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Abstract

Background: Ontological concepts are useful for many different biomedical tasks. Concepts are difficult to recognize
in text due to a disconnect between what is captured in an ontology and how the concepts are expressed in text. There
are many recognizers for specific ontologies, but a general approach for concept recognition is an open problem.

Results: Three dictionary-based systems (MetaMap, NCBO Annotator, and ConceptMapper) are evaluated on eight
biomedical ontologies in the Colorado Richly Annotated Full-Text (CRAFT) Corpus. Over 1,000 parameter
combinations are examined, and best-performing parameters for each system-ontology pair are presented.

Conclusions: Baselines for concept recognition by three systems on eight biomedical ontologies are established
(F-measures range from 0.14–0.83). Out of the three systems we tested, ConceptMapper is generally the
best-performing system; it produces the highest F-measure of seven out of eight ontologies. Default parameters are
not ideal for most systems on most ontologies; by changing parameters F-measure can be increased by up to 0.4. Not
only are best performing parameters presented, but suggestions for choosing the best parameters based on ontology
characteristics are presented.

Background
Ontologies have grown to be one of the great enabling
technologies of modern bioinformatics, particularly in
areas like model organism database curation, where
they have facilitated large-scale linking of genomic data
across organisms, but also in fields like analysis of high-
throughput data [1] and protein function prediction [2,3].
Ontologies have also played an important role in the
development of natural language processing systems in
the biomedical domain, which can use ontologies both
as terminological resources and as resources that pro-
vide important semantic constraints on biological enti-
ties and events [4]. Ontologies provide such systems
with a target conceptual representation that abstracts
over variations in the surface realization of terms. This
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conceptual representation of the content of documents
in turn enables development of sophisticated informa-
tion retrieval tools that organize documents based on
categories of information in the documents [5-7].
Finally, ontologies themselves can benefit from concept

recognition in text. Yao et al. [8] propose new ontology
quality metrics that are based on the goodness of fit of
an ontology with a domain-relevant corpus. They note
that a limitation of their approach is the dependency on
tools that establish linkages between ontology concepts
and their textual representations.
However, a general approach to recognition of terms

from any ontology in text remains a very open research
problem. While there exist sophisticated named entity
recognition tools that address specific categories of terms,
such as genes or gene products [9], proteinmutations [10],
or diseases [11,12], these tools require targeted training
material and cannot generically be applied to recognize
arbitrary terms from large, fine-grained vocabularies [6].
Furthermore, as Brewster et al. [13] point out, there is
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often a disconnect between what is captured in an ontol-
ogy and what can be expected to be explicitly stated in
text. This is particularly true for relations among concepts,
but it is also the case that concepts themselves can be
expressed in text with a huge amount of variability and
potentially ambiguity and underspecification [14,15].
The work reported here aims to advance the state of

the art in recognizing terms from ontologies with a wide
variety of differences in both the structure and content of
the ontologies and in the surface characteristics of terms
associated with concepts in the ontology. In the course of
the work reported in this paper, we evaluate a number of
hypotheses related to the general task of finding references
to concepts from widely varying ontologies in text. These
include the following:

• Not all concept recognition systems perform equally
on natural language texts.

• The best concept recognition system varies from
ontology to ontology.

• Parameter settings for a concept recognition system
can be optimized to improve performance on a given
ontology.

• Linguistic analysis, in particular morphological
analysis, affects the performance of concept
recognition systems.

To test these hypotheses, we apply a variety of
dictionary-based tools for recognizing concepts in text to
a corpus in which nearly all of the concepts from a variety
of ontologies have been manually annotated. We perform
an exhaustive exploration of the parameter spaces for each
of these tools and report the performance of thousands of
combinations of parameter settings. We experiment with
the addition of tools for linguistic analysis, in particular
morphological analysis. Along with reporting quantita-
tive results, we give the results of manual error analysis
for each combination of concept recognition system and
ontology.
The gold standard used is the Colorado Richly Anno-

tated Full-Text (CRAFT) Corpus [16,17]. The full CRAFT
corpus consists of 97 completely annotated biomedi-
cal journal articles, while the “public release” set, which
consists of 67 documents, was used for this evaluation.
CRAFT includes over 100,000 concept annotations from
eight different biomedical ontologies. Without CRAFT,
this large-scale evaluation of concept annotation would
not have been possible, due to lack of corpora annotated
with a large number of concepts frommultiple ontologies.

Relatedwork
A number of tools and strategies have been proposed for
concept annotation in text. These include both tools that
are generally applicable to a wide range of terminology

resources, and strategies that have been designed specif-
ically for one or a few terminologies. The two most
widely used generic tools are the National Library of
Medicine’s MetaMap [18] and NBCO’s Open Biomedi-
cal Annotator (NCBO Annotator) [19], based on a tool
from the University of Michigan called mgrep. Other
tools, including Whatizit [20], KnowledgeMap [21,22],
CONANN [23], IndexFinder [24,25], Terminizer [26], and
Peregrine [27,28] have been created but are not pub-
licly available or appear not to be in widespread use.
We therefore focus our analysis in this paper on the
NCBO Annotator and MetaMap. In addition, we include
ConceptMapper [29,30], a tool that was not specifically
developed for biomedical term recognition but rather for
flexible look up of terms from a dictionary or controlled
vocabulary.
The tools mgrep and MetaMap have been directly

compared on several term recognition tasks [19,31].
These studies indicate that mgrep outperforms Meta-
Map in terms of precision of matching. Both studies also
note that MetaMap returns many more annotations than
mgrep. Recall is not calculated in either study because
the document collections used as input were not fully
annotated. By using a completely annotated corpus such
as CRAFT, we are able to generate not only precision but
recall, which gives a complete picture of the performance
of the system.
The Gene Ontology [32] has been the target of several

customized methods that take advantage of the specific
structure and characteristics of that ontology to facilitate
recognition of its constituent terms in text [2,33-36]. In
this work, we will not specifically compare these methods
to the more generic tools identified above, as they are not
applicable to the full range of ontologies that are reflected
in the CRAFT annotations.
The CRAFT corpus has been utilized previously in the

context of evaluating the recognition of specific cate-
gories of terms. Verspoor et al. [16] provide a detailed
assessment of named entity recognition tool performance
for recognition of genes and gene products. As with the
work mentionned in the previous paragraph, these are
specialized tools with a more targeted approach than
we explore in this work, typically requiring substan-
tial amounts of training material tailored to the specific
named entity category. We do not repeat those exper-
iments here as they are not relevant to the general
problem of recognition of terms from large controlled
vocabularies.

A note on “concepts”
We are aware of the controversies associated with the use
of the word “concept” with respect to biomedical ontolo-
gies, but the content of the paper is not affected by the
conflicting positions on this issue; we use theword to refer
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to the tuple of namespace, identifier, term(s), definition,
synonym(s), and metadata that make up an entry in an
ontology.

Methods
Corpus
We used version 1.0, released October 19, 2012, of the
Colorado Richly Annotated Full Text Corpus (CRAFT)
data set [16,17]. The full corpus consists of 97 full-
text documents selected from the PubMed Central Open
Access subset. Each document in the collection serves as
evidence for at least one mouse functional annotation.
For this paper we used the “public release” subsection,
which consists of 21,000 sentences from 67 articles. There
are over 100,000 concept annotations from eight different
biomedical ontologies in this public subset. Each anno-
tation specifies the identifier of the concept from the
respective ontology along with the beginning and end
points of the text span(s) of the annotation.
To fully understand the results presented, it is impor-

tant to understand how CRAFT was annotated [17]. Here
we present three guidelines. First, the text associated with
each annotation in CRAFT must be semantically equiv-
alent to the term from the ontology with which it is
annotated. In other words, the text, in its context, has
the same meaning as the concept used to annotate it.
Second, annotations are made to a specific ontology and
not to a domain; that is, annotations are created only
for concepts explicitly represented in the given ontology
and not to concepts that “should” be in the ontology but
are not explicitly represented. For example, if the ontol-
ogy contains a concept representing vesicles, but nothing
more specific, a mention of “microvesicles” would not be
annotated: Even though it is a type of vesicle, it is not
annotated because microvesicles are not explicitly rep-
resented in the ontology and annotating this text with
the more general vesicle concept would not be seman-
tically equivalent, i.e., information would be lost. Third,
only text directly corresponding to a concept is tagged;
for example, if the text “mutant vesicles” is seen, “vesi-
cles” is tagged by itself (i.e. without “mutant”) with the
vesicle concept. Because only the most specific concept
is annotated, there are no subsuming annotations; that
is, given an annotation of a text span with a particu-
lar concept, no annotations are made within this text
span(s) with a more general concept even if they appear
in the term. For an example from the Cell Type Ontology,
given the text “mesenchymal cell”, this phrase is annotated
with “CL:0000134 - mesenchymal cell” but the nested
“cell” is not additionally annotated with “CL:0000000 -
cell”, as the latter is an ancestor of the former and
therefore redundant. There are very specific guidelines
as to what text is included in an annotation set out in
Bada et al. [37].

Ontologies
The annotations of eight ontologies, representing a
wide variety of biomedical terminology, were used for
this evaluation: 1–3) The three sub-ontologies of the
Gene Ontology (Biological Process, Molecular Function,
Cellular Component) [32] 4) the Cell Type Ontology
[38] 5) Chemical Entities of Biological Interest Ontol-
ogy [39] 6) the NCBI Taxonomy [40] 7) the Sequence
Ontology [41] and 8) the Protein Ontology [42]. Ver-
sions of ontologies used along with descriptive statistics
can be seen in Table 1. CRAFT also contains Entrez
Gene annotations, but these were analyzed in previ-
ous work [16]. The Gene Ontology (GO) aims to stan-
dardize the representation of gene and gene product
attributes; it consists of three distinct sub-ontologies,
which are evaluated separately: Molecular Function, Bio-
logical Process, and Cellular Component. The Cell Type
Ontology (CL) provides a structured vocabulary for cell
types. Chemical Entities of Biological Interest (ChEBI) is
focused on molecular entities, molecular parts, atoms,
subatomic particles, and biochemical roles and appli-
cations. NCBI Taxonomy (NCBITaxon) provides classi-
fication and nomenclature of all organisms and types
of biological taxa in the public sequence database. The
Sequence Ontology (SO) aims to describe the features
and attributes of biological sequences. The Protein Ontol-
ogy (PRO) provides a representation of protein-related
entities.

