
RESEARCH Open Access

ADaM: augmenting existing approximate fast
matching algorithms with efficient and exact
range queries
Nathan L Clement*, Lee P Thompson, Daniel P Miranker

From The 10th Annual Biotechnology and Bioinformatics Symposium (BIOT 2013)
Provo, UT, USA. 5-6 December 2013

Abstract

Background: Drug discovery, disease detection, and personalized medicine are fast-growing areas of genomic
research. With the advancement of next-generation sequencing techniques, researchers can obtain an abundance
of data for many different biological assays in a short period of time. When this data is error-free, the result is a
high-quality base-pair resolution picture of the genome. However, when the data is lossy the heuristic algorithms
currently used when aligning next-generation sequences causes the corresponding accuracy to drop.

Results: This paper describes a program, ADaM (APF DNA Mapper) which significantly increases final alignment
accuracy. ADaM works by first using an existing program to align “easy” sequences, and then using an algorithm
with accuracy guarantees (the APF) to align the remaining sequences. The final result is a technique that increases
the mapping accuracy from only 60% to over 90% for harder-to-align sequences.

Background
Recent advances in genomic sequencing technologies
have caused a substantial increase in the rate of data
produced, so much so that the problem of data procure-
ment has shifted to a problem of data processing [1].
However, the corresponding error rate of these technol-
ogies has not altogether decreased, and in some cases
has actually increased [2]. If these errors are not handled
correctly, they can propagate through to later steps in
the processing pipeline, lessening the significance of the
biological conclusions.
Referenced genome assembly is one of the main tech-

niques used in many next-generation sequencing appli-
cations. It works by assigning reads (genomic strings of
varying length produced by sequence machines)to the
best matching location on an existing reference genome
through a process called read mapping. If a given read
aligns with high confidence to a single location in the
genome with all but one or two nucleotides, it can be

said with high confidence that the difference is either
due to sequencing error or a mutation in the genome of
interest. If many reads have the same “error” in the
same genomic position, the possibility of this happening
by chance decreases dramatically, and it can be said that
this was likely a real mutation.
This introduces one of the most important measures

of accuracy in the next-generation sequencing pipeline.
Perfect accuracy in read mapping suggests that all the
reads are assigned to the actual location from which
they originated; low accuracy occurs when the assign-
ment is near-random. Without high accuracy in the
mapping stage, one cannot be certain that a mutation
was not identified because of a poor mapping job.
Achieving commensurate gains in mapping accuracy is
important for many biological problems, where single
mutations (single nucleotide polymorphisms, or SNPs)
can be the difference between experiment and control.
To increase the signal-to-noise ratio, DNA sequencing

pipelines require a certain coverage depth at each base,
an amount anywhere between 10 and 30x [3]. For a small
organism such as bacteria or other prokaryotes, this is

* Correspondence: nclement@cs.utexas.edu
Department of Computer Science, University of Texas at Austin, 2317
Speedway, Stop D9500, 78712 Austin, TX, USA

Clement et al. BMC Bioinformatics 2014, 15(Suppl 7):S1
http://www.biomedcentral.com/1471-2105/15/S7/S1

© 2014 Clement et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:nclement@cs.utexas.edu
http://creativecommons.org/licenses/by/2.0


fairly easy; however, for an organism with a longer DNA
sequence (such as the 3.2 billion bp human genome), this
requires over 90 billion sequenced bases.
With the high volume of data being generated by the

sequencing machines, heuristic algorithms have been
used to speed up the mapping process. One of the most
widely used of these heuristic algorithms is a program
named Bowtie, which uses a suffix tree combined with
the Burrows-Wheeler compression algorithm. This algo-
rithm can be used for fast, and relatively accurate, string
searches [4-6]. Many derivative algorithms have followed
and researchers have studied alternative environments
for the suffix tree, such as on the GPU [7,8] or Map/
Reduce [9,10]. These algorithms have been primarily
aimed towards greater speedups [11] but providing
greater accuracy has been largely ignored.
Shorter reads from previous sequencing technologies

often had problems of ambiguous mappings: either they
belonged to one of many identical repeat regions, or single
point mutations (whether by error or by the biology)
caused them to align better to an incorrect location. As
sequence lengths have increased to the thousands of base
pairs seen in the current generation, the percent of repeti-
tive sequences in the human genome drops to below 5%.
In addition, the distance from each sequence to its closest
neighbor increases, so individual sequencing errors or
mutations have a much smaller impact.
With the read lengths increased to the point where we

can be assured that single point mutations will not map
to multiple locations, it becomes important to visit the
accuracy question again. With this in mind we introduce
the APF DNA Mapper (ADaM), a program that provides
optimal accuracy for alignments. ADaM works by utiliz-
ing a combination of the heuristic suffix tree algorithm
for easily aligned reads with an exact matching algorithm
for hard to align sequences. For the exact search ADaM
uses a metric space index: a general indexing technique
that can be used to search any data with a properly
defined distance function between points. The metric
space index used by ADaM is called the Adaptive Projec-
tion Forest (APF) which creates a parallel index over a
given input data set. While any exact method could be
used with ADaM, the APF was used as it was found to be
faster than other metric space algorithms and had a nat-
ural parallel representation.
The contributions of this paper are as follows. First, we

describe the APF and compare it with several exact-
matching indexes. Next, we show that the two-stage
method used in ADaM can increase the accuracy from
1-5% on easily aligned sequences to over 30-40% on
harder to align sequences. And finally, as there has been
little work done in the area of exact matching for aligned
sequences, we provide analysis on the important factors
when creating metric space indexes over reads.

