VIMs are the Gini, the permutation
accuracy, or the minimal depth importance (see [37-39]).
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The first measure uses the mean improvements in the
Gini index in a forest related to the investigated variable.
Permutation accuracy importance measures the change
in prediction accuracy of the forest when the values of
a variable are permutated randomly, and minimal depth
importance is roughly related to the mean minimum dis-
tance (the depth) from the root node to the investigated
variable. These measures can also be used for finding
interactions in the forest. For example, the permutation
accuracy importance can easily be extended such that the
values of two variables are permutated randomly [37].
These variable importance measures lead to a ranking of
variables, in which interaction information is assumed to
enter in some way. Whether these interactions are statis-
tically relevant can be evaluated by penalized regression
models. Hence, a comprehensive evaluation can consist of
two parts: extracting interaction terms based on random
forest information and estimating a statistical regression
model based on all available variables and identified inter-
action terms.

In this paper, we show building blocks for evaluating
and incorporating interactions terms in high-dimensional
time-to-event settings, in particular for settings in which
it is very computationally expensive to check all pos-
sible interactions with an exhaustive search algorithm.
The main ingredients are random survival forests (RSF),
a specific adaptation of random forests to time-to-event
settings, and an incremental stagewise forward regres-
sion technique, called CoxBoost [40-42]. CoxBoost is a
boosting technique based on the Cox proportional haz-
ards model and combines variable selection with model
estimation. For this purpose, it uses a penalized version
of the partial log-likelihood and applies componentwise
boosting. We investigate the effect of a combination of
these approaches, the additional contribution of resam-
pling, and the advantage of a special data pre-processing
step. This work is a feasibility study; hence, we are first
of all interested in investigating how several components
can contribute to the solution of the interaction finding
problem. The specific choice of the investigated tools is
justified by their specific properties; however, there are
alternatives to our decisions (see above). We are interested
in predicting risks within time-to-event settings and we
use methods established in these settings. In this context,
we rely on some assumptions, such as the proportional
hazard assumption.

In the next section, we present details of CoxBoost and
RSF together with corresponding VIMs. After presenting
evaluation tools and our interaction detection strategy,
we outline a simulation design for the evaluation. In the
Results Section, the findings of the simulation study are
shown, and we illustrate our approach on two real-world
applications. Finally, we describe limitations of the study
and summarize our findings in the Conclusion Section.
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Methods

Time-to-event or survival data for # investigated entities
is typically given as a set of triples z; = (&;,6;,%:),i =
1,...,n. The first component is the observed time for each
entity i and is given by t; = min(7}, C;), where T; is the
event time and C; is the censoring time from which on
the entity is no longer observed. The second component
is the event indicator §;, which takes the value 1 if an event
has occurred at the observed time (7; < C;) and O if
the event time is censored (T; > C;). The third element,
x;, is the vector of values of the p covariates observed at
baseline.

CoxBoost

As a forward stagewise regression technique in the time-
to-event setting, we use a likelihood-based boosting vari-
ant, called CoxBoost [15,43]. This technique is based on
the Cox proportional hazards model, which relates the
hazard A(f|x;), i.e. the instantaneous risk of having an
event at time ¢, given the covariate information in x;, for
entity i, in the following way:

A(tlxi) = ro(t) exp(a! B),

where the baseline hazard Ao(%) is left unspecified. Usu-
ally, the parameter vector 8 = (8,..., /Sp)T is estimated
by maximizing the partial log-likelihood (PLL):

n n
PLL(B|x1, ... ,x,,):ZS,- x! B —log Zl(t,- < )exp(x/B)

i=1 j=1
with indicator function I (see also [44]). However, such a
procedure is not feasible for p > n. Therefore, CoxBoost
uses a penalized version of the PLL and applies compo-
nentwise likelihood-based boosting [40,41,45]. Conven-
tional CoxBoost starts with parameter estimates B 0 =
(0,...,0)T. In each boosting step k = 1,...,B, only
one coefficient is updated. In order to determine which
component j* should be updated in step &, the penal-
ized univariate PLL with argument Gj(k), je{l,...,p}is
considered:

®) _ B _ P (g0
PLLyes (6) = PLL (67) — . (5%)"

with fixed penalty parameter p > 0 and the variable
parameter Qj(k). In PLL (9;”), all parameter components
with indices unequal to j are set to the corresponding
components of 3<k—1). The parameter vector compo-
nent j* is the one that leads to the maximum value of
PLLpen (9;”). Instead of maximizing the penalized PLL

for each candidate j, using the standard Newton-Raphson
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algorithm, the penalized score statistic can be used as a
criterion

&) (7K )
o (19 +0) U,

where LIj(k) is the value of the score function U(0) =
dPLL(9)/06 for 0 = 6/ = 0, and I|") is the value of the

Fisher information I(§) = 3?PLL(#)/362, again for 6 =
Qj(k) = 0. The covariate j* with the largest value of the

score statistic is selected for an update of the form:
gk _ pk=1) | Ak

while ﬁj(k) = /§j(k71) for all covariates j # j*. The tuning
parameter p is typically setto ), §;- (ll) —1),withv € (0,1]
as the relative step size factor. The number of boosting
update steps can be determined by a cross-validation
procedure.

One salient feature of this forward stagewise regression
technique is that it inherently avoids "breaking up a large
main effect coefficient into a sum of smaller pieces’ in con-
trast to, for example, non-boosted regression models with
L,-penalization (see [16]). In addition to that, CoxBoost
has many extensions. It is, for example, possible to force
the inclusion of a number of covariates into the model
by suspending penalization for them [15]. This is rele-
vant for settings with few clinical covariates and a large
number of molecular variables. In this case, the coefficient
estimates of the mandatory covariates are updated before
the other covariates. Further, more than one coefficient
can be updated in each boosting step, or the penaliza-
tion parameter can vary from step to step. CoxBoost
and all these features are implemented as an R-package,
correspondingly called CoxBoost [46].

Random forests
Random forests are ensembles of — usually binary — clas-
sification or regression trees [22]. Usually unpruned trees
are generated based on resamples of the original data and
a random component in the splitting procedure, which
implies that in every knot splitting is based on the num-
ber mtry of randomly selected variables. Unpruned trees
in the context of random forests are rather unproblem-
atic in terms of overfitting on training data; however,
they can have detriment effects on the consistency of the
response estimations [29,47]. Each path in such gener-
ated trees represents a sequence of splits that leads to
the response of cases corresponding to that path. The
final model response is determined by aggregation, e.g.
averaging the responses of a case over all trees.