Structure of ontology entries
The ontologies used are from the Open Biomedical
Ontologies (OBO) [43] flat file format. To help to under-
stand the structure of the file, an entry of a concept from
CL is shown below. The only parts of an entry used in
our systems are the id, name, and synonym rows. Alter-
native ways to refer to terms are expressed as synonyms;
there are many types of synonyms that can be specified
with different levels of relatedness to the concept (exact,
broad, narrow, and related). An ontology contain a hier-
archy among its terms; these are expressed in the “is_a”
entry. Terms described as “ancestors”, “less specific”, or
“more general” lie above the specified concept in the hier-
archy, while terms described as “more specific” are below
the specified concept.

id: CL:0000560
name: band form neutrophil
def: “A late neutrophilic metamyelocyte in which the
nucleus is in the form of a curved or coiled band, not hav-
ing acquired the typical multi lobar shape of the mature
neutrophil.”
synonym: “band cell” EXACT
synonym: “rod neutrophil” EXACT
synonym: “band” NARROW
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Table 1 Characteristics of ontologies evaluated

Ontology Version # Concepts Avg. term Avg. words Avg. # % Have % Have % Have
length in term synonyms punctuation numerals stop words

Cell type 25:05:2007 838 20.0 ± 9.5 3.0 ± 1.4 0.5 ± 1.1 11.6 4.8 3.3

Sequence 30:03:2009 1,610 21.6 ± 13.3 3.1 ± 1.0 1.4 ± 1 91.9 6.6 9.3

ChEBI 28:05:2008 19,633 25.5 ± 24.2 4.3 ± 4.8 2.0 ± 2.5 54.8 41.3 0

NCBITaxon 12:07:2011 789,538 24.6 ± 10.2 3.6 ± 2.0 N/A 53.7 56.0 0.3

GO-MF 28:11:2007 7,984 39.1 ± 15.4 4.6 ± 2.2 2.8 ± 4.6 52.8 26.6 2.7

GO-BP 28:11:2007 14,306 40.1 ± 19.0 5.0 ± 2.7 2.1 ± 2.5 23.5 7.0 45.7

GO-CC 28:11:2007 2,047 26.6 ± 14.2 3.6 ± 1.7 0.1 ± 0.9 29.5 14.4 6.8

Protein 22:04:2011 26,807 38.4 ± 18.5 5.5 ± 2.5 3.1 ± 3.2 68.4 74.8 4.3

is_a: CL:0000776 ! immature neutrophil
relationship: develops_from CL:0000582 neutrophilic
metamyelocyte

A note on obsolete terms
Ontologies are ever changing: new terms are added, modi-
fications aremade to others, and others aremade obsolete.
This poses a problem because obsolete terms are not
removed from the ontology, but only marked as obsolete
in the obo flat file. The dictionary-based methods used in
our analysis do not distinguish between valid or obsolete
terms when creating their dictionaries, so obsolete terms
may be returned by the systems. A filter was incorpo-
rated to remove obsolete terms returned (discussed more
below). Not filtering obsolete terms introduces many false
positives. For example, the terms “GO:0005574 - DNA”
and “GO:0003675 - protein” are both obsolete in the cellu-
lar component branch of the Gene Ontology and are men-
tioned very frequently within the biomedical literature.

Concept recognition systems
We evaluated three concept recognition systems, NCBO
Annotator (NCBO Annotator) [44], MetaMap [18], and
ConceptMapper [29,30]. All three systems are publicly
available and able to produce annotations for many dif-
ferent ontologies but differ in their underlying implemen-
tation and amount of configurable parameters. The full
evaluation results are available for download at http://
bionlp.sourceforge.net/.
NCBO Annotator is a web service provided by the

National Center for Biomedical Ontology (NCBO) that
annotates textual data with ontology terms from the
UMLS and BioPortal ontologies. The input text is fed
into a concept recognition tool (mgrep) and annotations
are produced. A wrapper [45] programmatically converts
annotations produced by NCBO into xml, which is then
imported into our evaluation pipeline. The evaluations
from NCBO Annotator were performed in October and
November 2012.

MetaMap (MM) is a highly configurable program cre-
ated to map biomedical text to the UMLS Metathesaurus.
MM parses input text into noun phrases and generates
variants (alternate spellings, abbreviations, synonyms,
inflections and derivations) from these. A candidate set
of Metathesaurus terms containing one of the variants
is formed, and scores are computed on the strength of
mapping from the variants to each candidate term. In
contrast to a Web service, MM runs locally; we installed
MM v.2011 on a local Linux server. MM natively works
with UMLS ontologies, but not all ontologies that we have
evaluated are a part of the UMLS. The optional data file
builder [46] allowsMM to use any ontology as long as they
can be formatted as UMLS database tables; therefore, a
Perl script was written to convert the ontology obo files
to UMLS database tables following the specification in the
data file builder overview.
ConceptMapper (CM) is part of the Apache UIMA

[47] Sandbox and is available at http://uima.apache.org/d/
uima-addons-current/ConceptMapper. Version 2.3.1 was
used for these experiments. CM is a highly configurable
dictionary lookup tool implemented as a UIMA compo-
nent. Ontologies are mapped to the appropriate dictio-
nary format required by ConceptMapper. The input text
is processed as tokens; all tokens within a span (sen-
tence) are looked up in the dictionary using a configurable
lookup algorithm.

Parameter exploration
Each system’s parameters were examined and config-
urable parameters were chosen. Table 2 gives a list of
each systemwith the chosen parameters along with a brief
description and possible values. The list of stop words
used is provided in Additional file 1.

Evaluation pipeline
An evaluation pipeline for each system was constructed
and run in UIMA [49]. MM produces annotations sep-
arate from the evaluation pipeline; UIMA components

http://bionlp.sourceforge.net/
http://bionlp.sourceforge.net/
http://uima.apache.org/d/uima-addons-current/ConceptMapper
http://uima.apache.org/d/uima-addons-current/ConceptMapper
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Table 2 System parameter description and values

NCBO Annotator parameters

Parameter Description and possible values

wholeWordOnly Term recognition must match whole words - (YES, NO)

filterNumber Specifies whether the entity recognition step should filter numbers - (YES, NO)

stopWords List of stop words to exclude from matching - (PubMed - commonly found terms from PubMed (included as
Additional file 1), NONE)

stopWordsCaseSensitive Whether stop words are case sensitive - (YES, NO)

minTermSize Specifies minimum length of terms to be returned - (ONE, THREE, FIVE)

withSynonyms Whether to include synonyms in matching - (YES, NO)

MetaMap parameters

Parameter Description and possible values

model Determines which data model is used - (STRICT - lexical, manual, and syntactic filtering are applied, RELAXED - lexical
and manual filtering are used)

gaps Specifies how to handle gaps in terms when matching - (ALLOW, NONE)

wordOrder Specifies how to handle word order when matching - (ORDER MATTERS, IGNORE)

acronymAbb Determines which generated acronym or abbreviations are used - (NONE, DEFAULT, UNIQUE - restricts variants to
only those with unique expansions)

derivationalVars Specifies which type of derivational variants will be used - (NONE, ALL, ONLY ADJ NOUN)

scoreFilter MetaMap reports a score from 0–1000 for every match, with 1000 being the highest, those matches with scores ≤
will be returned - (0, 600, 800, 1000)

minTermSize Specifies minimum length of terms to be returned - (ONE, THREE, FIVE)

ConceptMapper parameters

Parameter Description and possible values

searchStrategy Specifies the dictionary lookup strategy - (CONTIGUOUS - longest match of contiguous tokens, SKIP ANY - returns
longest match of not-necessarily contiguous tokens and next lookup begin in next span, SKIP ANY ALLOWOVERLAP -
returns longest match of not-necessarily contiguous tokens in the span and next lookup begin after next token)

caseMatch Specifies the case folding mode to use - (IGNORE - fold everything to lower case, INSENSITIVE - fold only tokens with
initial caps to lowercase, SENSITIVE - no folding, FOLD DIGIT - fold only tokens with digits to lower case)

stemmer Name of the stemmer to use before matching - (Porter - classic stemmer that removes common morphological and
inflectional endings from Engish words, BioLemmatizer - domain specific lemmatization tool for the morphological
analysis of biomedical literature presented in Liu et al. [48], NONE)

orderIndependentLookup Specifies if ordering of tokens within a span can be ignored - (TRUE, FALSE)

findAllMatches Specifies if all matches will be returned - (TRUE, FALSE - only the longest match will be returned)

stopWords List of stop words to exclude from matching - (PubMed - commonly found terms from PubMed (included as
Additional file 1), NONE)

synonyms Specifies which synonyms will be included when creating the dictionary - (EXACT ONLY, ALL)

Parameters that were evaluated for each system along with a description and possible values are listed in all capital letters. For the most part, parameters are
self-explanatory, but for more information see documentation for each system. CM [29], NCBO Annotator [44], MM [18].

were created to load the annotations before evaluation.
NCBOAnnotator is able to produce annotations and eval-
uate themwithin the same pipeline, but NCBO Annotator
annotations were cached to avoid hitting the Web service
continually. Like MM, a separate analysis engine was cre-
ated to load annotations before evaluation. CM produces
annotations and evaluates them in a single pipeline.
Evaluation pipelines for each system have a similar

structure. First, the gold standard is loaded; then, the sys-
tem’s annotations are loaded, obsolete annotations are

removed, and finally a comparison is made. CRAFT was
not annotated with obsolete terms, so the obsolete terms
filtered out are those that are obsolete in the version of the
ontology used to annotate CRAFT.
CM andMMdictionaries were created with the versions

of the ontologies that were used to annotate CRAFT. Since
NCBOAnnotator is aWeb service, we do not have control
over the versions of ontologies used; it uses newer versions
withmore terms. To remove spurious terms not present in
the ontologies used to annotate CRAFT, a filter was added
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to the NCBO Annotator evaluation pipeline. The NCBO
Annotator specific filter removes terms not present in
the version used to annotate CRAFT and ensures that
the term is not obsolete in the version used to annotate
CRAFT. Because the versions of the ontologies used in
CRAFT are older, it may be the case that some terms
annotated in CRAFT are obsolete in the current versions.
All systems were restricted to only using valid terms from
the versions of the ontology used to annotate CRAFT.
All comparisons were performed using a STRICT com-

parator, which means that ontology ID and span(s) of a
given annotation must match the gold-standard annota-
tion exactly to be counted correct. A STRICT comparator
was chosen because it was our desire to see how well
automated methods can recreate exact human annota-
tions. A pitfall of the using a STRICT comparator is that
a distinction cannot be made between erroneous terms
vs. those along the same hierarchical lineage; both are
counted as fully incorrect in our analysis. For example,
if the gold standard annotation is “GO:0005515 - protein
binding” and “GO:0005488 - binding” is returned by a
system, partial credit should be given because “binding”
is an ancestor of “protein binding”. Future comparisons
could address this limitation by accounting for the hierar-
chical relationship in the ontology by counting those less
specific terms as partially correct by using hierarchical
precision/recall/F-measure as seen in Verspoor et al. [50].
The output is a text file for each parameter combination

listing true positives (TP), false positives (FP), and false
negatives (FN) for each document as well as precision (P),
recall (R), and F-measure (F) (Calculations of P, R, and F
can be seen in formulas 1, 2, and 3). Precision, recall, and
F-measure are calculated over all annotations across all
documents in CRAFT, i.e. as amicro-average.

P = TP
TP + FP

(1)

R = TP
TP + FN

(2)

F = 2 ∗ P ∗ R
P + R

(3)

Statistical analysis
The Kruskal-Wallis statistical method was chosen to test
significance for all our comparisons because it is a non-
parametric test that identifies differences between ranked
group of variables. It is appropriate for our experiments
because we do not assume our data follows any partic-
ular distribution and desire to determine if the distribu-
tion of scores from a particular experimental condition,
such as tool or parameters, are different from the others.
The implementation built into R was used (kruskal.test).
Kruskal-Wallis was applied in three different ways:

1. For each ontology, Kruskal-Wallis was used to
determine if there is a significant difference in
F-measure performance between tools. The mean
and variance was computed across all parameter
combinations for a given tool, calculated at the
corpus level using the micro-average F-measure and
provided as input to Kruskal-Wallis.