Related work
With the inclusion of distance-based methods used in
this work, there are three general methods used to solve
the sequence alignment problem:
Hash-based methods
The first is a hash-based approach, used by BLAST [12],
GNUMAP [13], and many others [14]. Short k-mers
(generally k ≪ the length of the sequence) from the
reference genome are hashed in a preprocessing step,
storing each k-mer and the location from which it came
as a key-value pair. These locations are used as seeds
for a full reference-read alignment, generally using
a banded Smith-Waterman or Needleman-Wunsch
dynamic programming algorithm to score the alignment.
The major drawback with this method is that the hash-
based lookup of each k-mer does not allow for any
errors, so as the length of k increases, the number of
allowed mismatches decreases significantly. Having very
small k-mers allows for high sensitivity (not missing any
potential matches), but the increased number of seed
locations in the hash map at each k-mer quickly makes
this method computationally intractable. To balance
between speed and accuracy, these methods usually
choose a value of k somewhere between 9 and 15.
Suffix-tree methods
As has already been mentioned, the second and currently
fastest approach is the suffix tree, used by Bowtie [4],
SOAP2 [6], and many others. This technique uses a com-
pression algorithm known as the Burrows-Wheeler
Transform to create a suffix tree: essentially a quaternary
tree (one branch for each nucleotide) with “infinite”
depth. Determining if a sequence exists in this tree takes
exactly l steps, where l is the length of the query
sequence. However, this fast lookup does not allow for
differences between the read and suffix tree representa-
tion, so programs that employ this approach implement
heuristics to randomly backtrack through the possible
alignment space, inserting gaps or mutations into the
query sequence to find positive hits. For short reads,
these methods have been the fastest and least memory
intensive, and have running times several orders of mag-
nitude faster than their counterparts. However, the back-
track process exponentially increases the search time,
and can become unfeasible for longer reads, especially
when gaps are included.
Distance-based methods
Distance-based methods use metric space indexing to
divide a given object index (often referred to as points in a
space) in such a way that when searching for an additional
query object, the number of distance comparisons per-
formed is minimized. For the read mapping problem, the
index can represent overlapping k-mers from the genome
of interest, and the query object is a next-generation
sequencing read. For metric spaces, there frequently is no

Clement et al. BMC Bioinformatics 2014, 15(Suppl 7):S1
http://www.biomedcentral.com/1471-2105/15/S7/S1

Page 2 of 11



logical “origin,” so the location of a point in the space only
make sense in relation to another point, often referred to
as a pivot. We will describe two general methods used by
distance-based methods here.
The vantage-point trees (VP Trees) work as follows. A

tree is constructed with internal nodes containing pivots
and external branches containing index points. During
the index construction at each node, one or more pivots
are selected from the data. The space is then separated
into subsets as a function of their distance to the pivot,
as can be seen in Figure 1. Given a query point, it is
then possible, utilizing the triangle inequality, to deter-
mine whether a number of branches in the tree can be
excluded. The distance from each data point to each
pivot forms a mapping of the data into Rk where k is
the number of pivots chosen. For example, in the semi-
nal VP Tree, each index node stores a single pivot, p,
and the median distance, dm, and maps the data into R1

based on the distance to p [15], as in Figure 2. From
this, two child nodes are created, and the algorithm is
then recursively applied, forming a binary tree.
The SA (Spatial Approximation) tree was designed to

work for “harder” datasets where the data distribution
has a histogram of distances that are extremely concen-
trated [16]. The tree is built by creating edges between
points; the edges are chosen such that the minimum
number of edges is created for all possible queries. For a
given query, a random point in the SA-tree is chosen
and its neighbors evaluated for the closest match. The

query then moves to the closest match and the search is
repeated until no other point is closer.

Ensemble approach (ADaM)
Many areas of research have seen an ensemble perform
better than any method separately (the Netflix problem
[17], for example). Instead of trying to tackle the pro-
blem of referenced assembly head-on, this research
employs a two-step method. First, since many sequences
in a data set can be matched back to a reference gen-
ome confidently with very few mismatches, we use the
suffix tree approach (specifically, Bowtie2 [4]) to align
these “easy” sequences. In a normal sequencing run with
low error rate, there will only be a few sequences that
didn’t align with high confidence, and these will be
aligned with our slower but optimal algorithm, the APF,
a distance-based method that provides guarantees that
the results are the most accurate. With this combined
approach, the overall accuracy is raised, providing base-
pair accuracy even in regions of fairly low coverage.