Random forests can detect and deal with small effects,
interactions and non-linear associations, making no as-
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sumptions about the corresponding functional form [48].
All of these characteristics are also valid for trees. How-
ever, one important rationale behind random forests is
the de-correlation of information that is represented in
single trees, which reduces the corresponding variances —
a bagging phenomenon [30,49] — and the grouping prop-
erty of trees. The latter property relates to the fact that
a split on a variable from a cluster of correlated variables
is frequently followed by splits of other members of that
group [50]. A further advantage of forests over trees is
that they can approximate smooth functions without the
necessity of having a large number of leaves in a tree,
due to the smoothing effect of the bagging phenomenon
[51]. Random forests perform relatively well off the shelf
[52] with the default-values for mtry (=,/p) and for the
number of trees in a forest (=1000).

As one specific adaptation of random forests to right-
censored time-to-event data, we consider random survival
forests (RSF) [53]. For a — computationally expensive —
alternative, see party. The response for RSF is the
cumulative hazard function (CHF), defining an ensemble
predicted value with respect to 'mortality’. For splitting,
typically the Logrank test is used [54]. Hence, the homo-
geneity of nodes in the tree is a result of maximizing the
difference of event probabilities between daughter nodes.
For each entity in the data set, the ensemble CHF is cal-
culated by averaging the Nelson-Aalen estimator of all
leaves, into which the entity drops [53,55]. For a terminal
node /1 with N(h) distinct event times ¢, < toy, < ... <
IN(), i this estimator is given as

o=y M,

Y,
l:t[_h <t Lh

where d;j and Y}, are the number of deaths and entities
at risks at time £;j,. RSF are implemented in the R-package
randomSurvivalForest [56].

Variable importance measures for random forests

Various variable importance measures (VIMs) can be used
for selecting variables. There are two well-known VIMs:
Gini importance and permutation daccuracy importance
(PAM). Another VIM is the mean minimal-depth mea-
sure, which has been proposed recently. Roughly, it mea-
sures the shortest distance (depth) from the root node to
the parent node of the maximal subtree (the largest sub-
tree whose root node splits with respect to the variable
investigated). For further details, we refer to [50]. Differ-
ent VIMs can produce different rankings; for example,
the Gini importance was found to be highly affected by
selection bias, e.g., continuous variables are preferred to
categorical variables with only few categories [38]. In the
following, we focus on PAM, because it is widely accepted
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and relates to the concept of simulating a null distri-
bution (necessary for computing p-values), even though
we are aware of potential problems [50,57]. For further
information regarding VIMs, we refer to [58] and [59].

There are two versions of PAM. In its common version it
is computed with respect to random permutations of the
components of x; = (¥, ..., x,,/)T, which breaks the asso-
ciation of x; with the response and all variables. In a more
sophisticated variant, which is unique to RSF with respect
to survival data [50], the vector x; = (x;1, ..., %) related
to entity i is dropped down in all trees, in which it was out
of bag in the training process; whenever a split node for
an investigated variable is encountered, the correspond-
ing vector x; is randomly assigned to one of the daughter
nodes. In both variants, the variable importance results
from the prediction error of the altered forest minus the
prediction error of the non-altered forest. The larger the
importance values of a variable, the higher its value for
prediction. It is important to notice that PAM is tied to the
error measure used. One frequently used error measure
for RSE, which we use here as well, is Harrell’s concor-
dance index, which measures the discrimination ability of
a model [60].

Tools for finding effects in time-to-event data

In high-dimensional settings, the problems of extract-
ing relevant information by regression models are aggra-
vated compared to the low-dimensional counterparts. For
example, even if stepwise regression introduces biases
related to multiple test problems (see, for example,
[61,62]), it nevertheless provides a means for tackling vari-
able selection issues in a comprehensive manner. It is
therefore crucial to investigate mechanisms and measures
for an adequate model selection on high-dimensional
data. Three issues have to be addressed simultaneously:
(1) a sparse variable selection, (2) representing the rele-
vant structure in the data, and (3) good prediction per-
formance. We try to tackle these issues and in particular
concentrate on integrating substantial interactions into
the model.

The likelihood-based boosting algorithm promises
sparse and stable variable selection, which is a conse-
quence of simultaneous selection and estimation in a
multivariable model. Naturally, variable selection stability
also depends on the quality of the data (see, for exam-
ple, [63]), and for obtaining high-quality molecular data
frequently appropriate pre-processing steps are necessary,
e.g., background correction and normalization. Concern-
ing the other two issues (representing the relevant struc-
ture in the data and good prediction performance) Yang
[64] strikingly demonstrates that best predictive models
usually contain irrelevant features and important features
often do not lead to best prediction performances (see also
[65,66]). Whenever we encounter the trade-off between
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relevance and usefulness for prediction, we prioritize
’finding relevant variables’ over prediction performance.

The models are evaluated within a resample procedure
for estimating sensitivity and stability. As a performance
measure adapted for time-to-event endpoints, we use the
Brier score [67,68]. The Brier score is a strictly proper
scoring rule, i.e. it is optimal only at the true probability
model (see [69]). For example, the area under the curve
(AUC) is not a strictly proper rule, because it can lead
to optimal values for different probability models (slight
changes of probabilities often do not matter). Two com-
mon resampling techniques are cross-validation (CV) and
bootstrapping. Cross-validation partitions the data into
folds and evaluates prediction performance on every sin-
gle fold with models fitted to the data from the remaining
folds; a more precise characterization for CV is therefore
’subsample technique’. Both techniques can cause prob-
lems (see [38,70]), and we decided to use subsampling
with splits of relative size 0.632 to (1-0.632), because this
seems to work well in many settings [71,72]. Such a sub-
sampling procedure is roughly comparable to a 3-fold CV
(see [73,74]).