2. For each tool, Kruskal-Wallis was used to determine
if there is a difference in performance between
parameter values for each parameter. The mean and
variance was computed across all parameter values
for a given parameter, calculated at the corpus level
using the micro-average F-measure.

3. Results from Kruskal-Wallis only determine if there
is a difference between the groups but does not
provide insight into how many differences or
between which groups a difference exists. When a
significant difference was seen between three or more
groups, Kruskal-Wallis was used between a post hoc
test to identify the significantly different group(s).

Significance is determined at a 99% level, α = 0.01;
because there are multiple comparisons, a Bonferroni cor-
rection was used, and the new significance level is α =
0.00036.

Analysis of results files
For each ontology-system pair, an analysis was performed
on the maximum F-measure parameter combination. We
did not analyze every annotation produced by all sys-
tems but made sure to account for ∼70–80% of them.
By performing the analysis this way, we are concentrating
on the general errors and terms missed rather than rare
errors.
For each maximum F-measure parameter combination

file, the top 50–150 (grouped by ontology ID and ranked
by number of annotations for each ID) of each true pos-
itive (TP), false positive (FP), and false negative (FN)
were analyzed by separating them into groups of like
annotations. For example, the types of bins that FPs fall
into are: “errors from variants”, “errors from ambigu-
ous synonyms”, “errors due to identifying less specific
concepts”, etc., and are different than the bins into which
TPs or FNs are categorized.
Because we evaluated all parameter combinations, we

were able to examine the impact of single param-
eters by holding all other parameters constant. The
maximum F-measure producing parameter combina-
tion result file and the complementary result file with
varied parameter were run through a graphical differ-
ence program, DiffMerge, to examine the annotations
found/lost by varying the parameter. Examples men-
tioned in the Results and discussion are from this
comparison.
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Results and discussion
Results and discussion are broken down by ontology and
then by tool. For each ontology we present three different
levels of analysis:

1. At the ontology level. This provides a synopsis of
overall performance for each system with comments
about common terms correct (TPs), errors (FPs), and
categories missed (FNs). Specific examples are taken
from the top-performing, highest F-measure
parameter combination.

2. A high-level parameter analysis, performed over all
parameter combinations. This allows for observation
about impact on performance seen by manipulating
parameter values, presented as ranges of impact.
(Presented in Additional file 2).

3. A low-level analysis obtained from examining
individual result files gives insight into specific terms
or categories of terms that are affected by
manipulating parameters. (Presented in Additional
file 2).

Within a particular ontology, each system’s performance
is described. The most impactful parameters are explored
further and examples from variations on maximum
F-measure combination are provided to show the effect
they have on matching. Results presented as numbers
of annotations are of this type of analysis. We end the
Results and discussion Section with overall parameter
analysis and suggestions for parameters on any ontology.
The best-performing result for each system-ontology

pair is presented in Figure 1. There is a wide range of F-
measures for all ontologies, from < 0.10 to 0.83. Not only
is there a wide range when looking at all ontologies, but a
wide range can be seen within each ontology. Two of our
hypotheses are supported by this analysis: we can see that
not all concept recognition systems perform equally, and
the best concept recognition system varies from ontology
to ontology.

Best parameters
Based on analysis, the suggested parameters for maximum
performance for each ontology-system pair can be seen in
Tables 3 and 4.

Cell Type Ontology
The Cell Type Ontology (CL) was designed to provide
a controlled vocabulary for cell types from many differ-
ent prokaryotic, fungal, and eukaryotic organisms. Out
of all ontologies annotated in CRAFT, it is the smallest,
terms are the simplest, and there are very few synonyms
(Table 1). The highest F-measure seen on any ontology
is on CL. CM is the top performer (F = 0.83), MM per-
forms second best (F = 0.69), and NCBO Annotator is the

worst performer (F = 0.32). Statistics for the best scores
can be seen in Table 5. All parameter combinations for
each system on CL can be seen in Figure 2.
Annotations from CL in CRAFT are heavily weighted

towards the root node, “CL:0000000 - cell”; it is annotated
over 2,500 times and makes up ∼44% of all annota-
tions. To test whether annotations of “cell” introduced a
bias, all annotations of CL:0000000 were removed and re-
evaluated. (Results not shown here.) We see a decrease in
F-measure of 0.08 for all systems and are able to identify
similar trends in the effect of parameters when “cell” is not
included. We can conclude that “cell” annotations do not
introduce any bias.
Precision on CL is good overall, the highest being CM

(0.88) and the lowest beingMM (0.60), withNCBOAnno-
tator in the middle (0.76). Most of the FPs found are due
to partial term matching. “CL:0000000 - cell” makes up
more than 50% of total FPs because it is contained in
many terms and is mistakenly annotated when a more
specific term cannot be found. Besides “cell”, terms rec-
ognized that are less specific than the gold standard are
“CL:0000066 - epithelial cell” instead of “CL:0000082 -
lung epithelial cell” and “CL:0000081 - blood cell” instead
of “CL:0000232 - red blood cell”. MM finds more FPs than
the other systems, many of these due to abbreviations. For
example, MM incorrectly annotates the span “ES cells”
with “CL:0000352 - epiblast cell” and “CL:0000034: stem
cell”. By utilizing abbreviations, MM correctly annotates
“NCC” with “CL:0000333 - neural crest cell”, which the
other two systems do not find.
Recall for CM andMM are over 0.8 while NCBO Anno-

tator is 0.2. The low recall seen from NCBO Annotator
is due to the fact that it is unable to recognize plurals
of terms unless they are explicitly stated in the ontol-
ogy; it correctly finds “melanocyte” but does not recognize
“melanocytes”, for example. Because CL is small and its
terms are quite simple, there are only two main categories
of termsmissed: missing synonyms and conjunctions. The
biggest category is insufficient synonyms. We find “cone”
and “cone photoreceptor” annotated with “CL:0000573 -
retinal cone cell” and “photoreceptor(s)” annotated with
“CL:0000210 - photoreceptor cell”; these two examples
make up 33% (400 out of 1,200) of annotations missed by
all systems. No systems found any annotations that con-
tained conjunctions. For example, for the text span “retinal
bipolar, ganglion, and rod cells”, three cell types are anno-
tated in CRAFT: “CL:0000748 - retinal bipolar neuron”,
“CL:0000740 - retinal ganglion cell”, and “CL:0000604 -
retinal rod cell”.

Gene Ontology - Cellular Component
The cellular component branch of the Gene Ontology
describes locations at the levels of subcellular structures
andmacromolecular complexes. It is useful for annotating
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Figure 1Maximum F-measure for each system-ontology pair. A wide range of maximum scores is seen for each system within each ontology.

where gene products have been found to be localized.
GO_CC is similar to CL in that it is a smaller ontology
and contains very few synonyms, but the terms are slightly
longer and more complex than CL (Table 1). Performance
from CM (F = 0.77) is the best, with MM (F = 0.70)
second, and NCBO Annotator (F = 0.40) third (Table 5).
All parameter combinations for each system on GO_CC
can be seen in Figure 3.
Just as in CL, there are many annotations to

“GO:0005623 - cell”, 3,647 or 44% of all 8,354 annotations.
We removed annotations of “cell” and saw a decrease
in performance. Unlike CL, removal of these annota-
tions does not affect all systems consistently. CM sees a
large decrease in F-measure (0.2), while MM and NCBO
Annotator see decreases of 0.08 and 0.02, respectively.
Precision for all parameter combinations of CM and

MM are over 0.50, with the highest being CM at 0.92.
NCBO Annotator widely varies from < 0.1 to 0.85.
Because precision is high, there are very few FPs that are
found. The FPs in common by all systems are due to less
specific terms being found and ambiguous terms; NCBO
Annotator also finds FPs from broad synonyms and MM
specific errors are from abbreviations. Most of the com-
mon FPs are mentions that are less specific than the
gold standard, due to higher-level terms contained within
lower-level ones. For instance, “GO:0016020 - membrane”

is found instead of a more specific type of membrane
such as “vesicle membrane”, “plasma membrane”, or “cel-
lular membrane”. All systems find ∼20 annotations of
“GO:0042603 - capsule” when none are seen in CRAFT;
this is due to overloaded terms from different biomedical
domains. Because NCBO Annotator is a Web service, we
have no control over versions of ontologies used, so it
used a newer version of the ontology than that which
was used to annotate CRAFT and as inputted into CM
and MM. ∼42% of NCBO Annotator FPs were because
“GO:0019814 - immunoglobulin complex, circulating” has
a broad synonym “antibody” added. Because MM gen-
erates variants and incorporates synonyms, we see an
interesting error produced from MM: “hair(s)” get anno-
tated with “GO:0009289 - pilus”. It is not understandable
why MM would assume this because “hair” is not a syn-
onym, but in the GO definition, pilus is described as a
“hair-like appendage”.
MM achieves the highest recall of 0.73 with CM slightly

lower at 0.66 and NCBO Annotator the lowest (0.27).
NCBO Annotator’s inability to recognize plurals and
generate variants significantly hurts recall. NCBO Anno-
tator can annotate neither “vesicles” with “GO:0031982 -
vesicle” nor “autosomal” with “GO:0030849 - autosome”,
which both CM and MM correctly annotate. The
largest category of missed annotations represents other
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Table 3 Best performing parameter combinations for CL and GO subsections

Cell Type Ontology (CL)

NCBO Annotator MetaMap ConceptMapper

Parameter Value Parameter Value Parameter Value

wholeWordOnly YES model ANY searchStrategy CONTIGUOUS

filterNumber ANY gaps NONE caseMatch INSENSITIVE

stopWords ANY wordOrder ORDER MATTERS stemmer Porter/BioLemmatizer

SWCaseSensitive ANY acronymAbb DEFAULT/UNIQUE stopWords NONE

minTermSize ONE/THREE derivationalVariants ALL orderIndLookup OFF

withSynonyms YES scoreFilter 0 findAllMatches NO

minTermSize 1/3 synonyms EXACT ONLY

Gene Ontology - Cellular Component (GO_CC)

NCBO Annotator MetaMap ConceptMapper

Parameter Value Parameter Value Parameter Value

wholeWordOnly YES model ANY searchStrategy CONTIGUOUS

filterNumber ANY gaps NONE caseMatch INSENSITIVE

stopWords ANY wordOrder ORDER MATTERS stemmer Porter

SWCaseSensitive ANY acronymAbb DEFAULT/UNIQUE stopWords NONE

minTermSize ONE/THREE derivationalVariants ANY orderIndLookup OFF

withSynonyms ANY scoreFilter 0/600 findAllMatches NO

minTermSize 1/3 synonyms EXACT ONLY

Gene Ontology - Molecular Function (GO_MF)