Methods
There are many different algorithms for string searching
and pattern matching that will match sequences with
various numbers of differences. However, the purpose of
this program, ADaM, is to show the improvements that
can be gained with an exact range query. Given a user-
specified range, ADaM will return all matching
sequences with zero false negatives.
Under the hood, ADaM contains a forest data struc-

ture known as the APF (Adaptive Projection Forest).
The APF is based off of the Excluded Middle Vantage
Point (EMVP) tree described in depth in [18-20], but
has been extended to provide a greater branching factor,
better control over the number of trees produced, and
guaranteed bounded search times for range searches
below the given radius.

Euclidean space vs metric space
Metric-space indexes are designed to work on data that
has no euclidean representation, the most common
example being a 2-d graph with an origin at (0, 0). When
searching for points in a euclidean space with dimension
d, for example, the vector {0}d can always be used as the
origin, and all other points could be described by their
d-dimensional distance from the origin.
DNA sequences do not have a natural euclidean

representation, i.e. there is no defined origin that makes
sense. Instead, the location of individual sequences in a
given space are only defined in reference to other
sequences. For example, the sequence aaaa does not
have a pre-determined placement, but is considered a
distance of d(aaaa, aaca) away from point aaca. The
use of this generic distance function allows for different

Figure 1 Range search in a 2-D euclidean space. A and B
represent queries with radius r. I and O represent subspaces that
roughly separate half the points based on their distance to the
pivot point, p.

Clement et al. BMC Bioinformatics 2014, 15(Suppl 7):S1
http://www.biomedcentral.com/1471-2105/15/S7/S1

Page 3 of 11



similarity measures in metric spaces (Hamming distance
verses Needleman-Wunsch, for example), but also gen-
eralizes to point-space queries with point-space distance
functions (such as the L2 norm). The distance function
is what determines how “similar” two sequences are,
and identifies where to search in the pre-compiled data-
base. A distance function, d(x, y), on a metric space is
defined with the following properties:

non-negativity d
(
x, y

) ≥ 0
symmetry d

(
x, y

)
= d

(
y, x

)
triangle inequality d (x, z) ≤ d

(
x, y

)
+ d

(
y, z

)
identity of indiscernibles d

(
x, y

)
= 0 → x = yq

For DNA sequences, there are two typical distance func-
tions: Hamming distance, and banded Needleman-
Wunsch distance. The Hamming distance is simply a
count of the number of characters that are different
between two strings; because the chemical makeup of
DNA is such that transitions (between a and t or c and g)
are more likely than transversions (any other nucleotide
pairings), differences may be weighted accordingly. Since
DNA sequences form discrete metric spaces (and not con-
tinuous ones like the number line), this also increases the
amount of total variation among nucleotides, and effec-
tively also increases the query speed.
The second distance metric commonly used is the

banded Needleman-Wunsch. This is the typical Needle-
man-Wunsch dynamic programming algorithm with the
search space limited to a pre-determined number of
gaps. The band limits the size of the dp-matrix, corre-
sponding to a decrease in the number of calculations
required.

Guarantees of exact methods
Unlike the methods that apply heuristics to increase the
speed in the string-searching process, the APF is a data

structure for obtaining the guaranteed best accuracy. In
other words, it can be shown that for any query
searched in the forest, any and every element in the tree
that lies within a user-defined distance on a given dis-
tance function will be returned as a result. Put more
formally, for query q, result set R, set of index points T,
distance function d(a, b), and distance range, r:

∀t ∈ T : t ∈ R ⇔ d
(
q, t

) ≤ r. (1)

While a brute-force scan of all points would return a
successful result, any metric-space algorithm seeks to
reduce the overall number of distance calculations per-
formed. Because of this, the measure of success or fail-
ure of the algorithm is not accuracy (all are guaranteed
to be accurate), but in the running time of the algorithm
or, since the running time is dominated by the distance
function, the total number of distance comparisons
performed.
In the next several sections, we will give an overview

of some of the important features of the APF and how
it differs from other metric indexes.
Implementing an exclusion area
The major difference between a k-d tree and the EMVP
forest (as described by [19]) is that of an exclusion area.
Figure 2 shows a single query, q, with radius r, plotted
on a single dimension with index sequences plotted
according to distance from p1. To reduce the search
time, the sequences can be split in half, all those with
distance less than the median distance, dm, placed on
one branch of the tree, and all those greater than or
equal to dm on another branch. However, because the
query radius in Figure 2 crosses the dm, both branches
must be included in the search. If this pattern continues
at multiple levels in the tree, this can quickly degrade to
a linear scan of all sequences instead of a O(log n)
search.

Figure 2 Query point, q, in relation to a single pivot, p1, with query radius r spanning the middle distance, dm.