The Brier score quantifies the squared deviation
between predicted survival probability and observed sur-
vival status and is independent from the assumed survival
model. When Hj is the estimated cumulative baseline haz-
ard at baseline and B denotes the estimated coefficients,
the predicted survival probability is given by

a(t,x)=1—exp (—I:lo(t) exp(xT3)>

and the expected Brier score tracked over time (i.e., the
expected prediction error curve) has the form

Err(t; 7) = Ex [(w) — 7, x))z] ,

where §(¢) is the true survival status at time ¢. Typically
the survival status at time ¢ will be right censored for
some observations. Thus, inverse probability of censoring
weights (IPCW) were proposed to avoid the related bias
[68,75]. The IPCW for individual i is defined as

I(t; < 1)8;(2)
Pt — |x)

Wit; ) = =0
P(¢|x;)

where P(s|x;) is a consistent estimate of probability that
the censoring time is larger than s, given ;. I() is again
the indicator function. The cross-validation estimate of
the Brier score tracked over time is then

1 B
Erthoot(t571) = ;

3 (8:8) — o (t,x0)” Wit; P).

I\ Tyl o7
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Here, B is the number of resamples, n the number of
rows, and 7, the indices of those cases that are included
in the resample b.

Assembling of building blocks into an interaction
detection strategy

Our comprehensive strategy consists of three parts: (a)
first main effect detection, (b) pre-selection of inter-
actions terms,(c) final model selection. Parts (a) and
(c) use CoxBoost and are fixed. Here, we rely on the
ability of CoxBoost to produce sparse models and to
include important variables. In part (b), we consider
the following building blocks: (BB1) subsampling, (BB2)
random forests, and (BB3) orthogonalization as a data
pre-processing step. Different decisions concerning the
building blocks lead to flexibility in part (b). When
combining building blocks into comprehensive strate-
gies, over-fitting to the data at hand and over-optimism
could occur [76]. One way to account for that — besides
the usage of independent validation data sets — is to
evaluate the contribution of the building blocks to the
results.

The use of an outer subsampling for interaction find-
ing has the aim of enhancing the credibility of interaction
information. Specifically, we use the variable inclusion
frequency (VIFs), i.e. the proportion of times that the
variable appeared in the model, for assessing the rele-
vance of an interaction term. For example, when using
random forests, this means that the number of random
forests in which interaction terms are deemed relevant
is the basis for a pre-selection of interactions. Here, an
interaction term is assessed as relevant if both underlying
variables have PAM values larger than zero in a ran-
dom forest (typically, there are many variables with PAM
values < 0). In other words, variables have to be simulta-
neously important for a random forest.

When all building blocks are used for the pre-selection
of interactions terms, random forests are applied to
the data in a subsampling context and orthogonaliza-
tion is used as a data-pre-processing step. Orthogonal-
ization means that all variables not considered as main
effects are made orthogonal to those that are indicated
as main effects by CoxBoost in the first step. This leads
to disentanglement of information, which might allow to
determine variables and related interactions that contain
information that was originally masked by main effects
(a similar idea is employed in [27]). The strategy using
all building blocks is described by the following pseudo-
algorithm (rsf-VIF-res):

1. Specify: Indices K of clinical covariates or other
known main effect variables, number S of subsamples
for pre-selecting interactions, and number R of pre-
selected interaction terms. In case of identical VIF
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values for the Rth and (R + 1)th found interaction, all

interactions with that VIF value are included as well.
2. Subsample the original data set Z in relation 0.632 to

(1-0.632), leading to the data sets Z; and Z;;.

(a) First pass main effects detection: Run
CoxBoost on Z, possibly incorporating
clinical covariates {x; |k € K} without
penalization. This leads to the model
CoxBoostM and a list of main effects, given
by the index set M. Main effects and clinical
covariates are used for orthogonalization (if
this pre-processing step is considered) in the
pre-selection step and as unpenalized
variables in the final CoxBoost model.

(b) Pre-selection of interaction terms: If
MU K is non-empty, regress all covariates
with indices {1, ..., p} \ (M U K) on the
variables in (M U K). Subsequently, compute
the corresponding residuals of the covariates,
which leads to the data matrix Z, (building
block (BB3)). Subsample S times data from
7y, — from Zy, when M is empty — in relation
of 0.632 to (1-0.632) and generate RSF on
each larger subsample (building blocks (BB1)
and (BB2)). Construct interaction terms by
all pairs of variables with PAM values greater
0 on every subsample and compute VIFs of
the interactions terms at the end of the
subsampling process. Select the R most
frequent pairs.

(c) Final model: covariates are xi, k € K,

xi,1 € M, and the R selected cross product
terms of (b). Run CoxBoost on Z, with these
covariates without penalization for covariates
with indices in IC, leading to model cbgp,.

(d) Compute prediction error: Apply cbg, on
Z; and compute the Brier score.

For assessing the contribution of building blocks, we
successively remove one of them in the pre-selection step,
leading to following alternatives to step (b):

bl Do the same as in rsf-VIF-res, but without
orthogonalization. (rsf-VIF)

b2 Replace rsf in rsf-VIF by CoxBoost: subsample S times
data from Zj, in relation 0.632 to (1-0.632) and run
CoxBoost on each of the larger data sets. Finally,
compute VIFs related to the variables selected by
CoxBoost in each subsample, and create R pairs, i.e.
interaction terms, related to the variables with the
highest VIFs. (cb-VIF)

b3 Omit subsampling in cb-VIF: compute all distinct
cross product terms of covariates with indices in M.
Here, S is superfluous and R is not needed, if
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[v/IM]| < R; otherwise, select randomly R
interactions from all cross product terms. (cb-crossp)

There are many more alternatives, which are not consid-
ered due to a limited space and for reasons of clarity.

Simulation design

For a systematic analysis of the building blocks and the
corresponding interaction detection strategies, a time-to-
event simulation study was conducted. Here, we define
interactions as effects based on multiplicative combina-
tions of variables. The main interest concerns the ability
of the strategies to find relevant interactions and espe-
cially those that might be difficult to detect, i.e., variables
in interactions are not members of the set of true main
effects. The secondary focus is on the prediction perfor-
mance, which highly depends on the effect sizes of main
effect variables and interaction terms.

The simulation scenarios are designed to mimic simple
yet realistic settings, e.g. microarray studies. We simulate
independent as well as correlated data for a time-to-event
end point. Table 1 summarizes the scenarios and shows
the effect sizes of the main effects and interactions. The
number of covariates is fixed as 1000 (=p), the sample size
is fixed as 150 (=#), and all covariates are from a stan-
dard normal distribution (except for Sim22_bin with 4
binary variables and the scenarios with correlated data).