NCBO Annotator MetaMap ConceptMapper

Parameter Value Parameter Value Parameter Value

wholeWordOnly NO model ANY searchStrategy CONTIGUOUS

filterNumber ANY gaps NONE caseMatch ANY

stopWords ANY wordOrder ORDER MATTERS stemmer BioLemmatizer

SWCaseSensitive ANY acronymAbb DEFAULT/UNIQUE stopWords NONE

minTermSize ANY derivationalVariants ANY orderIndLookup OFF

withSynonyms NO scoreFilter 0/600 findAllMatches NO

minTermSize 1/3 synonyms EXACT ONLY

Gene Ontology - Biological Process (GO_BP)

NCBO Annotator MetaMap ConceptMapper

Parameter Value Parameter Value Parameter Value

wholeWordOnly YES model ANY searchStrategy CONTIGUOUS

filterNumber ANY gaps NONE caseMatch INSENSITIVE

stopWords ANY wordOrder ORDER MATTERS stemmer Porter

SWCaseSensitive ANY acronymAbb ANY stopWords NONE

minTermSize ANY derivationalVariants ADJ NOUN VARS orderIndLookup OFF

withSynonyms YES scoreFilter 0 findAllMatches NO

minTermSize 5 synonyms ALL

Suggested parameters to use that correspond to best score on CRAFT. Parameters where choices don’t seem to make a difference in performance are represented
as “ANY”.
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Table 4 Best performing parameter combinations for SO, ChEBI, NCBITaxon, and PRO

Sequence Ontology (SO)

NCBO Annotator MetaMap ConceptMapper

Parameter Value Parameter Value Parameter Value

wholeWordOnly YES model STRICT searchStrategy CONTIGUOUS

filterNumber ANY gaps NONE caseMatch INSENSITIVE

stopWords ANY wordOrder ANY stemmer Porter/BioLemmatizer

SWCaseSensitive ANY acronymAbb DEFAULT/UNIQUE stopWords NONE

minTermSize THREE derivationalVariants NONE orderIndLookup OFF

withSynonyms YES scoreFilter 600 findAllMatches NO

minTermSize 3 synonyms EXACT ONLY

Protein Ontology (PRO)

NCBO Annotator MetaMap ConceptMapper

Parameter Value Parameter Value Parameter Value

wholeWordOnly YES model ANY searchStrategy ANY

filterNumber ANY gaps NONE caseMatch CASE FOLD DIGITS

stopWords PubMed wordOrder ANY stemmer NONE

SWCaseSensitive ANY acronymAbb DEFAULT/UNIQUE stopWords NONE

minTermSize ONE/THREE derivationalVariants NONE orderIndLookup OFF

withSynonyms YES scoreFilter 600 findAllMatches NO

minTermSize 3/5 synonyms ALL

NCBI Taxonomy

NCBO Annotator MetaMap ConceptMapper

Parameter Value Parameter Value Parameter Value

wholeWordOnly YES model ANY searchStrategy SKIP ANY/ALLOW

filterNumber ANY gaps NONE caseMatch ANY

stopWords ANY wordOrder ORDER MATTERS stemmer BioLemmatizer

SWCaseSensitive ANY acronymAbb DEFAULT/UNIQUE stopWords PubMed

minTermSize FIVE derivationalVariants NONE orderIndLookup OFF

withSynonyms ANY scoreFilter 0/600 findAllMatches NO

minTermSize 3 synonyms EXACT ONLY

ChEBI

NCBO Annotator MetaMap ConceptMapper

Parameter Value Parameter Value Parameter Value

wholeWordOnly YES model STRICT searchStrategy CONTIGUOUS

filterNumber ANY gaps NONE caseMatch ANY

stopWords ANY wordOrder ORDER MATTERS stemmer BioLemmatizer

SWCaseSensitive ANY acronymAbb DEFAULT/UNIQUE stopWords NONE

minTermSize ONE/THREE derivationalVariants NONE orderIndLookup OFF

withSynonyms YES scoreFilter 0/600 findAllMatches YES

minTermSize 5 synonyms EXACT ONLY

Suggested parameters to use that correspond to best score on CRAFT. Parameters where choices don’t seem to make a difference in performance are represented
as “ANY”.
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Table 5 Best performance for each ontology-system pair

Cell Type Ontology (CL)

System F-measure Precision Recall # TP # FP # FN

NCBO Annotator 0.32 0.76 0.20 1169 379 4591

MetaMap 0.69 0.61 0.80 4590 3010 1170

ConceptMapper 0.83 0.88 0.78 4478 592 1282

Gene Ontology - Cellular Component (GO_CC)

System F-measure Precision Recall # TP # FP # FN

NCBO Annotator 0.40 0.75 0.27 2287 779 6067

MetaMap 0.70 0.67 0.73 6111 2969 2341

ConceptMapper 0.77 0.92 0.66 5532 452 2822

Gene Ontology - Molecular Function (GO_MF)

System F-measure Precision Recall # TP # FP # FN

NCBO Annotator 0.08 0.47 0.04 173 195 4007

MetaMap 0.09 0.09 0.09 393 3846 3787

ConceptMapper 0.14 0.44 0.08 337 425 3834

Gene Ontology - Biological Process (GO_BP)

System F-measure Precision Recall # TP # FP # FN

NCBO Annotator 0.25 0.70 0.15 2592 1120 14321

MetaMap 0.42 0.53 0.34 5802 4994 11111

ConceptMapper 0.36 0.46 0.29 4909 5710 12004

Sequence Ontology (SO)

System F-measure Precision Recall # TP # FP # FN

NCBO Annotator 0.44 0.63 0.33 7056 4094 14231

MetaMap 0.50 0.47 0.54 11402 12634 9885

ConceptMapper 0.56 0.56 0.57 12059 9560 9228

ChEBI

System F-measure Precision Recall # TP # FP # FN

NCBO Annotator 0.56 0.7 0.46 3782 1595 4355

MetaMap 0.42 0.36 0.50 4424 8689 3717

ConceptMapper 0.56 0.55 0.56 4583 3687 3554

NCBI Taxonomy

System F-measure Precision Recall # TP # FP # FN

NCBO Annotator 0.04 0.16 0.02 157 807 7292

MetaMap 0.45 0.31 0.88 6587 14954 862

ConceptMapper 0.69 0.61 0.79 5857 3793 1592

Protein Ontology (PRO)

System F-measure Precision Recall # TP # FP # FN

NCBO Annotator 0.50 0.49 0.51 7958 8288 7636

MetaMap 0.36 0.39 0.34 5255 8307 10339

ConceptMapper 0.57 0.57 0.57 8843 6620 6751

Maximum F-measure for each system on each ontology. Bolded systems produced the highest F-measure.
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Figure 2 All parameter combinations for CL. The distribution of all parameter combinations for each system on CL. (MetaMap - yellow square,
ConceptMapper - green circle, NCBO Annotator - blue triangle, default parameters - red).

Gene Ontology (Cellular Component)

Precision

R
ec

al
l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MetaMap
Concept Mapper
NCBO Annotator
Default Param

Figure 3 All parameter combinations for GO_CC. The distribution of all parameter combinations for each system on GO_CC. (MetaMap - yellow
square, ConceptMapper - green circle, NCBO Annotator - blue triangle, default parameters - red).



Funk et al. BMC Bioinformatics 2014, 15:59 Page 13 of 29
http://www.biomedcentral.com/1471-2105/15/59

ways to refer to terms not in the synonym list. In
CRAFT, “complex(es)” is annotated with “GO:0032991 -
macromolecular complex”, and “antibody”, “antibodies”,
“immune complex”, and “immunoglobulin” are all anno-
tated with “GO:0019814 - immunoglobulin complex”, but
no systems are able to identify these annotations because
these synonyms do not exist in the ontology.MM achieves
highest recall because it identifies abbreviations that other
systems are unable to find. For example, “chr” is correctly
annotated with “GO:0005694 - chromosome”, “ER” with
“GO:0005783 - endoplasmic reticulum”, and “ECM” with
“GO:0031012 - extracellular matrix”.

Gene Ontology - Biological Process
Terms from GO_BP are complex; they have the longest
average length, contain many words, and almost half con-
tain stop words (Table 1). The longest annotations from
GO_BP in CRAFT contain five tokens. Distribution of
annotations broken down by number of words along with
performance can be seen in Table 6. When dealing with
longer and more complex terms, it is unlikely to see them
expressed exactly in text as they are seen in the ontology.
For these reasons, none of the systems performed very
well. The maximum F-measures seen by each system can
be seen in Table 5. All parameter combinations for each
system on GO_BP can be seen in Figure 4. Examining
mean F-measures for all parameter combinations, there is
no difference in performance between CM (F = 0.37) and
MM (F = 0.42), but considering only the top 25% of combi-
nations there is a difference between the two. A statistical
difference exists between NCBO Annotator (F = 0.25) and
all others, under all comparison conditions.
Performance by all parameter combinations for all sys-

tems are grouped tightly along the dimension of recall.
Precision for all systems is in the range of 0.2–0.8,
with NCBO Annotator situated on the extremes of the
range and CM/MM distributed throughout. Common
categories of FPs encountered by all three systems are
recognizing parts of longer/more specific terms and hav-
ing different annotation guidelines. As seen in the pre-
vious ontologies, high-level terms are seen in lower
level terms, which introduces errors in systems that
find all matches. For example, we see NCBO Annotator

Table 6 Word length in GO - Biological Process

#Words # CRAFT % Found % Found % Found
in term annotations by CM byMM by NCBO

5 7 14.3 14.3 14.3

4 109 17.4 3.7 9.2

3 317 37.2 33.4 35.0

2 2077 49.0 50.7 43.3

1 13574 27.6 34.2 11.6

incorrectly annotate “GO:001625 - death” within “cell
death”, and both CM and MM annotate “development”
with “GO:00032502 - developmental process” within the
span “limb development”. Different annotation guidelines
also cause errors to be introduced, e.g. all systems anno-
tate “formation” with “GO:0009058 - biosynthetic pro-
cess” because it has a synonym “formation”, but in CRAFT
“formation” may be annotated with “GO:0032502 - devel-
opmental process”, “GO:0009058 - biosynthetic process”,
or “GO:0022607 - cellular component assembly”, depend-
ing on the context. Most of the FPs common to
both CM and MM are due to variant generation, for
example, CM annotates “region(s)” with “GO:003002 -
regionalization” and MM annotates “regular” and “reg-
ulator(s)” with “GO:0065007 - biological regulation”.
Even though we see errors introduced through gen-
erating variants, many more correct annotations are
produced.
In the grouping of all systems performance, recall lies

between 0.1–0.4, which is low in comparison to most
all other ontologies. More than ∼7,000 (> 50–60%) of
the FNs are due to different ways to refer to terms
not in the synonym list. The most missed annotation,
with over 2,200 mentions, are those of “GO:0010467 -
gene expression”; different surface variants seen in text
are “expressed”, “express”, “expressing”, and “expression”.
There are ∼800 discontiguous annotations that no sys-
tems are able to find. An example of a discontiguous
annotation is seen in the following span: the textitd text
from “localization of the Ptdsr protein” gets annotated
with “GO:0008104 - protein localization”. Many of the
annotations in CRAFT cannot be identified using the
ontology alone so improvements in recall can be made by
analyzing disparities between term name and the way they
are expressed in text.