Clement et al. BMC Bioinformatics 2014, 15(Suppl 7):S1
http://www.biomedcentral.com/1471-2105/15/S7/S1

Page 4 of 11



Adding an exclusion area of width 2 * τ helps to mitigate
this problem. As the EMVP forest is constructed, all the
points within the exclusion area (defined by a range of ±τ
from the median distance) will be removed, collected, and
used as the starting points in a new tree. Thus, for a query
with radius r ≤ τ, at most one side plus a possible excluded
region will need to be searched (see Figure 3).
The exclusion area is not only used to decrease the

search time, but is also used to turn the tree into a for-
est, optimizing it for parallel processing. This forest can
easily be ported to the MapReduce framework: each
processor has a different tree, so individual queries are
mapped once on each processor, then reduced to find
the best mapping location.
Controlling the exclusion area
Implementing an exclusion area with a single parameter
does not entirely solve the search space problem. On the
one hand, fewer branches in the tree will need to be
searched, but on the other, removing points within the
excluded region can do more harm than good, especially
considering the high frequency of points that surround the
median. If more points are in the exclusion area than in
the actual indexed tree, it is easy to see that this will
degrade into a linear scan through the points. For exam-
ple, for a random 64-bp sequence from the human
X-chromosome, approximately 15% of the data lies dm ±
1, and over 50% of the data lies dm ± 5. If the data struc-
ture consistently excluded 50% of the data, there would be
hundreds of trees and the logarithmic search time would
be multiplied by a large constant. An optimal dataset for
this type of build would have a bimodal distribution with
only a small number of points surrounding the median,
but this rarely happens in practice.
To overcome this problem, the APF uses three vari-

ables, which are set to control the maximum search

radius and the number of processors being used. The
variables are: the width of the exclusion area, τ; the maxi-
mum percentage of points in the exclusion area, m; and
the maximum number of pivots at each node, D. The
total exclusion region is calculated from the intersection
of all pivots at that level in the tree. Each bisection of the
data by a new pivot creates a new branch in the tree, for
a maximum of 2D possible tree nodes (called children) at
the next level. At the start of the build process, either τ
or m is set, and the other is calculated at runtime. If m
was set to 0.1, a given node in the tree might have a τ of
only 1. If τ was set to 2, m might be determined at that
node to be 0.153. For data with high separability, a single
pivot might be enough to confidently split the data; for
highly dense data, the value of D might be set to 6 or 10.
A major implementation detail that separates the APF
apart from other indices that use exclusion is the ability
to control the exclusion region and the number of points
inside to create a more balanced forest.
Pivot selection
One of the most crucial decisions in constructing the
APF is pivot selection. Since there is typically more than
one pivot at each level, these pivots are ideally are
selected to minimize the difference between numbers of
points at each child. In other words, these pivots should
be selected so that the variance between pivots is maxi-
mized, and the total percentage of pivots in the exclu-
sion area is as small as possible. A poorly-selected pivot
would require additional computation without providing
additional information, and would result in an unba-
lance in the number of points at each child. For exam-
ple, selecting the point {a}k as p1 and c{a}k-1 as p2
provides very little information gain. Sequences that are
close to p1 are also close to p2, and sequences distant
from p1 are also distant from p2.

Figure 3 Query point, q, in relation to a single pivot, p1, having exclusion radius τ.

Clement et al. BMC Bioinformatics 2014, 15(Suppl 7):S1
http://www.biomedcentral.com/1471-2105/15/S7/S1

Page 5 of 11



On the other hand, there is a tradeoff between build
time and query time. The fastest build method for find-
ing a pivot is obviously to just select a random point,
but this can lead to an unbalanced tree. The fastest
query method (optimizing tree structure) is to perform
principle components analysis (PCA) with the entire set
of points, as described by [21]. While this would maxi-
mize the variance between pivots, it quickly becomes
computationally intractable as the size of the database
increases. Further analysis of pivot selection and its
impact on query time can be found later in this paper.
The APF implemented in ADaM selects pivots intelli-

gently, leveraging the data distribution. Since the data is
distributed approximately normally around the median,
the optimal second pivot would lie at the peak of the dis-
tribution, and would select pivots similar in a process to
that done with PCA. In order to save time and avoid costly
sorts and distance comparisons, successive pivots are
selected in this same manner, relying on the random dis-
tribution of the data to ensure that pivots are providing
information. See Figure 4 for the point distribution for
two pivots, with p2 selected at the median of p1.

Constructing and querying the APF
Construction
The APF is constructed by selecting a set of pivots, sort-
ing the points according to their distance from each
pivot, and using the median distance, dm, as the

partitioning plane to create the exclusion area, dm ± τ
(see Figure 3). The exclusion percentage, m, is calcu-
lated from all the intersecting exclusion areas, and if it
is too large (and the maximum number of pivots has
not been reached), an additional pivot is added.
From these d pivots, 2d children are created, and

labeled with a number from 0. . . 2d − 1 to identify its
sector location in the d-dimensional space. Since the
children will later become trees themselves, points are
assigned to these children in the following manner: Let
the label li be the binary representation of child ci with
d digits, each digit corresponding to a distinct pivot. If
the bitwise and between 2j and label li is zero, then all
the points assigned to this child would be strictly less
than the median distance for pivot pj, dm(pj). If this value
is 1, the points are required to be greater than or equal
to dm(pj).
Example 1 If i = 13, li will be the sequence 1101, and

child ci would contain all points that are greater than or
equal to the median for pivots p3, p2, and p0, and less
than the median for pivot p1.
Points that lie in the intersecting excluded regions are