Table 1 The effect sizes of non-zero effects in each scenario

Scenarios: Effect size ME  Effect sizeInt Corrvalue Block
size

Sim42 (3,3,-3,-3) (5,-5)

Sim22_1.0 (0.9,-0.9) (1.0,-1.0)

Sim22_0.5 (0.9,-0.9) (0.5,-0.5)

Sim22_0.25 (0.9,-0.9) (0.25,-0.25)

Sim22_1.5 (0.9,-0.9) (1.5,-1.5)

Sim22_2.0 (0.9,-0.9) (2.0,-2.0)

Sim22_2.5 (0.9,-0.9) (2.5,-2.5)

Sim22_bin (0.9,-0.9) (1.0,-1.0)

Sim22_corr01 (0.9,-0.9) (1.0,-1.0) 0.1 5

Sim22_corr03 (0.9,-0.9) (1.0,-1.0) 03 5

Sim22_corr05 (0.9,-0.9) (1.0,-1.0) 0.5 5

Sim22_corr07 (0.9,-0.9) (1.0,-1.0) 0.7 5

ME: main effect. Int: interaction. Corr: correlation. In all scenarios, the samples
size is 150 (=n) and the number of covariates is 1000 (=p). The effect sizes are
given in the form ‘(coefficient value of effect 1, coefficient value of effect 2)'. For
the scenarios with correlations, p divided by the block size (200) gives the
dimension of the normal distribution from which the values of the variables in a
block are sampled, and the correlation value is the value at the off-diagonals of
the corresponding covariance matrix. In scenarios Sim42 and Sim22_1.0, all
interaction detection strategies are covered. All other scenarios are used for
investigating rsf-VIF-res.
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The covariates not indicated in the table have zero effect
sizes. For each simulation scenario, 50 datasets are gen-
erated. Survival times and censoring times are generated
from an exponential distribution with baseline hazard A =
210 (see also [77]).

Sim42 refers to the simulation case with 4 main effects
and 2 interactions that are composed of the main effects
and Sim22_x to the cases with 2 main effects and 2 inter-
actions that are not related to these main effects; in other
words: they are composed of variables that have zero
effect sizes. If x is numeric, it gives the uniform effect
size; x = "bin" denotes the case of interactions composed
of binary variables, and x beginning with "corr" relates
to cases with variables that are block-correlated with a
uniform correlation coefficient ¢, ¢ € {0.1,0.3,0.5,0.7},
across the 200 fiver-blocks, i.e., values of variables are
sampled from a 5-dimensional normal distribution with
the same variance matrix (the same correlation value at
the off-diagonals and variance of 1) over all blocks. Here,
main effects and variables in interactions terms stem from
different blocks.

In scenarios Sim42 and Sim22_1.0, all interaction detec-
tion strategies are considered for evaluating the effect
of the building blocks. The other scenarios are used
to investigate the behavior and the limits of rsf-VIF-res.
The simple scenario Sim42 is used for ascertaining that
the strategies are capable of finding the relevant main
effects. Scenario Sim22_1.0 is the reference scenario for
the scenarios with non-smooth interactions, i.e. inter-
actions incorporating binary covariates, and correlated
variables.

The performance of a strategy is measured by the num-
ber of correct non-zero variables in the models, i.e. the
variable selection sensitivity with respect to the main
effects and the interaction terms, and by the prediction
error (Brier score). Specificity values or predictive val-
ues are not separately listed in the result tables. However,
these measures can be deduced from the sensitivity values
and the number of selected variables.

In order to obtain one interpretable measure for the pre-
diction performance, the Brier scores tracked over time
are aggregated by computing the integrated prediction
error curves (IPECs) for each model. Furthermore, the
IPECs of the estimated models (IPECs,) are considered
relative to the IPEC of the corresponding Kaplan-Meier
estimator (IPECxp):

IPEC IPECxm — IPECs;
r i = .
! IPECxm

In other words, rIPEC gives the relative improvement
of prediction performance of strategy S; compared to the
prediction performance of the Kaplan-Meier.
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Results

Simulation study

The simulation was conducted in R-3.0.2 with following
main settings for the model implementations used in our
strategies. Parameters not listed are considered secondary
and were set to their default values:

CoxBoost

penalty: (Number of events) ~(0})5 — 1). Penalty value for
the updates in each boosting step.

standardize: TRUE. Covariates are standardized.

stepno: As computed by cv.CoxBoost. Number of boost-
ing steps.

RSF

mtry: Square root of the number of variables (default
value).

ntree: 1000. Number of trees grown (default value).

The parameter values of the strategies described in the
Methods Section were chosen in the following way: no
clinical covariates, hence K = {}; the number of sub-
samples (S) for pre-selecting interactions was 50, and the
number of pre-selected interaction terms (R) was 10000.
For all scenarios, data were are randomly generated 50
times. The results for scenarios Sim42 and Sim22_1.0 are
given in Table 2. The relevant columns are: the number
of selected interactions by the corresponding screening
method (IntScreen), the number of total variables in the
final model (VarsTotal), the sensitivity with respect to the
inclusion of true main effects (MainSensi), the sensitivity
with respect to the availability of true interactions from
the screening step (IntSensiA), the sensitivity with respect
to the inclusion of true interactions in the final model
(IntSensi), and the rIPEC values of CoxBoostM and the
final model. For simplifying the discussion of the results,
we will abbreviate the phrase ‘random forests together
with PAM’ by ‘random forests’ or ‘RSF.

In scenario Sim42, use of random forests generate mod-
els with more than 30 variables in the mean (about
twice the number seen Sim22_1.0), whereas the other two
strategies result in less than 20 variables on average. This
means that there are many false positive findings when
using RSF, which has a negative impact on the rIPEC com-
pared to the cb-strategies. On the other hand, rsf-VIF-res
leads to the largest sensitivity values for main effects and
interactions. Hence, there is a trade-off between sensitiv-
ity and prediction performance. For all pre-selection vari-
ants it seem that when true interaction are pre-selected
(see IntSensiA), then almost all of them are selected
in the final model. Comparing cb-crossp with cb-VIF,
we see that subsampling can increase IntSensi without
decreasing MainSensi, and this leads to the best rIPEC
value in scenario Sim42. Use of random forest instead of
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Table 2 Results of the simulation study for all strategies in scenarios Sim42 and Sim22_1.0

IntScreen IntSensiA VarsTotal

Scenario Sim42

(cb-crossp) 213.78 0.7 (0.05) 14.3 (6.29)