Gene Ontology - Molecular Function
The molecular function branch of the Gene Ontology
describes molecular-level functionalities that gene prod-
ucts possess. It is useful in the protein function prediction
field and serves as the standard way to describe functions
of gene products. Like GO_BP, terms from GO_MF are
complex, long, and contain numerous words with 52.8%
containing punctuation and 26.6% containing numerals
(Table 1). All parameter combinations for each system on
GO_MF can be seen in Figure 5. Performance on GO_MF
is poor; the highest F-measure seen is 0.14. Besides terms
being complex, another nuance of GO_MF that makes
their recognition in text difficult is the fact that nearly all
terms, with the primary exception of binding terms, end
in “activity”. This was done to differentiate the activity of
a gene product from the gene product itself, for example,
“nuclease activity” versus “nuclease”. However, the large
majority of GO_MF annotations of terms other than those
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Figure 4 All parameter combinations for GO_BP. The distribution of all parameter combinations for each system on GO_BP. (MetaMap - yellow
square, ConceptMapper - green circle, NCBO Annotator - blue triangle, default parameters - red).

denoting binding are of mentions of gene products rather
than their activities.
A majority of true positives found by all systems (>

70%) are binding terms such as “GO:0005488 - binding”,
“GO:0003677 - DNA binding”, and “GO:0036094 - small
molecule binding”. These terms are the easiest to find
because they are short and do not end in “activity”.
NCBO Annotator only finds binding terms while CM
and MM are able to identify other types. CM identifies
exact synonym matches; in particular, “FGFR” is correctly
annotated with “GO:0005007 - fibroblast growth factor-
activated receptor activity”, which has an exact synonym
“FGFR”. MM correctly annotates “taste receptor” with
“GO:0008527 - taste receptor activity”. These annotations
are correctly found because the terms have synonyms that
refer to the gene products as well as the activity. The
only category of FPs seen between all systems is nested
or less specific matches, but there are system-specific
errors: NCBO Annotator finds activity terms that are
incorrect, while MM finds many errors pertaining to syn-
onyms. Example of incorrect nested annotations found by
all systems are “GO:0005488 - binding” annotated within
“transcription factor binding” and “GO:0016788 - esterase
activity” within “acetylcholine esterase”. Because the
CRAFT annotation guidelines purposely never included

the term “activity”, some instances of annotating activity
along with the preceding word is incorrect; for exam-
ple, NCBO Annotator incorrectly annotates the span
“recombinase activity” with “GO:0000150 - recombinase
activity”. FPs seen only by MM are due to broad, narrow,
and related synonyms. We see MM incorrectly annotate
“neurotrophin” with “GO:0005165 - neurotrophin recep-
tor binding” and “GO:0005163 nerve growth factor recep-
tor binding” because both terms have “neurotrophin” as a
narrow synonym.
Recall for GO_MF is low; at best only 10% of total

annotations are found. Most of the annotations missed
can be classified into three categories: activity terms,
insufficient synonyms, and abbreviations. The category
of activity terms is an overarching group that contains
almost all of the annotations missed; we show perfor-
mance can be improved significantly by ignoring the word
activity in the next section. Terms that fall into the cat-
egory of insufficient synonyms (∼30% of all terms not
found) are not only missed because they are seen without
“activity”. For instance, “hybridization(s)”, “hybridized”,
“hybridizing”, and “annealing” in CRAFT are annotated
with both “GO:0033592 - RNA strand annealing activity”
and “GO:0000739 - DNA strand annealing activity”. These
mentions are annotated as such because it is sometimes
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Figure 5 All parameter combinations for GO_MF. The distribution of all parameter combinations for each system on GO_MF. (MetaMap - yellow
square, ConceptMapper - green circle, NCBO Annotator - blue triangle, default parameters - red).

difficult to determine if the text is referring to DNA
and/or RNA hybridization/annealing; thus, to simplify
the task, these mentions are annotated with both terms,
indicating ambiguity. Another example of insufficient syn-
onyms is the inability of all systems to recognize “K+
channel” as “GO:00005267 - potassium channel activity”,
due to the fact that the former is not listed as a syn-
onym of the latter in the ontology. A smaller category
of terms missed are those due to abbreviations, some of
which are mentioned earlier in the paper. For instance,
in CRAFT, “Dhcr7” is annotated with “GO:0047598 - 7-
dehydrocholesterol reductase activity” and “neo” is anno-
tated with “GO:0008910 - kanamycin kinase activity”.
Overall, there is much room for improvement in recall
for GO_MF; ignoring “activity” at the end of terms during
matching alone leads to an increase in R of 0.3.

Improving performance on GO_MF
As suggested in previous work on the GO, since the word
“activity” is present in most terms, its information con-
tent is very low [33]. Also, when adding “activity” to the
end of the top 20 most common other words in GO_MF
terms (as seen in [51]), over half are terms themselves [52].
An experiment was performed to evaluate the impact of
removing “activity” from all terms in GO_MF. For each

term with “activity” in the name, a synonym was added to
the ontology obo file with the token “activity” removed;
for example, for “GO:0004872 - receptor activity”, a syn-
onym of “receptor” was added. We tested this only with
CM; the same evaluation pipeline was run but the new obo
file used to create the dictionary. Using the new dictionary,
F-measure is increased from 0.14 to 0.48 and a maximum
recall of 0.42 is seen (Figure 6). These synonyms should
not be added to the official ontology because it contradicts
the specific guidelines the GO curators established [53],
but should be added to dictionaries provided as input to
concept recognition systems.

Sequence Ontology
The Sequence Ontology describes features and attributes
of biological sequences. The SO is one of the smaller
ontologies evaluated,∼1,600 terms, but contains the high-
est number of annotations in CRAFT, ∼23,500. ∼92%
of SO terms contain punctuation, which is due to the
fact that the words of the primary labels are demarcated
not by spaces but by underscores. Many, but not all, of
the terms have an exact synonym identical to the official
name, but with spaces instead of underscores. CM is the
top performer (F = 0.56) with MM middle (F = 0.50) and
NCBO Annotator at the bottom (F = 0.44). Statistically,



Funk et al. BMC Bioinformatics 2014, 15:59 Page 16 of 29
http://www.biomedcentral.com/1471-2105/15/59

Adding synonyms without "activity" to CM GO_MF dictionary

Precision

R
ec

al
l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Systems

CM − GO_MF
CM − GO_MF − added "activity" synonyms

Figure 6 Improvement seen by CM on GO_MF by adding synonyms to the dictionary. By adding synonyms of terms without “activity” to the
GO_MF dictionary precision and recall are increased.

looking at all parameter combinations mean F-measures,
there is a difference between CM and the rest, while a dif-
ference cannot be determined between MM and NCBO
Annotator. When looking at the top 25% of combinations,
a difference can be seen between all three systems. All
parameter combinations for each system on SO can be
seen in Figure 7.
Most of the FPs can be grouped into four main cate-

gories: contextual dependence of SO, partial term match-
ing, broad synonyms, and variants generated. In all three
systems, we see the first three types, but errors from vari-
ants are specific to CM and MM. The SO is sequence
specific, meaning that terms are to be understood in rela-
tion to biological sequences. When the ontology is sep-
arated from the domain, terms can become ambiguous.
For example, “SO:0000984 - single” and “SO:0000985 -
double” refer to the number of strands in a sequence, but
can also be used in other contexts, obviously. Synonyms
can also become ambiguous when taken out of con-
text. For example, “SO:1000029 - chromosomal_deletion”
has a synonym “deficiency”. In the biomedical literature,
“deficiency” is commonly used when discussing lack of a
protein, but as a synonym of “chromosomal_deletion” it
refers to a deletion at the end of a chromosome; these
are not semantically incorrect, but incorrect in terms of
CRAFT concept annotation guidelines. Because of the

hierarchical relationships in the ontology we find the high
level term “SO:0000001 - region” within other terms;
when the more specific terms are unable to be rec-
ognized, “region” can still be recognized. For instance,
we find “region” incorrectly annotated inside the span
“coding region”, when in the gold standard the span
is annotated with “SO:0000851 - CDS_region”. Besides
being ambiguous, synonyms can also be too broad. For
instance, “SO:0001091 - non_covalent_binding_site” and
“SO:0100018 - polypeptide_binding_motif” both have a
synonym of “binding”; as seen in GO_MF above, there
are many annotations of binding in CRAFT. The last cat-
egory of errors are only seen in CM and MM because
they are able to generate variants. Examples of erro-
neous variants are MM incorrectly annotating “based”,
“foundation”, and “fundamental” with “SO:0001236 -
base” and CM incorrectly annotating “probing” and
“probed” with “SO:0000051 - probe”.
Recall on SO is close between CM (0.57) andMM (0.54),

while recall for NCBO Annotator is 0.33. The ∼5,000
annotations found by both CM and MM that are missed
by NCBO Annotator are composed of plurals and vari-
ants. The three categories that a majority of the FNs
fall into are insufficient synonyms, abbreviations, and
multi-span annotations. More than half of the FNs are
due to insufficient synonyms or other ways to express
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Figure 7 All parameter combinations for SO. The distribution of all parameter combinations for each system on SO. (MetaMap - yellow square,
ConceptMapper - green circle, NCBO Annotator - blue triangle, default parameters - red).

a term. In CRAFT, “SO:0001059 - sequence_alteration”
is annotated to “mutation(s)”, “mutant”, “alteration(s)”,
“changes”, “modification”, and “variation”. It may not
be the most intuitive annotation, but because of the
structure of the SO version used in CRAFT, it is
the most specific annotation that can be made for
mutating/changing a sequence. Another example of
insufficient synonyms can be seen from the anno-
tation of “chromosomal region”, “chromosomal loci”,
“locus on chromosome” and “chromosomal segment”
with“SO:0000830 - chromosome_part”. These are more
intuitive than the previous example; if different “parts”
of a chromosome are explicitly enumerated the ability to
find them increases. Abbreviations or symbols are another
category missed. For example, “SO:0000817 - wild_type”
can be expressed as “WT” or “+” and “SO:0000028 -
base_pair” is commonly seen as “bp”. These abbrevia-
tions are more commonly seen in biomedical text than
the longer terms are. There are also some multi-span
annotations that no systems are able to find; for example,
“homologous human MCOLN1 region” is annotated with
“SO:0000853 - homologous_region”.