saved until the tree is formed, and the process of select-
ing pivots and assigning points to children is recursed
on each child until the size of the point set is too small,
or until all points lie in an exclusion area. The exclusion
points from the creation of one tree are used to form
the next tree, creating a forest of AP-Trees.
Querying
To run a range query on the APF, the query is issued
successively on each tree, returning the set of combined
results. The correct traversal path through a single tree
is found as follows: At each node, the distance from the
query point, q, to each of the d pivots is turned into a
bit vector, the reverse process of assigning points to
children described above. If this is an exact query, only
the single child corresponding to this bit vector need be
queried, and the search space is reduced drastically.
However, since a query with range r may not lie entirely
above or below a given pivots middle distance, addi-
tional children might need to be queried. If the distance
from q to p i plus the query range, d(q, pi) ± r, does
not cross the boundary partition, it can be placed
uniquely in one child node. If, however, adding the
range to the query point causes the total distance to
entirely cross the boundary (spanning 2τ), additional
children will be searched.
Example 2 Let dm(pj) be [16, 15, 14, 15], for pivots [p3,

p2, p1, p0], and let τ = 2. Let d(q, pi) be [26, 18, 14, 2],
for each pi. For a query of range r = 4, the results lie
strictly below p0, both above and below p1 (because d
(q, p1) ± r = [10, 18] spans dm(p1) ± τ = [12, 16]), and
strictly above p2 and p3 (because the boundary line, d
(q, p2) − r = 14, is still greater than dm(p2) − τ = 13).

Figure 4 Distances for all 100M points on human chrX, plotted
as distances from pivots p1 and p2. The median distance (dm =
80) is shown as a dashed blue line, and the exclusion points are
shown as the red points in the middle (all points dm ± τ = 2). The
two outlying points at d = 0 are the pivot points themselves, which
were selected to be at the median distance from each other.

Clement et al. BMC Bioinformatics 2014, 15(Suppl 7):S1
http://www.biomedcentral.com/1471-2105/15/S7/S1

Page 6 of 11



The query for q ± r would only need to visit two chil-
dren: 0011 and 0111.
Each query is executed on each tree, and the results

are aggregated and returned to ADaM. In theory, a mar-
ker for whether the queries spanned the exclusion area
could be set, and subsequent trees only need be
searched if this area was crossed, but since all exclusion
regions from the creation of the entire tree are com-
bined (a decision that is shown to be empirically fastest
by [18]), it is highly unlikely that such an event would
occur.

Integration into ADaM
Since the APF consists of sequences with a pre-deter-
mined length, the ADaM wrapper is needed to make it
useful for reads longer than the given query sequence.
The ADaM algorithm can basically be thought of as a
seed and extension algorithm, where the APF selects the
top-scoring seeds, ADaM extends the seed alignments
to find the total score, and the genomic location with
the highest score is returned. Using multiple seeds will
take a linearly-increasing amount of time, but will
reduce the overall number of extensions needed. Cur-
rently, ADaM only supports alignments with Hamming
distance, but this can easily be extended to gapped
alignments with a Needleman-Wunsch or Smith-Water-
man distance function.

Results
Metric space index comparison
There are many differing generic algorithms in the field
of metric-space indexing. Figure 5 shows the compari-
son of the APF against the MVP, EMVP, and SA trees.
The comparison was done on a gaussian synthetic data-
set, a DNA dataset, and an RNA dataset. The synthetic
gaussian dataset contains one million vectors from ten
gaussian distributions over ten dimensions. The DNA
dataset consists of one million 18mers from the Arabi-
dopsis thaliana genome. The RNA dataset contains one
million 6mers from the Saccharomyces cerevisiae gen-
ome. Tests were run on 16 processors with the final
result being the average number of distance calculations
for the slowest processor over all queries.
Figure 5 shows that the APF index consistently per-

forms between 5% to 25% better than the other indexes,
and in some cases even more. This result shows that the
APF is well suited for its use in ADaM as all of these
indexes are exact and therefore speed is the most
important criteria.

Specific index with simulated data
After we determined that the APF was more efficient
than other metric space indices, we built a version of
the APF that was optimized for the referenced-genome

mapping problem discussed in this work. In order to
show the improvements over heuristic algorithms, we
created a simulated dataset so we knew the correct
mapping location and could thereby determine the map-
ping accuracy.
It is important here to note the difference between an

incorrect and unrecoverable mapping error. In an incorrect
mapping, the algorithm assigns the read to a location that
is not globally optimal. For this kind of mapping, the cor-
rect location in the genome would give the best alignment,
and thus could be recovered. An unrecoverable mapping,
on the other hand, is one in which the optimal alignment
(determined by Hamming or Needleman-Wunsch dis-
tance) is actually better. This can occur when two loca-
tions in the genome have very similar sequences, such that
errors introduced in one will make it seem more similar to
the other. Since the original location is no longer globally
optimal, this mapping is unrecoverable. Obviously, it is
only possible to determine which errors are incorrect with
synthetic data.
As defined by the algorithm, the theoretical mapping

accuracy of ADaM is guaranteed to always be 100%.
However, because of unrecoverable mapping errors, the
realized mapping accuracy might be lower. For this rea-
son, it is not always possible to perform a “perfect” map-
ping, unless the reads are very long and have very high
confidence. While the criteria of length and confidence
have been met individually, current sequencing platforms
have not been able to realize both concurrently.
In this section, we will show the improvement that

comes from mapping reads with both ADaM (precise

Figure 5 Throughput performance for different metric-space
indexes. Performance measured as the number of distance
calculations needed to find a radius that will return over the given
percentage of points, so lower is better.