(cb-VIF) 1573.06 0.88(0.03) 19.42 (7.89)

(rsf-VIF) 24557.74 0.95(0.02) 34.74(7.97)

(rsf-VIF-res) 25740.32 0.97(0.02) 32.02 (6.56)
Scenario Sim22_1.0

(cb-crossp) 89.56 0(0) 17.28(8.18)

(cb-VIF) 20585 0(0) 19.12(12.19)

(rsf-VIF) 17511.96 0.07 (0.01) 12.64(10.85)

(rsf-VIF-res) 17701.72 0.4 (0.05) 19.9(12.93)
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MainSensi IntSensi rIPEC
CoxBoostM Final Model
0.845 (0.04) 0.7 (0.05) 0.12(0.12) 0.4(0.19)
0.845 (0.04) 0.88 (0.03) | 0.43(0.15)
0.82(0.04) 0.94 (0.02) | 0.37(0.15)
0.845(0.05) 0.97 (0.02) 0.12(0.122) 04(0.12)
0.95 (0.02) 0(0) 0.12 (0.09) 0.09(0.13)
0.87(0.03) 0(0) | 0.09(0.1)
0.73(0.07) 0.06 (0.02) | 0.08 (0.08)
0.81(0.04) 0.39(0.05) 0.12 (0.09) 0.14 (0.14)

IntScreen (given as mean) is the number of selected interactions by the corresponding screening method; IntSensiA (given as ‘sensitivity value (sd)’) is the sensitivity
related to the availability of true interactions; VarsTotal (given as ‘mean (sd)’) is the number of total variables in the final model; MainSensi (given as ‘sensitivity value
(sd)) is the sensitivity related to the inclusion of true main effects; and IntSensi (given as ‘sensitivity value (sd)’) is the sensitivity related to the inclusion of true
interactions. The rIPEC values (given as ‘mean (sd)’) are shown for CoxBoostM and the final model. The scenarios were repeated 50 times. Additional file 1: Figure S1

provides boxplots for further insights into the nature of the variability in rIPEC.

CoxBoost for interaction pre-selection (rsf-VIF) increases
IntSensi but leads to a slight reduction of MainSensi.
The MainSensi and IntSensi values of rsf-VIF-res indicate
that orthogonalization is not only important for further
increasing IntSensi but also for a higher MainSensi value
compared to rsf-VIF. Overall, in this scenario, subsam-
pling is important and random forests should be applied
on orthogonalized data for achieving the largest sensitiv-
ity values but even then, prediction performance cannot
be improved compared to interaction pre-selection with
CoxBoost.

Scenario Sim22_1.0 exhibits some differences to Sim42.
First, all strategies lead to similar and moderate num-
bers of total variables in the final model. Hence, high
IntScreen values in RSF strategies do not result in more
false positives than interaction pre-selection variants that
use CoxBoost. CoxBoost is not able to pre-select true
interactions, with or without subsampling. Subsampling
even reduces MainSensi values. Use of random forest fur-
ther decreases MainSensi with a little compensation of
increased IntSensi but at an interchange rate that makes
a further reduction of rIPEC possible. Again, RSF has
to be applied to the pre-processed data (rsf-VIF-res) for
increasing MainSensi and IntSensi compared to rsf-VIF.
Now, the increase in IntSensi is drastic, which leads to
the best rIPEC value in this scenario. The IntSensi value
is still moderate; however, one should bear in mind that
the interactions are built by variables that do not represent
main effects. This might be particularly relevant for real
world applications: even a moderate variable inclusion fre-
quency of an interaction term could indicate an important
interaction if the underlying variables are irrelevant as
main effects.

Both scenarios show that all building blocks are impor-
tant, and in particular orthogonalization is important
before applying RSF, i.e. disentangling information before-
hand is crucial for pre-selecting interactions. CoxBoost is
unlikely to benefit from such a pre-processing because it
already applies some sort of orthogonalization during fit-
ting (further experiments also point in that direction; data
not shown).

That IntSensiA is often similar to IntSensi in both sce-
narios means that one can rely on the ability of CoxBoost
to choose the right interaction terms out of those pre-
sented, regardless of IntScreen. Hence, it seems that the
parameter R (number of selected interactions) can be
quite high. For assessing the effect of R, we additionally
investigated the same scenarios rsf-sVIF-res with R = 1000
(see Additional file 1: Table S1). With this reduced R-
value, sensitivities, VarsTotal, and rIPEC decreased; the
latter two measures were in particular reduced in scenario
Sim22_1.0. Thus, in case of doubt, R should be set to a
larger value.

We also investigated the behavior of the parameter esti-
mates of the main effects and the interaction terms. In no
case did a true effect receive a wrong sign. In the mean,
shrinkage of the coefficients was stronger in scenario
Sim42 than in Sim22 1.0. This has two reasons: higher
absolute values of the true coefficients and increased
number of non-zero coefficients. As the results show, this
increased shrinkage is not relevant for the sensitivity of
the detection strategies. One can try to reduce shrink-
age by reducing the value of the penalty parameter or
manually increasing the number of step sizes; however,
we would not recommend such intervention in a high-
dimensional setting without good reasons (see below).
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Table 3 Results of the simulation study for rsf-VIF-res in scenarios Sim22_0.25 - Sim22_2.5 and Sim_bin

Scenario IntScreen IntSensiA VarsTotal

Strategy rsf-VIF-res
Sim22_2.5 15231.62 0.3(0.05) 16.04 (14.72)
Sim22_2.0 17200.98 0.33(0.05) 18.28(14.41)
Sim22_1.5 16878.62 0.34(0.05) 20.38(14.57)
Sim22_1.0 17701.72 0.4 (0.05) 19.9(12.93)
Sim22_0.5 18613.08 0.43(0.05) 18.04(10.92)
Sim22_0.25 20404.02 0.46 (0.05) 204 (11.63)
Sim22_bin 22847.06 0.42(0.05) 26.22(10.9)
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MainSensi IntSensi rlPEC
CoxBoostM Final Model
0.29 (0.05) 0.3(0.05) 0(0.06) 0.1(0.16)
0.51(0.05) 0.33(0.05) 0.01 (0.06) 0.14(0.19)
0.67 (0.05) 0.34(0.05) 0.05 (0.08) 0.12(0.15)
81(0.04) 0.39(0.05) 0.12(0.09) 0.14(0.14)
0.93(0.03) 0.13(0.03) 0.21(0.1) 0.17(0.1)
0.98(0.01) 0(0) 0.25(0.11) 0.2(0.11)
0.49(0.07) 0.34(0.05) 0.2 (0.07) 0.15(0.08)