Protein Ontology
The Protein Ontology (PRO) represents evolutionarily
defined proteins and their natural variants. It is important

to note that although the PRO technically represents pro-
teins strictly, the terms of the PRO were used to annotate
genes, transcripts, and proteins in CRAFT. Terms from
PRO contain the most words, have the most synonyms,
and ∼75% of terms contain numerals (Table 1). Even
though term names are complex, in text, many gene and
gene product references are expressed as abbreviations or
short names. These references are mostly seen as syn-
onyms in PRO. Recognizing and normalizing gene and
gene product mentions is the first step in many natu-
ral language processing pipelines and is one of the most
fundamental steps. CM produces the highest F-measure
(0.57), followed by NCBO Annotator (0.50), and lastly
MM (0.35) produces the lowest. All parameter combina-
tions for each system on PRO can be seen in Figure 8.
Unlike most of the ontologies covered above, stemming
terms from PRO does not result in the highest perfor-
mance. The best parameter combination for CM does
not use any stemmer, which is why NCBO Annotator
performs better than MM.
All systems are able to find some references to

the long names of genes and gene products, such as
“PR:000011459 - neurotrophin-3” and “PR:000004080 -
annexin A7”. As stated previously, a majority of the anno-
tations in CRAFT are short names of genes and gene
products. For example, the long name of PR:000003573
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Figure 8 All parameter combinations for PRO. The distribution of all parameter combinations for each system on PRO. (MetaMap - yellow square,
ConceptMapper - green circle, NCBO Annotator - blue triangle, default parameters - red).

is “ATP-binding cassette sub-family G member 8”, which
is not seen, but the short name “Abcg8” is seen numer-
ous times. The errors introduced by all systems can
be grouped into misleading synonyms and different
annotation guidelines, while MM also introduces errors
from abbreviations and variants. Of errors common
to all systems, the largest category is from mislead-
ing synonyms (> 50% for CM and NCBO Annotator,
∼33% for MM). For example, ∼3,000 incorrect anno-
tations of “PR:000005054 - caspase-14”, which has syn-
onym “MICE”, are seen, along with mentions of the
word “male” incorrectly annotated with “PR:000023147 -
maltose-binding periplasmic protein”, which has the syn-
onym “malE”. As seen in these errors, capitalization
is important when dealing with short names. Differing
annotation guidelines also result in matching errors, but
because all systems are at the same disadvantage a bias
isn’t introduced. The word “protein” is only annotated
with the ChEBI ontology term “protein”, but there are
many mentions of the word “protein” incorrectly anno-
tated with a high-level term of PRO, “PR:000000001 -
protein”. This term was purposely not used to annotate
“protein” and “proteins”, as this would have conflicted
with the use of the terms of PRO to annotate not only pro-
teins but also genes and transcripts. MM generates abbre-
viations and acronyms, but they are not always helpful.

For example, due to abbreviations, “MTF-1” is incor-
rectly annotated with “PR:000008562 - histidine triad
nucleotide-binding protein 2”; becauseMM is a black box,
it is unclear how or why this abbreviation is generated.
Morphological variants of synonyms are also causes of
errors. For example, “finding” and “found” are incorrectly
annotated because they are variants of “FIND”, which is a
synonym of “PR:000016389 - transmembrane 7 superfam-
ily member 4”.
All systems are able to achieve recall of >0.6 on at least

one parameter combination, with CM and MM achiev-
ing 0.7 by sacrificing precision. When balancing P and R,
the maximum R seen is from CM (0.57). Gene and gene
product names are difficult to recognize because there is
so much variation in the terms — not morphological vari-
ation as seen in most other ontologies, but differences in
symbols, punctuation, and capitalization. The main cate-
gories of missed annotations are due to these differences.
Symbols and Greek letters are a problem encountered
many times when dealing with gene and gene product
names [54]. These tools offer no translation between sym-
bols so, for example, “TGF-β2” is unable to be annotated
with “PR:000000183 - TGF-beta2” by any systems. Along
the same lines, capitalization and punctuation are impor-
tant. The hard part is knowing when and when not to
ignore them; any of the FPs seen in the previous paragraph
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are found because capitalization is ignored. Both capi-
talization and punctuation must be ignored to correctly
annotate the spans “mr-s” and “mrs” with “PR:000014441 -
sterile alpha motif domain-containing protein 11”, which
has a synonym “Mr-s”. As seen above, there are many
ways to refer to a gene/gene product. In addition, an
author can define one by any abbreviation desired and
then refer to the protein in that way throughout the rest
of the paper, so attempting to capture all variation in syn-
onyms is a difficult task. In CRAFT, for instance, “snail”
refers to “PR:000015308 - zinc finger protein SNAI1”
and “moonshine” or “mon” refers to “PR:000016655 - E3
ubiquitin-protein ligase TRIM33”.

Removing FP PROannotations
In order to show that performance improvements can
be made easily, we examined and removed the top five
FPs from each system on PRO. The top five errors only
affect precision and can be removed without any impact
in recall; the impact can be seen in Figure 9. A simple
process produces a change in F-measure of 0.03–0.09. A
common category of FPs removed from all systems are
annotations made with “PR:000000001 - protein”, as the
term was found ∼1,000–3,500 times. Three out of the
top five errors common to MM and NCBO Annotator
were found because synonym capitalization was ignored.

For example, “MICE” is a synonym of “PR:000005054 -
caspase-14”, “FIND” is a synonym of “PR:000016389 -
transmembrane 7 superfamily member 4”, and “AGE”
is a synonym of “PR:000013884 - N-acylglucosamine 2-
epimerase”. The second largest error seen in CM is from
an ambiguous synonym: “PR:000012602 - gastricsin” has
an exact synonym “PGC”; this specific protein is not
seen in CRAFT, but the abbreviation “PGC” is seen ∼400
times referring to the protein peroxisome proliferator-
activated receptor-gamma. By addressing just these few
categories of FPs, we can increase the performance of all
systems.

NCBI Taxonomy
The NCBI Taxonomy is a curated set of nomenclature
and classification for all the organisms represented in
the NCBI databases. It is by far the largest ontology
evaluated, at almost 800,000 terms, but with only 7,820
total NCBITaxon annotations in CRAFT. Performance on
NCBITaxon varies widely for each system: NCBO Anno-
tator performs poorly (F = 0.04), MM performers bet-
ter (F = 0.45) and CM performs best (F = 0.69). When
looking at all parameter combinations for each system,
there is generally a dimension (P or R) that varies widely
among the systems and another that is more constrained
(Figure 10).
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Figure 10 All parameter combinations for NCBITaxon. The distribution of all parameter combinations for each system on NCBITaxon.
(MetaMap - yellow square, ConceptMapper - green circle, NCBO Annotator - blue triangle, default parameters - red).

In CRAFT, text is annotated with the most closely
matching explicitly represented concept. For many organ-
ismal mentions, the closest match to an NCBI Tax-
onomy concept is a genus or higher-level taxon. For
example, “mice” and “mouse” are annotated with the
genus “NCBITaxon:10088 - Mus”. CM and MM both
find mentions of “mice”, but NCBO Annotator does not.
(Why will be discussed in the next paragraph.) All sys-
tems are able to find annotations to specific species; for
example, “Takifugu rubripes” is correctly annotated with
“NCBITaxon:31033 - Takifugu rubripes”. The FPs found
by all systems are from ambiguous terms and terms that
are too specific. Since the ontology is large and names
of taxa are diverse, the overlap between terms in the
ontology and common words in English and biomed-
ical text introduces these ambiguous FPs. For exam-
ple, “NCBITaxon:169495 - this” is a genus of flies, and
“NCBITaxon:34205 - Iris germanica”, a species of mono-
cots, has the common name “flag”. Throughout biomed-
ical text there are many references to figures that are
incorrectly annotated with “NCBITaxon:3493 - Ficus”,
which has a common name of “figs”. A more biolog-
ically relevant example is “NCBITaxon:79338 - Codon”
which is a genus of eudicots but also refers to a set
of three adjacent nucleotides. Besides ambiguous terms,

annotations are produced that are more specific than
those in CRAFT. For example, “rat” in CRAFT is anno-
tated at the genus level “NCBITaxon:10114 - Rattus”;
while all systems incorrectly annotate “rat” withmore spe-
cific terms such as, “NCBITaxon:10116 - Rattus norvegi-
cus” and “NCBITaxon:10118 - Rattus sp.”. One way to
reduce some of these false positives is to limit the domains
in whichmatching is allowed, however, this assumes some
previous knowledge of what the input will be.
Recall of > 0.9 is achieved by some parameter combi-

nations of CM and MM, while the maximum F-measure
combinations are lower (CM - R = 0.79 and MM -
R = 0.88). NCBO Annotator produces very low recall
(R = 0.02) and performs poorly due to a combination of:
the way CRAFT is annotated and the way NCBO Annota-
tor handles linking between ontologies. In NCBO Anno-
tator, for example, the link between “mice” and “Mus”
is not inferred directly, but goes through the MaHCO
ontology [55], an ontology of major histocompatibility
complexes. Because we limited NCBO Annotator to only
using ontology directly tested, the link between “mice”
and “Mus” is not used, and therefore are not found. For
this reason, NCBO Annotator is unable to find many
of the NCBITaxon annotations in CRAFT. On the other
hand, CM and MM are able to find most annotations, the
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annotations missed are due to different annotation guide-
lines or specific species with a single-letter genus abbre-
viation. In CRAFT, there are ∼200 annotations of the
ontology root, with text such as “individual” and “organ-
ism”; these are annotated because the root was inter-
preted as the foundational type of organism. An example
of a single-letter genus abbreviation seen in CRAFT is
“D. melanogaster” annotated with “NCBITaxon:7227 -
Drosophila melanogaster”. These types of missed anno-
tations are easy to correct for through some synonym
management or post-processing step. Overall, most of
the terms in NCBITaxon are able to be found and
focus should be on increasing precision without losing
recall.

ChEBI
The Chemical Entities of Biological Interest (ChEBI)
Ontology focuses on the representation of molecular
entities, molecular parts, atoms, subatomic particles,
and biochemical rules and applications. The complex-
ity of terms in ChEBI varies from the simple single-
word compound “CHEBI:15377 - water” to very complex
chemicals that contain numerals and punctuation, e.g.,
“CHEBI:37645 - luteolin 7-O-[(beta-D-glucosyluronic
acid)-(1->2)-(beta-D-glucosiduronic acid)] 4’-O-beta-D-
glucosiduronic acid”. Themaximum F-measure on ChEBI

is produced by CM and NCBO Annotator (F = 0.56) with
MM (F = 0.42) not performing as well. CM and MM both
find ∼4,500 TPs, but because MM finds ∼5,000 more FPs
its overall performance suffers (Table 4). All parameter
combinations for each system on ChEBI can be seen in
Figure 11.
There are many terms that all systems correctly find,