Clement et al. BMC Bioinformatics 2014, 15(Suppl 7):S1
http://www.biomedcentral.com/1471-2105/15/S7/S1

Page 7 of 11



accuracy, slower speed) and Bowtie (approximate matches,
very fast). In a simulated environment, it is simple to con-
struct a pipeline where Bowtie first maps all the reads, and
then ADaM maps those reads that Bowtie mapped incor-
rectly. In a real environment, it is impossible to tell “cor-
rect” from “incorrect” mappings, so for these experiments
we use a mapping quality cutoff, m̂, to map the set of
reads, R, in the following procedure:
Step 1 Identify a mapping quality cutoff, m̂, such that

the alignment quality is poor enough to be labeled uncer-
tain (determined from the SAM output file, a MAPQ
score of 14, corresponding to a confidence threshold of
roughly 95%, was used in these experiments).
Step 2 Align all reads, R, with Bowtie, using default

parameters.
Step 3 From the Bowtie results, select all reads that

either have a mapping quality less than m̂ or were
unable to be aligned by Bowtie. Let this set be R’.
Step 4 Map all reads in R’ with ADaM, return best

locations For simulated data, the accuracy of the com-
bined ADaM/Bowtie results are tabulated.
To show the mapping accuracy of ADaM and Bowtie

together, we simulated a set of 80-bp reads using Metasim
[22] with a typical Illumina error profile (1x). In addition to
the normal error profile, two separate error profiles were
created with 2x and 10x error rates in order to determine
mapping accuracy over increasingly difficult sets of reads.
The results of the simulations can be found in Table 1.
At lower error rates, Bowtie is quickly able to align all

the sequences without a significant cost in accuracy
(95.9% and 93.5% accuracy at 1x and 2x error rates,
respectively). However, as the error rate increases to
10x, the accuracy of Bowtie drops to 62.2%. When this
happens in practice, the entire data set is discarded as
“unmappable.” However, the ensemble approach utilized
by ADaM shows that, even at high error rates, it is pos-
sible to gain high accuracy. At the 1x error rate, ADaM
is able to increase Bowtie’s mapping accuracy by 5%, to
99.6%, and at the 2x error rate, the combined accuracy
stays at roughly 99%. So even at 1x and 2x error rates,
ADaM raises the accuracy to nearly perfect accuracy.
The most notable difference is the increase in accuracy

at the 10x error rate. ADaM maps a higher quantity of

reads (leading to a longer running time), but is able to
boost the accuracy of Bowtie by nearly 30% for a com-
bined accuracy of 90.6%. It is important to note that,
even though Bowtie’s mapping results were relatively
low-quality, this was not because it was impossible to
achieve high accuracy for this data. The use of ADaM on
these error rates brings the total accuracy up from a very
low quality alignment to one that is significantly more
accurate.

Incorrect alignments
The most interesting result is the accuracy of ADaM on
the reads that Bowtie maps incorrectly. Table 2 shows
the potential accuracy for these reads, broken into cate-
gories of “skipped” and “wrong.” At 1x error rate, Bow-
tie skipped 56 out of 10000 reads, only 1 of which was
un unrecoverable mapping. At this same error rate,
nearly 90% of the 346 reads it mapped incorrectly could
unambiguously be mapped back to the original location.
Some of the reads Bowtie mapped incorrectly appear in
multiple locations in the genome. (As an aside, selecting
a strategy of only reporting a random location has been
shown to be just accurate as reporting a partial amount
for all locations, as long as the dataset is relatively large
(see, for example, [13]).) However, a large number of
the reads were mapped incorrectly to a location worse
than the originating location.
As an example, one read originated from the reverse

strand of chromosome Χ at position 80216718 with only
two errors. ADaM correctly mapped it back to this loca-
tion as a unique match. Bowtie mapped this read to a
similar location on the forward strand (chrX:62101306),
but after introducing 5 mismatches.
A second read originated from the forward strand

with only three mismatches (at positions 62, 65, and 75-
none in the first 61 bp), but Bowtie aligned it to a differ-
ent location on the reverse strand with seven mis-
matches, one of which occurred at the 21st base pair.
(The location in the read is important because Bowtie
employs a seed-and-extend strategy, where the first s
bases must be high quality, but the remaining bases are

Table 1 Accuracy of Bowtie and ADaM as the error rate
changes from 1x through 10x (1x being a typical
Illumina error rate, and 10x is ten times that).

1x 2x 10x

%Acc RunTime %Acc RunTime %Acc RunTime

Bowtie 95.9 11.9s 93.5 11.6s 62.2 5.48s

ADaM+Bowtie 99.6 46.7 m 99.1 56.0 m 90.6 37.0 h

Note that, even at high error, the combined approach still maintains high
accuracy.