IntScreen (given as mean) is the number of selected interactions by the corresponding screening method; IntSensiA (given as ‘sensitivity value (sd)’) is the sensitivity
related to the availability of true interactions; VarsTotal (given as ‘mean (sd)’) is the number of total variables in the final model; MainSensi (given as ‘sensitivity value
(sd)’) is the sensitivity related to the inclusion of true main effects; and IntSensi (given as ‘sensitivity value (sd)’) is the sensitivity related to the inclusion of true
interactions. The rIPEC values (given as ‘mean (sd)’) are shown for CoxBoostM and the final model. The scenarios were repeated 50 times. Additional file 1: Figure S2

provides boxplots for further insights into the nature of the variability in rIPEC.

Table 3 shows the results for rsf-VIF-res in scenarios
Sim22_0.25 - Sim22_2.5 and Sim_bin. The former scenar-
ios show that with reduced effects of the interaction terms
MainSensi increases. In other words, the final model
ceases to find true main effects, if effect sizes of inter-
actions terms are larger than the effect size of the main
effects. In scenarios Sim22_e, e > 1.0, the rIPEC values are
larger than that of CoxBoostM due to an increase both of
MainSensi and IntSensi. Reducing the effect sizes of inter-
actions below 1.0 seems to make them unimportant for
the prediction performance of the final model. This leads
to a further increase of MainSensi values and decreasing
IntSensi values, causing rIPEC values of CoxBoostM to be
larger than those of the final model. Nevertheless, Inter-
SensiA has the largest value in Sim22_0.25, which means
that random forests were frequently able to preselect the
true interactions, even if the effect sizes of the interaction
terms are small. Scenario Sim_bin exhibit another inter-
esting feature: IntSensiA is larger and IntSensi smaller
compared to scenario Sim22_1.0. This means that non-
smooth interactions are found slightly better by the ran-
dom forest, and yet CoxBoost was not able to select
them all. The large sum of both sensitivity MainSensi and
IntSensi values does not lead to an improvement of rIPEC
compared to CoxBoostM, which probably is a result of a
larger number of false positives in the final model.

In Table 4 results of the scenarios with correlations are
given. These scenarios are challenging, because random
forests can have problems in distinguishing between cor-
relation and interactions. The problem is dealt with exten-
sively in [57]. There is a debate whether correlations are
pointing to relevant associations or not (see [78-80]). Our
focus here is on the effect of non-informative correlations
on MainSensi and IntSensi. The results show that even
small correlation values lead to decreased sensitivities

compared to Sim22_1.0. Both, CoxBoost and random for-
est are negatively but not overly affected by correlations.
However, with correlations > 0.5 IntSensi and Main-
Sensi decrease excessively. InterSensiA values of 0.15 and
InterSensi values of about 0.05 suggest that most of this
deterioration can be ascribed to CoxBoost and not to the
random forests. The rIPEC does more or less reflect the
tendency of reduced sensitivities. In summary, correla-
tions do pose a problem for rsf-VIF-res, but mainly because
of the inability of CoxBoost to select the true effects and
not because of the random forests component. This is
corroborated by the fact (data not shown) that true inter-
actions were almost never replaced by interaction terms
built by variables that correlate with variables in the true
interactions.

Real data illustrations

Diffuse large-B-cell lymphoma data

In order to illustrate how rsf-VIF-res can be applied on
real data, we first analyzed the well-known Rosenwald
data [81]. This data set was used to link 7399 (lym-
phochip’ cDNA microarray) gene expression features of
240 patients with diffuse large-B-cell lymphoma (DLBCL)
to the time of their death. DLBCL is an aggressive malig-
nancy of mature B lymphocytes with a high rate of remis-
sions. The objective of the Rosenwald study was to devise
a molecular profile that accounts for the underlying het-
erogeneity, predicts survival and can be used for assessing
the effect of the related therapies. Overall, 138 deaths were
observed, with a five year overall survival of 48%. The 7399
features measured at baseline represent 4128 genes. An
established clinical predictor, the International Prognos-
tic Index (IPI - a combination of five clinical features), is
available for n = 222 patients, which will be considered
for the analysis in the following, i.e. £ = {Indices(IPI)}.
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Table 4 Results of the simulation study for rsf-VIF-res in scenarios with correlated variables

IntScreen IntSensiA VarsTotal
Sim22_corr01 19779.06 0.22(0.04) 17.76 (13.25)
Sim22_corr03 17961.56 0.23(0.04) 12.74(12.85)
Sim22_corr05 15953.22 0.15(0.04) 6.66 (8.6)
Sim22_corrQ7 1417412 0.15(0.04) 7.26 (8.49)

MainSensi IntSensi rlPEC
CoxBoostM Final Model
0.75 (0.04) 0.21(0.04) 0.11(0.07) 0.1(0.11)
046 (0.05) 0.18(0.04) 0.06 (0.07) 0.03(0.08)
4(0.03) 0.06 (0.02) 0.03(0.06) 0(0.03)
0.06 (0.02) 0.04(0.02) -0.03(0.2) 0.01(0.3)

IntScreen (given as mean) is the number of selected interactions by the corresponding screening method; IntSensiA (given as ‘sensitivity value (sd)’) is the sensitivity
related to the availability of true interactions; VarsTotal (given as ‘mean (sd)’) is the number of total variables in the final model; MainSensi (given as ‘sensitivity value
(sd)’) is the sensitivity related to the inclusion of true main effects; and IntSensi (given as ‘sensitivity value (sd)’) is the sensitivity related to the inclusion of true
interactions. The rIPEC values (given as ‘mean (sd)’) are shown for CoxBoostM and the final model. The scenarios were repeated 50 times.

For further details and an overview with respect to vari-
ous strategies for analyzing this and related data sets, we
refer to [82].