such as “protein” with “CHEBI:36080 - protein” and
“cholesterol” with “CHEBI:16113 - cholesterol”. Errors
seen from all systems are due to differing annotation
guidelines and ambiguous synonyms. Errors from both
CM and MM come from generating variants while MM
produces some unexplained errors. Different annotation
guidelines lead to the introduction of both FPs and
FNs. For example, in CRAFT, “nucleotide” is annotated
with “CHEBI:25613 - nucleotidyl group”, but all systems
incorrectly annotate “nucleotide” with “CHEBI:36976 -
nucleotide” because they exactly match. (Mentions of
“nucleotide(s)” that refer to nucleotides within nucleic
acids are not annotated with “CHEBI:36976 - nucleotide”
because this term specifically represents free nucleotides,
not those as parts of nucleic acids.) Many FPs and FNs
are produced by a single nested annotation; four gold-
standard annotations are seen within “amino acid(s)”. Of
these four annotations, two are found by all systems,
“CHEBI:37527 - acid” and “CHEBI:46882 - amino”, while
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Figure 11 All parameter combinations for ChEBI. The distribution of all parameter combinations for each system on ChEBI. (MetaMap - yellow
square, ConceptMapper - green circle, NCBO Annotator - blue triangle, default parameters - red).
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one introduces a FP: “CHEBI:33709 - amino acid” incor-
rectly annotated instead of “CHEBI:33708 - amino-acid
residue”, while “CHEBI:32952 - amine” is not found by
any system. Ambiguous synonyms also lead to errors; for
example, “lead” is a common verb but also a synonym
of “CHEBI:25016 - lead atom” and “CHEBI:27889 -
lead(0)”. Variants generated by CM and MM do not
always carry the same semantic meaning as the original
term, such as “based” and “basis” from “CHEBI:22695 -
base”. MM also produces some interesting unexplainable
errors. For example, “disease” is incorrectly annotated
with “CHEBI:25121 - maleoyl group”, “CHEBI:25122 -
(Z)-3-carboxyprop-2-enoyl group”, and “CHEBI:15595 -
malate(2-)”; all three terms have a synonym of “Mal”, but
we could find no further explanations.
Recall for maximum F-measure combinations are in a

similar range, 0.46–0.56. The two most common cate-
gories of annotations missed by all systems are abbrevi-
ations and a difference between terms and the way they
are expressed in text. Many terms in ChEBI are more
commonly seen as abbreviations or symbols. For instance,
“CHEBI:29108 - calcium(2+)” is more commonly seen as
“Ca2+”; even though it is a related synonym, the sys-
tems evaluated are unable to find it. A more complicated
example can be seen when talking about the chemicals
that lie on the ends of amino acid chains. In CRAFT,
“C” from “C-terminus” is annotated with “CHEBI:46883 -
carboxyl group” and “CHEBI:18245 - carboxylato group”
(the double annotation indicating ambiguity among
these), which all systems are unable to find; The same
principle also applies for the N-terminus. One simple
annotation that should be easy to get is “mRNA” anno-
tated with “CHEBI:33699 - messenger RNA”, but CM
and NCBO Annotator miss it. There is not always an
overlap between the term names and their expression in
text. For instance, the term “CHEBI:36357 - polyatomic
entity” was chosen to annotate general “substance” words
like “molecule(s)”, “substances”, and “compounds” and
“CHEBI:33708 - amino-acid residue” is often expressed as
“amino acid(s)” and “residue”.
An additional comparison between CM and ChemSpot

[56], a ChEBI-specific named entity recognizer with
machine learning components, on CRAFT can be seen in
Additional file 3. The results of this comparison show that
performance between both systems is similar and small
changes to stop word lists and dictionaries can have a big
impact of F-measure. It also explores FPs of ChemSpot,
which could represent a potential missed annotation in
CRAFT or lack of a ChEBI term for a chemical.

Overall parameter analysis
Here we present overall trends seen from aggregating all
parameter data over all ontologies and explore param-
eters that interact. Suggestions for parameters for any

ontology based upon its characteristics are given. These
observations are made from observing which param-
eter values and combinations produce the highest F-
measures and not from statistical differences in mean
F-measures.

NCBO Annotator
Of the six NCBO Annotator parameters evaluated, only
three impact performance of the system: wholeWord-
sOnly, withSynonyms, and minTermSize. Two parameters,
filterNumber and stopWordsCaseSensitive, did not impact
recognition of any terms, while removing stop words only
made a difference for one ontology (PRO).
A general rule for NCBO Annotator is that only whole

words should be matched; matching whole words pro-
duced the highest F-measure on seven out of eight ontolo-
gies and on the eighth, the difference was negligible.
Allowing NCBO Annotator to find terms that are not
whole words greatly decreases precision while minimally,
if at all, increasing recall.
Using synonyms of terms makes a significant differ-

ence in five ontologies. Synonyms are useful because they
increase recall by introducing other ways to express con-
cepts. It is generally better to use synonyms, as only
one ontology performed better when not using synonyms
(GO_MF).
minTermSize does not effect the matching of terms

but acts as a filter to remove matches of less than a
certain length. A safe value ofminTermSize for any ontol-
ogy would be one or three because only very small
words (< 2 characters) are removed. Filtering terms
less than length five is useful, not so much for find-
ing desired terms, but for removing undesired terms.
Undesired terms less than five characters can be intro-
duced either through synonyms or small ambiguous terms
that are commonly seen and should be removed to
increase performance. (e.g. “NCBITaxon:3863 - Lens” and
“NCBITaxon:169495 - This”)

Interacting parameters - NCBO Annotator
Because half of NCBO Annotator’s parameters do not
affect performance, we only see interaction between two
parameters: wholeWordsOnly and synonyms. The inter-
actions between these parameters come from mixing
wholeWordsOnly = no and synonyms = yes. As noted
in the discussion of ontologies above, using this combi-
nation of parameters introduces anywhere from 1,000 to
41,000 FPs, depending on the test scenario and ontology.
These errors are introduced because small synonyms or
abbreviations are found within other words.

MetaMap
We evaluated seven MM parameters. The only parameter
value that remained constant between all ontologies was
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gaps; we have come to the consensus that gaps between
tokens should not be allowed whenmatching. By inserting
gaps, precision is decreased with no or slight increase in
recall.
Themodel parameter determines which type of filtering

is applied to the terms. The difference between the two
values for model is that strict performs an extra filter-
ing step on the ontology terms. Performing this filtering
increases precision with no change in recall for ChEBI and
NCBITaxon with no differences between the parameter
values on the other ontologies. Because it is best perform-
ing on two ontologies and inMMdocumentation is said to
produce the highest level of accuracy, the strict model
should be used for best performance.
One simple way to recognize more complex terms is to

allow the reordering of tokens in the terms. Reordering
tokens in terms helpsMM to identify terms as long as they
are syntactically or semantically the same. For example,
“GO:0000805 - X chromosome” is equal to “chromosome
X”. Practically, the previous example is an exception, as
most reorderings are not syntactically or semantically
similar; by ignoring token order, precision is decreased
without an increase in recall. Retaining the order of tokens
produces highest F-measure on six out of eight ontolo-
gies, while there was no difference on the other two. We
conclude for best performance it is best to retain token
order.
One unique feature of MM is that it is able to com-

pute acronym and abbreviation variants when map-
ping text to the ontology. MM allows the use of all
acronym/abbreviations (-a), only those with unique
expressions (-u) and the default (no flags). For all
ontologies, there is no difference between using the
default or only those with unique expressions, but
both are better than using all. Using all acronyms
and abbreviations introduces many erroneous matches;
precision is decreased without an increase in recall. For
best performance, use default or unique values of
acronyms and abbreviations.
Generating derivational variants helps to identify dif-

ferent forms of terms. The goal of generating variants is
to increase recall without introducing ambiguous terms.
This parameter produces the most varied results. There
are three parameter values (all, none, and adj noun
only ), and each of them produces the highest F-measure
on at least one ontology. Generating variants hurts the
performance on half of the ontologies. Of these ontolo-
gies, variants of terms from PRO and ChEBI do not make
sense because they do not follow typical English language
rules while variants of terms in NCBITaxon and SO intro-
duce many more errors than correct matches. all vari-
ants produce highest F-measure on CL, while adj noun
only variants are best-performing on GO_BP. There
is no difference between the three values for GO_CC

and GO_MF. With these varied results, one can decide
which type of variants to use by examining the way they
expect terms in their ontology to be expressed. If most
of the terms do not follow traditional English rules, like
gene/protein names, chemicals, and taxa, it is best to not
use any variants. For ontologies where terms could be
expressed as nouns or verbs, a good choicewould be to use
the default value and generate adj noun only variants.
This is suggested because it generates the most common
types of variants, those between adjectives and nouns.
The parameters minTermSize and scoreFilter do not

affect matching but act as a post-processing filter on
annotations returned. minTermSize specifies the mini-
mum length, in characters, of annotated text; text shorter
than this is filtered out. This parameter acts exactly like
that of the NCBO Annotator parameter with the same
name presented above. MM produces scores in the range
of 0 to 1000, with 1000 being the most confident. For all
ontologies, a score of 1000 produces the highest P and the
lowest R, while a score of 0 returns all matches and has the
highest R with the lowest P, with 600 and 800 somewhere
between. Performance is best on all ontologies when using
most of the annotations found by MM, so a score of 0 or
600 is suggested. As input to MM, we provided the entire
document; it is possible that different scores are produced
when providing a phrase, sentence, or paragraph as input.
The scores are not as important as the understanding that
most of the annotations returned by MM are used.

ConceptMapper
We evaluated seven CM parameters. When examining
best performance, all parameter values vary but one:
orderIndependentLookup = off, which does not allow the
reordering of tokens when matching, is set in the highest
F-measure parameter combination for all ontologies. As
for MM, it is best to retain ordering of tokens.
searchStrategy affects the way dictionary lookup is per-

formed. contiguous matching returns the longest span
of contiguous tokens, while the other two values (skip
any match and skip any allow overlap) can
skip tokens and differ on where the next lookup begins.
Performance on six out of eight ontologies is best when
only contiguous tokens are returned. On NCBITaxon, the
behavior of searchStrategy is unclear and unintuitive: By
returning non contiguous tokens, precision is increased
without loss of recall. For most ontologies, only selecting
contiguous tokens produces the best performance.
The caseMatch parameter tells CM how to handle cap-

italization. The best performance on four out of eight
ontologies uses insensitive case matching while there
is no difference between the values of caseMatch on
three ontologies. There is no difference on those three
because the best parameter combination utilizes the
BioLemmatizer, which automatically ignores case. Thus,
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best performance on seven out of eight ontologies ignores
case. PRO is the exception; its best-performing combina-
tion only ignores case on those tokens containing digits.
For most ontologies, it is best to use insensitive match-
ing.
Stemming and lemmatization allow matching of mor-

phological term variants. Performance on only one
ontology, PRO, is best when no morphological variants
are used; this is the case because PRO terms annotated
in CRAFT are mostly short names which do not behave
and have the properties of normal English words. The
best-performing combination on all other ontologies use
either the Porter stemmer or the BioLemmatizer. For
some ontologies, there is a difference between the two
variant generators, and for others there was not. Even
ontologies like ChEBI and NCBITaxon perform best with
morphological variants because they are needed for CM
to identify inflectional variants such as plurals. For most
ontologies, morphological variants should be used.
CM can take a list of stop words to be ignored when

matching. Performance on seven out of eight ontologies is
better when stop words are not ignored. Ignoring PubMed
stop words from these ontologies introduces errors with-
out an increase in recall. An example of one error seen
is the span “proteins that target” incorrectly annotated
with “GO:0006605 - protein targeting”. The one ontology,
NCBITaxon, where ignoring stop words results in best
performance is due to a specific term, “NCBITaxon:
169495 - this”. By ignoring the word “this”,∼1,800 FPs are
prevented. If there is not a specific reason to ignore stop
words, such as the terms seen in NCBITaxon, we suggest
not ignoring stop words for any ontology.
By default CM only returns the longest match; all

matches can be returned by setting findAllMatches to
true. Seven out of eight ontologies perform better when
only the longest match is returned. Returning all matches
for these ontologies introduces errors because higher-
level terms are found within lower-level ones and the
CRAFT concept annotation guidelines specifically pro-
hibit these types of nested annotations. CHEBI performs
best when all matches are returned because it contains
such nested annotations. If the goal is to find all possible
annotations or it is known that there are nested anno-
tations we suggest to set findAllMatches to true, but
for most ontologies, only the longest match should be
returned.
There are many different types of synonyms in ontolo-

gies. When creating the dictionary with the value all,
all synonyms (exact, broad, narrow, related, etc...) are
used; the value exact creates dictionaries with only the
exact synonyms. The best performance on six out of
eight ontologies uses only exact synonyms. On these
ontologies, using only exact instead of all synonyms
increases precision with no loss of recall; use of broad,

related, and narrow synonyms mostly introduce errors.
Performance on PRO and GO_BP is best when using all
synonyms. On these two ontologies, the other types of
synonyms are useful for recognition and increase recall.
For most ontologies using only exact synonyms produces
the best performance.