Table 2 Potential accuracy for reads missed and
incorrectly mapped by Bowtie, as determined by the APF
mapping.

1x 2x 10x

Total Accuracy Total Accuracy Total Accuracy

skipped 56 98.21 183 96.17 3427 80.84

wrong 346 89.30 463 84.88 351 62.68

At 10x, 80% of the 3,427 reads Bowtie did not map had a unique mapping in
the genome. Even with a normal error profile, 55 out of 56 reads skipped by
Bowtie could have been uniquely mapped. At normal error rates, 346
sequences were incorrectly mapped to a worse location than where they
originated.

Clement et al. BMC Bioinformatics 2014, 15(Suppl 7):S1
http://www.biomedcentral.com/1471-2105/15/S7/S1

Page 8 of 11



more flexible, following the typical Illumina error pro-
file. For Bowtie to report a read with a worse-matching
seed is therefore significant.)
This second result suggests two things. First, that the

strategy employed by the suffix tree approach does not
accurately capture the best possible match, even for
relatively high-quality reads, and second, that there are
large potential gains for exact matching algorithms.

Discussion
In order to understand the function of the APF in the
greater context of sequence mapping, we decided to
specifically examine several aspects of the APF and eval-
uate their impact on the performance.

Query seed length
The length of the query seed, k, has a large impact on
query time, especially as the range of the query
increases. Figure 6 shows the change in running time
for several different sequence lengths as the range
increases, and Figure 7 shows the percentage of database
searched as the range increases. At the beginning,
shorter sequences perform significantly better (at a
range of r = 0, k = 64 has a running time of approxi-
mately 10 seconds, whereas k = 16 has a running time
of only 7.5). While it is true that toward the end, longer
queries do better, it can be seen when comparing with
Figure 7 that the plateau in the k = 64 line only exists because it has reached saturation, i.e. on average, over

90% of the entire database is being searched with each
query.
On the other hand, there are some potential gains for

using longer sequences. For a given length k and the
number of characters different, r, the size of the
expected query ball for any given query, q, (the number
of different sequences within r characters different from
q) can be given by the following formula (adapted from
[23]):

B(k, r) =
r∑
i=1

(
k
i

)
(n − 1)i (2)

where n is the number of possible values to change (4
in this result, corresponding to the number of different
nucleotides).
While B(k, r) grows faster for larger values of k, the

relative number of points (B(k, r)/kn) grows slower for
larger values of n. So for a database that is much smaller
than kn, the estimated number of results from a given
query will also be smaller for larger n. In ADaM, finding
the best match for a sequence of length 64 will require
one query with range r at k = 64 and four faster queries
with k = 16 and r’ = r/16. However, the number of
seeds with k = 16 is much higher, so the extension pro-
cess will take longer.

Figure 6 Wall clock times with queries length k. Queries are of
length 64 and the genome is the human Χ chromosome, about
150 Mbp. Solid lines show the biologically relevant distance function,
and dashed lines show even. A distance of 10% corresponds to an
alignment score of 90% possible. Queries with k = 32 were
repeated twice along the sequence, and those with length k = 16
were repeated 3 times.

Figure 7 Percentage of database searched for different runs
with different values of k. The horizontal dotted red line shows
saturation with 90% of the database searched, and the horizontal
dotted black line shows a linear scan with 100%. Queries with
lengths k = 64, 32, and 16 have reached saturation by
approximately 25%, 40%, and 55%, respectively. When compared
with Figure 6, the correspondence between running time and
percentage database searched is obvious: once the algorithm has
reached saturation level, the running times plateau.

Clement et al. BMC Bioinformatics 2014, 15(Suppl 7):S1
http://www.biomedcentral.com/1471-2105/15/S7/S1

Page 9 of 11



Values of τ
The motivating advantage of the exclusion area of the
APF is to limit the average number of distance compari-
sons for each range query. Originally, it was thought
that the value of τ could be optimized according to the
range, r, of the queries. For example, a range query with
r = 0 might be best with a τ of zero, but a range of r =
12 mismatches might be best with τ = 12. As the size of
the database grows, however, two factors prevent us
from being able to find the optimal value of τ. First, it
takes significantly longer to create an APF with a larger
value of τ. The build time for τ = 0 is half a day, but the
build time for 10 mismatches in database with
sequences of length 64 is longer than 5 days (the hard
limit for walltime on the machine we were using). The
second factor that prevented us from identifying an
optimal value for τ is that the running time is more sig-
nificantly different between values of r than it is for
values of τ. Thus, in order to reduce the overall running
time, even the best-performing value of τ would take
several times longer than the worst-performing value of
τ for a smaller range.
The lack of an optimal value of τ also contributes to

an inability to precisely bound the running time of this
algorithm. Theoretically, the APF should have a com-
plexity of O(n(D−1)/D) (where D is the number of pivots
at each level), but practically the optimal value of τ is
much smaller than the desired search radius, so the
bounds are not empirically visible.
From these results, it would suggest that the smallest

possible value of τ should be selected. However, a sec-
ondary reason for increasing the value of τ is to intelli-
gently spread the data across multiple trees to better
distribute the data in parallelization. An exact query on a
binary tree of size n would take log2 n. Randomly distri-
buting the data into t trees would require t * log2 n/t =
t * (log2 n − log2 t). Because of this constant multiplier, t,
it will always be more optimal to keep the data in one
tree. As a general rule, the number of trees in the APF
increases nearly linearly with the increase in τ. Because
there is no significant advantage in running time for
lower values of τ, this presents an elegant method for
dividing the data into smaller MapReduce tasks without
the corresponding constant multiplier.