We were interested in gaining new insights by incorpo-
rating interactions together with main effects. In almost
all previous analyses of the Rosenwald data, at least four
genes exhibited strong main effects. Our assumption was
that there should be relevant interactions as well. Even
though, it is frequently reasonable to assume complex
and non-linear interactions, using cross product terms
should be a first step in enriching the molecular pro-
file. rsf-VIF-res was applied with R = 10,000 and on
50 subsamples of the original data set. The prediction
error curves of CoxBoostM and of rsf-VIF-res are given in
Figure 1. The mean prediction errors (bold dashed lines)
show that rsf-VIF-res performs slightly worse than Cox-
BoostM. Based on our assumption that there should be

IPEC:
—— Kaplan-Meier 2.52
— — CoxBoostM 2.18
<= rsf-VIF-res 2.24

0.3

Brier—Score

0 2 4 6 8 10
times
Figure 1 Prediction error curves on the Rosenwald data. Shown

are the curves for the Kaplan-Meier estimates, CoxBoostM and
rsf-VIF-res on all subsampled data. The bold curves are the aggregated

curves over all subsamples. Additionally, rIPEC values are given.

relevant interactions, the simulation study suggests that
slight reduction of the prediction performance might still
point to interaction effect sizes that are moderate, i.e.,
below the effect sizes of the main effects but not negligible
(see Sim22_0.25).

The three main effects and gene-gene-interactions,
given in Unigene cluster notation, related to the largest
relative VIFs (in parentheses) are:

- Hs.184298 (0.66), Hs.99741 (0.54), Hs.85769 (0.44)
and

- Hs.76807:Hs.84298 (0.10), Hs.79428:Hs.193736
(0.08), Hs.20191:Hs.99597 (0.06)

The underlying genes of the interactions represent no
relevant main effects for CoxBoostM, and the VIFs of
these interactions are low. In order to increase certainty
concerning the interactions, we manually increased the
step size of the final model to 500. There, the same main
effects are associated with slightly higher VIFs (0.72, 0.6,
0.52). The changes for the interactions are more inter-
esting: two new interaction terms are among the inter-
actions with the largest VIFs and the relative VIF values
increased to 0.22, 0.16, and 0.14 for Hs.20191:Hs.79428,
Hs.20191:Hs.28777, and Hs.76807:Hs.84298, respectively.
From the considerable increase of relative VIFs, we con-
cluded that these interactions might be more reliable.
Figure 2 shows the connections between the genes in
selected interaction terms with relative VIFs > 3/50
(the bolder the edges, the higher the corresponding VIF
values). Our observations in the simulation study (specif-
ically Sim22_0.5) indicate that the most frequent interac-
tion term Hs.20191:Hs.79428 could be relevant, although
its frequency is moderate. However, mean model size
increased drastically from 24 to 84 and led to an rIPEC
value of 0, so, in order to corroborate our conclusion
further, we went back to molecular biological informa-
tion. From KEGG (Kyoto Encyclopedia of Genes and
Genomes), we retrieved the pathways of the genes in
the interaction term Hs.20191:Hs.79428. The proteins
of these genes (SIAH and BNIP3) are elements in the
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ID301
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Figure 2 Network graph for the Rosenwald data depicting the connections between those interaction that are found with relative VIF
> 3/50. The thickness of an edge reflects the value of the corresponding VIF, i.e,, the VIF value of an interaction term, the bolder the edge between
the variables in that interaction term. For microarray features that do not correspond to a gene, the feature ID is given. Every other molecular feature
is represented by the Unigene cluster notation.

pathway related to (mitochondrial) apoptosis [83,84]. In
addition to that, they have a role in the cellular response
to hypoxia [85,86]. The expression values of both genes
lead us to the assumption that the corresponding pro-
teins might interact complementarily: common down/up-
regulation with respect to the apoptotic function and
to hypoxial-induced reactions might have an impact on
tumor genesis and growth (see also [87,88] for further
evidence).

Neuroblastoma data
A further real-world example is related to the microar-
ray data set of Oberthuer et al [89]. It consists of n =
276 patients suffering from neuroblastoma. Overall, 42
deaths were observed and the median survival time is
632 days. For each patient, p = 9,986 microarray fea-
tures are available, and we concentrate on the relationship
between survival and these microarray features. The same
parameter values as for the Rosenwald data are used but
with no clinical covariates, i.e. X = { }. The prediction
error curves of CoxBoostM and of rsf-VIF-res are given in
Figure 3. Again, the mean prediction errors (bold dashed
lines) indicate that rsf-VIF-res performs slightly worse than
CoxBoostM.

The three main effects and gene-gene-interactions with
the largest relative VIFs are:

- Hs.496658 (0.68), Hs.491494 (0.58),
Hs.584827(0.54) and

- Hs.496658:Hs.148989 (0.28), Hs.496658:Hs.371249
(0.18), Hs.496658:Hs.532824 (0.18)

VIFs are higher than for the Rosenwald data. Based on
the simulation study results, the VIFs might be consid-
ered large enough for indicating important interactions.
Hs.496658 is the most relevant gene entity: it contributes
the largest main effect VIF and is involved in interac-
tions with the largest VIFs. The corresponding gene name
is SLC25A5, and the product of this gene functions as

0.30 IPEC:
— Kaplan-Meier 167
— — CoxBoostM 104
<=+ rsf-VIF-res 115
0.25
o 0.20
Q
O
?
.‘q_—) 0.15
a
0.10
0.05
0.00
T T T T T
0 500 1000 1500 2000
times

Figure 3 Prediction error curves on the Neuroblastoma data.
Shown are the curves for the Kaplan-Meier estimates, CoxBoostM and
rsf-VIF-res on all subsampled data. The bold curves are the aggregated
curves over all subsamples. Additionally, rIPEC values are given.
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a gated pore that translocates ADP from the mitochon-
drial matrix into the cytoplasm. Suppressed expression
of this gene has been shown to induce apoptosis and
inhibit tumor growth (see the corresponding entry in
the database of NCBI). Figure 4 shows the connections
between the genes from interactions with relative VIFs >
3/50. The graph is more complex than Figure 2, which
translates into an increased uncertainty with respect to
the relevance of the interactions. For example, Hs.148989
is gene CGNLI, which encodes a protein that localizes to
both adherens and tight cell-cell junctions and mediates
junction assembly and maintenance (see the correspond-
ing entry in the database of NCBI). There could be a
real interaction between both genes (e.g., when cell-cell
junctions break loose, apoptosis cannot be induced), but
further biological validation would definitely be necessary.