Interacting parameters - ConceptMapper
We see the most interaction between parameters in CM.
There are two different interactions that are apparent in
certain ontologies: 1) stemmer and synonyms and 2) stop-
Words and synonyms. The first interaction found is in
ChEBI. We find the synonyms parameter partitions the
data into two distinct groups. Within each group, the
stemmer parameter has two completely different patterns
(Figure 12). When only exact synonyms are used all
three stemmers are clustered, with BioLemmatizer per-
forming best, but when all synonyms are used it is hard
to find any difference between the three stemmers. The
second interaction found is between the stopWords and
synonyms parameters. In GO_MF several terms have syn-
onyms that contain two words, with one being in the
PubMed stop word list. For example, all mentions of
“activity” are incorrectly annotated with “GO:0050501 -
hyaluronan synthase activity”, which has a broad synonym
“HAS activity”; “has” is contained in the stop word list and
therefore is ignored.
Not only do we find interactions within CM, but some

parameters also mask the effect of other parameters. It is
already known and stated in the CM guidelines that the
searchStrategy values skip any match and skip any
allow overlap imply that orderIndependentLookup
is set to true. Analyzing the data, it was also discov-
ered that BioLemmatizer converts all tokens to lower case
when lemmas are created, so the parameter caseMatch is
effectively set to ignore. For these reasons, it is impor-
tant to not only consider interactions but also the masking
effect that a specific parameter value can have on another
parameter.

Substringmatching and stemming
Through our analysis we have shown that accounting for
morphology of ontological terms has an important impact
on the performance of concept annotation in text. Nor-
malizing morphological variants is one way to increase
recall by reducing the variation between terms in an
ontology and their natural expression in biomedical text.
In NCBO Annotator, morphology can only be accom-
modated in the very rough manner of either requiring
that ontology terms match whole (space or punctuation-
delimited) words in the running text, or allowing any
substring of the text whatsoever to match an ontology
term. This leads to overall poorer performance by NCBO
Annotator for most ontologies, through the introduction
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Figure 12 Two CM parameter that interact on CHEBI. Synonyms (left) and stemmer (right) parameter interact. The stemmer produce distinct
clusters when only exact synonyms are used. When all synonyms are used, it is hard to distinguish any patterns in the stemmer.

of large numbers of false positives. It should be noted
that some substring annotations may appear to be valid
matches, such as the annotation of the singular “cell”
within “cells”. However, given our evaluation strategy,
such an annotation would be counted as incorrect since
the beginning and end of the span do not directly match
the boundaries of the gold CRAFT annotation. If a less
strict comparator were used, these would be counted as
correct, thus increasing recall, but many FPs would still
be introduced through substringmatching from e.g., short
abbreviation strings matching many words.
MM always includes inflectional variants (plurals and

tenses of verbs) and is able to include derivational variants
(changing part of speech) through a configurable parame-
ter. CM is able to ignore all variation (stemmer = none),
only perform rough normalization by removing common
word endings (stemmer = Porter), and handle inflec-
tional variants (stemmer = BioLemmatizer). We currently
do not have a domain-specific tool available for inte-
gration into CM to handle derivational morphology, as
well, but a tool that could handle both inflectional and
derivational morphology within CM would likely provide
benefit in annotation of terms from certain ontologies.
If NCBO Annotator were to handle at least plurals of
terms, its recall on CL and GO_CC ontologies would
greatly increase because many terms are expressed as plu-
rals in text. For ontologies where terms do not adhere to
traditional English rules (e.g.,ChEBI or PRO), using mor-
phological normalization actually hinders performance.

Tuning for precision or recall
We acknowledge that not all tasks require a bal-
ance between precision and recall; for some tasks high

precision is more important than recall, while for oth-
ers the priority is high recall and it is acceptable to
sacrifice precision to obtain it. Since all the previous
results are based upon maximum F-measure, in this
section we briefly discuss the tradeoffs between preci-
sion and recall and the parameters that control it. The
difference between the maximum F-measure parameter
combination and performance optimized for either pre-
cision or recall for each system-ontology pair can be
seen in Figure 13. By sacrificing recall, precision can be
increased between 0 and 0.45. On the other hand, by
sacrificing precision, recall can be increased between 0
and 0.38.
The best parameter combinations for optimizing per-

formance for precision and recall can be seen in Table 7.
Unlike the previous combinations seen above, parameters
that produce the highest recall or precision do not vary
widely between the different ontologies. To produce the
highest precision, parameters that introduce any ambi-
guity are minimized; for example, word order should be
maintained and stemmers should not be used. Likewise,
to find as many matches as possible, the loosest parame-
ter settings should be used; for example, all variants and
different term combinations should be generated along
with using all synonyms. The combination of param-
eters that produce the highest precision or recall are
very different from the maximum F-measure-producing
combinations.

Conclusions
After careful evaluation of three systems on eight ontolo-
gies, we can conclude that ConceptMapper is generally
the best-performing system. CM produces the highest
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Figure 13 Differences between maximum F-measure and performancewhen optimizing one dimension. Arrows point from best
performing F-measure combination to the best precision/recall parameter combination. All systems and all ontologies are shown.

F-measure on seven out of eight total ontologies, while
NCBO Annotator and MM both produce the highest F-
measure on only one ontology (NCBO Annotator and
MM produce equal F-measues on ChEBI). Out of all
systems CM balances precision and recall the best; it
produces the highest precision on four ontologies and

the highest recall on three ontologies. The other systems
perform well in one dimension but suffer in the other.
MM produces the highest recall on five out of eight
ontologies but precision suffers because it finds the most
errors; the three ontologies for which it did not achieve
highest recall are those where variants were found to be

Table 7 Best parameters for optimizing performance for precision or recall

High precision annotations

NCBO Annotator MetaMap ConceptMapper

Parameter Value Parameter Value Parameter Value

wholeWordOnly YES model STRICT searchStrategy CONTIGUOUS

filterNumber ANY gaps NONE caseMatch SENSITIVE

stopWords ANY wordOrder ORDER MATTERS stemmer NONE

SWCaseSensitive ANY acronymAbb DEFAULT/UNIQUE stopWords NONE

minTermSize THREE/FIVE derivationalVariants NONE orderIndLookup OFF

withSynonyms NO scoreFilter 1000 findAllMatches NO

minTermSize 3/5 synonyms EXACT ONLY

High recall annotations

NCBO Annotator MetaMap ConceptMapper

Parameter Value Parameter Value Parameter Value

wholeWordOnly NO model RELAXED searchStrategy SKIP ANY/ALLOW

filterNumber ANY gaps ALLOW caseMatch IGNORE/INSENSITIVE

stopWords ANY wordOrder IGNORE stemmer Porter/BioLemmatizer

SWCaseSensitive ANY acronymAbb ALL stopWords PubMed

minTermSize ONE/THREE derivationalVariants ALL/ADJ NOUN orderIndLookup ON

withSynonyms YES scoreFilter 0 findAllMatches YES

minTermSize 1/3 synonyms ALL
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detrimental (SO, ChEBI, and PRO). On the other hand,
NCBO Annotator produces the highest precision for four
ontologies but falls behind in recall because it is unable
to recognize plurals or variants of terms. Overall, CM
performs best out of all systems evaluated on the concept
normalization task.
Besides performance, another important thing to con-

sider when using a tool is the ease of use. In order to
use CM, one must adopt the UIMA framework. Trans-
forming any ontology for matching is easy with CM with
a simple tool that converts any OBO ontology file to a
dictionary. MM is a standalone tool that works only with
UMLS ontologies natively; getting it to work with any
arbitrary ontology can be done but is not straightforward.
MM is the most like a black box of all the systems, which
results in some annotations that are unintuitive and can-
not be traced to their source. NCBO Annotator is the
easiest to use as it is provided as a Web service, with
large retrieval occurring through a REST service. NCBO
Annotator currently works with any of the 330+ BioPor-
tal ontologies. Drawbacks of NCBO Annotator are due to
it being provided as a Web service, they include changes
in the underlying implementation, resulting in different
annotations returned over time; there is also no control
over the version of the ontologies used or the ability to add
an ontology.
Using the default parameters for any tool is a com-

mon practice, but as seen here, the defaults often do not
produce the best results. We have discovered that some
parameters do not impact performance, while others
greatly increase performance when compared to defaults.
As seen in the Results and discussion Section, we have
provided parameter suggestions for not only the ontolo-
gies evaluated but also provide general suggestions that
can be applied to any ontology. We can also conclude
that parameters cannot be optimized individually. If we
didn’t generate all parameter combinations and instead
examined parameters individually, we would be unable to
see these interacting parameters and could have chosen a
non-optimal parameter combination as the best.
Complex multi-token terms are seen in many ontolo-

gies and are more difficult to normalize than the
simpler one- or two-token terms. Inserting gaps, skip-
ping tokens, and reordering tokens are simple methods
currently implemented in bothCM andMM. Thesemeth-
ods provide a simple heuristic but do not always pro-
duce valid syntactic structures or retain the semantic
meaning of the original term. From our analysis above,
we can conclude that more sophisticated, syntactically
valid methods need to be implemented to recognize
complex terms seen in ontologies such as GO_MF and
GO_BP.
Our results demonstrate the important role of linguistic

processing, in particular morphological normalization

of terms, during matching. Several of the highest-
performing sets of parameters take advantage of stem-
ming or handling of morphological variants, though the
exact best tool for this job is not yet entirely clear. In
some cases, there is also an important interaction between
this functionality and other system parameters, leading
to some spurious results. It appears that these problems
could be addressed in some cases through more careful
integration of the tools and in others through simple
adaptation of the tools to avoid some common errors that
have occurred.
In this paper, we established baselines for performance

of three publicly available dictionary-based tools on eight
biomedical ontologies, analyzed the impact of parame-
ters for each system, and made suggestions for param-
eter use on any ontology. We can conclude that of the
tested tools, the generic ConceptMapper tool generally
provides the best performance on the concept normaliza-
tion task, despite not being specifically designed for use in
the biomedical domain. The flexibility it provides in con-
trolling precisely how terms are matched in text makes
it possible to adapt it to the varying characteristics of
different ontologies.
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