Discussion

From the results of the simulation study, we conclude
that random forests can provide relevant interaction infor-
mation. If the interaction is strong enough, the marginal
effects of the underlying variables are at a level such that
they are frequently selected as split variables in the ran-
dom forest generation process. Further, the results indi-
cate that disentangling information also is important for
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achieving good results. The reason behind this might be
that variables associated to main effects can mask inter-
actions in random forests, which affects the split variable
selection process. Disentanglement of information specif-
ically means to transform variables to be orthogonal to
those with indices in (M U K). When the number of esti-
mated main effects in CoxBoostM is too large (rule of
thumb: more than about 110 - n [90]), the corresponding
regressions can be unreliable. In this case, we would rec-
ommend focusing on those main effects with the largest
absolute coefficient estimates in CoxBoostM. Another
possibility is to use the linear predictor Ip = )", Bixi
for the regressionxjy = a-lpy+ei, j¢ M k=1,...,n
In both cases, the orthogonalization is imperfect and
results (not shown) based on the latter variant indicated
that sensitivities related to interactions are considerably
lower than with the strategy for computing residuals pro-
posed here. However, an alternative should be taken into
consideration, when the number of cases is small (e.g.,
smaller than 50).

The scenarios with correlation and non-smooth inter-
actions show that the pre-selection of interactions is less
affected than the final CoxBoost model. For non-smooth
interactions, this was expected due to the non-smooth
nature of individual trees in random forests, but the
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Figure 4 Network graph for the Neuroblastoma data depicting the connections between those interaction that are found with relative
VIF > 3/50. The thickness of an edge reflects the value of the corresponding VIF, i.e, the VIF value of an interaction term, the bolder the edge
between the variables in that interaction term. The molecular features feature are represented by the Unigene cluster notation.
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effects on correlated data indicate that the pre-selection
of interactions in rsf-VIF-res is quite robust. One further
interpretation of the simulation study is that moderate
variable inclusion frequency of an interaction term (e.g.,
10% — 30%) still could indicate an important interaction.
The real data example showed that uncertainty related
to the reliability of the findings can make it necessary to
consider and contextualize as much information as possi-
ble. Specifically, increasing the step size of CoxBoost from
its optimal value to 500 in the Rosenwald data was an
attempt to reduce the uncertainty. Due to the consider-
able deterioration of prediction performance, the decision
on the importance of the identified interactions was based
on additional biological knowledge. There is no absolute
threshold with respect to a decrease in prediction per-
formance that makes the results definitely unreliable. The
results showed that detection of true interaction and main
effects can be accompanied by deteriorated or bad predic-
tion performances due to the increase in false positives.
It always depends on the subject-matter question whether
a certain level of prediction performance is deemed nec-
essary. If biology can help sorting out the true effects,
concerns related to prediction performance even might be
considered secondary.

The results showed that the number of pre-selected
interactions R must be large enough (>> 1000 in our
data sets) for guaranteeing that the screening process
is able to pre-select relevant effects. CoxBoost was fre-
quently able to select the right variables out of ten thou-
sands of variables. This is a feature of many other (L;-)
regularized regression techniques such as the LASSO (see
also [91,92]), which (under sparsity assumptions) also are
consistent for variable selection, even when the number
of variables p is as large as exp(n®) for some 0 < o < 1
[93]. Empirically determining an optimal R is neverthe-
less difficult. This issue certainly needs further scientific
investigations.

Limitations
Due to the focus of this paper and the limited space,
our study has several limitations. First, only two-way
interactions were considered in the interaction screening
process. In real-world data, all kind of multifactor and
non-linear interactions can be expected. Second, the sim-
ulation scenarios are limited in their scope, because we
focused on one critical issue: the effects of the building
blocks when interactions are built from variables that do
not represent main effects. Although, we also investigated
simulations scenarios with correlations, further investi-
gations of informative correlations and more complex
correlations structures are relevant.

Third, the real-data applications showed that the strate-
gies cannot be used in an automatic way. Decisions related
to the choice of some parameter values (e.g., number of
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subsamples S or indices of unpenalized variables ), inter-
pretation of the results, and further processing of these
results have to be based on subject-matter knowledge and
the specific application. Such requirements could discour-
age a user from using rsf-VIF-res. Nevertheless, it should
be clear that assessing the necessity of considering inter-
actions is not trivial, even for the simplest case of gene-
gene interactions and therefore informed decisions are
crucial.

Fourth, there are open questions such as the specific
value for R or alternatives to the building blocks presented
in the paper. There are several routes for extending our
proposal or replacing components in it. Fifth, we only con-
sidered proportional hazard models and simulated data
from such models. It is important to consider departures
from the related assumptions in future studies, for exam-
ple by considering time-dependent effects. Finally, the real
data examples only considered microarray data. Recent
sequencing approaches, such as the RNA-Seq technology,
are gaining more and more ground and should be targeted
as well.

Conclusion

Our aim in this study was to build a strategy for incorpo-
rating two-way interactions into multivariate risk predic-
tion models that are built on high-dimensional molecular
data. When it is either not feasible or computation-
ally too expensive to consider all possible interactions,
screening is necessary in case of no a priori knowl-
edge. We presented three important building blocks for
such a screening strategy: subsampling, random forests,
and orthogonalization of the data, and concluded that
all building blocks are important. Our decision for using
random forests for screening interactions has one main
reason: the promise of random forests to capture var-
ious kinds of relevant interaction structures. CoxBoost
was used, because it usually produces sparse risk predic-
tion models. We assumed that a combination of these
two approaches could be fruitful due to their comple-
mentary character. However, components can be sepa-
rately replaced by other ones, for example random forests
by multifactor-dimensionality reduction, and such flexi-
bility seems necessary, because no specific combination
of building blocks will perform well on every kind of
data.

The results show that screening interactions through
random forests is feasible and useful, when one is inter-
ested in finding relevant two-way interactions. Effect sizes
of the interactions should be large enough in order to
guarantee useful results. When the underlying variables
do not represent main effects, sensitivities related to vari-
able and interaction selection are moderate (< 40%).
The results of the simulation study indicates that mak-
ing all variables orthogonal to those with indices in (M U
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K) could enable random forests to pre-select relevant
interaction effects even in the absence of strong marginal
components.

The real data applications showed that not only pre-
processing and a combination of different tools are
important for interaction detection but also an intelligent
post-processing. Our final conclusion is that in addition
to focusing on establishing new methods, it is important
to make full use of existing ones.
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