Pivot selection
One of the major decision criteria for building the APF
is choosing the best set of pivots. Done well, there will
be few pivots, and equal numbers of points in each of
their children. The optimal forest will have a reasonable
number of wide, bushy trees. To show the impact
proper pivot selection can have on overall runtime, we
used three different pivot selection techniques on a
smaller genome (1 Mbp from the C. elegans genome).

The first, Optimal, is the method described in this
paper, of selecting a pivot point the median distance
from the previous pivot. Random simply selects a ran-
dom point, and Poor selects the closest point to the pre-
vious pivot (the opposite reasoning for Optimal).
As can be seen in Figure 8, the pivot selection type

has a varied impact on the build and running time.
With a query length of 8 (there are only 65 k different
8nt sequences possible), the Poor selection criteria made
493 trees. While the build time was small enough to not
see a noticeable difference, the query time was substan-
tially different, as each of these trees were not full and
bushy. The build time for query length 16 was even
more noticeable, as the database size was much larger
(915 k unique sequences). As the length of sequences
increased, the selection criteria became less important,
as even the closest sequences (especially in this smaller
dataset) are a relatively large distance away. However,
the poor pivot selection method always performs worse
than the random selection method, which in turn does
worse than the optimal method.

Specifications
Tests were run on a single server with two eight-core
Intel Sandy Bridge processors (2.2 GHz). The server had
32G of 1600 MHz memory and 6.14 Terabytes of sto-
rage. The ADaM implementation was written in C++.
While the results were done on a single machine,
ADaM already is a parallel algorithm that utilizes all
available computing processors on that node. Since utili-
zation of distributed clusters (or cloud computing) is
increasingly important, especially for exact methods,
work on ADaM for massively distributed clusters has

Figure 8 Query and build times for different pivot selections
and different lengths of query sequences. Also included are
points for the number of trees for each build. High number of trees
typically corresponds with longer query times (as is the case with
Poor selection and query length of 8, where the number of trees is
493). Random and Optimal have the same number of trees at l =
16, 32, and 64.

Clement et al. BMC Bioinformatics 2014, 15(Suppl 7):S1
http://www.biomedcentral.com/1471-2105/15/S7/S1

Page 10 of 11



already begun. This implementation can utilize the
MapReduce environment, which allows algorithms to be
distributed in a scalable fashion across large computing
clusters.

Conclusion
The major focus of the next-generation sequencing race
has been in mapping speed. Many approximate algo-
rithms have been developed to date that increasingly
reduce the time without a significant loss in accuracy.
However, very little work has been done to determine
the benefits gained from an exact mapping approach. As
was shown in this paper, even typical next-generation
sequencing datasets can see improvements of up to 5%,
and those with high error rates can see up to 30%.
On small datasets, where it may be difficult or impos-

sible to extract enough DNA for high coverage, the
impact of an additional 5% in accuracy can be the differ-
ence of identifying rare but important SNPs. Even on a
large dataset, the extra boost in accuracy from the
ADaM ensemble can increase the signal-to-noise ratio
in highly-repetitive promoter regions. Going forward, it
will be increasingly important to use high-accuracy
mappers, especially as the length of reads increases.
With longer reads also comes higher sequencing errors,
and it will become even more important to have as few
false negatives as possible. Using a combined ensemble
will allow researchers to leverage speed and accuracy to
realize even better results.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LP and DM developed the algorithm; LP provided comparisons against
existing algorithms; NC implemented the algorithm in C++ and provided
the benchmark datasets. All authors read and approved the final manuscript.

Acknowledgements
This research was partially supported by the National Institutes of Health
(NIH), Grants R01GM085337-03.

Declarations
The cost for the publication of the article will be funded by the authors.
This article has been published as part of BMC Bioinformatics Volume 15
Supplement 7, 2014: Selected articles from the 10th Annual Biotechnology
and Bioinformatics Symposium (BIOT 2013). The full contents of the
supplement are available online at http://www.biomedcentral.com/
bmcbioinformatics/supplements/15/S7

Published: 28 May 2014

References
1. Shendure J, Ji H: Next-generation DNA sequencing. Nature Biotechnology

2008, 26(10):1135-1145.
2. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A,

Swerdlow HP, Gu Y: A tale of three next generation sequencing
platforms: comparison of ion torrent, pacific biosciences and illumina
miseq sequencers. BMC Genomics 2012, 13:341.

3. Harismendy O, Ng P, Strausberg R, Wang X, Stockwell T, Beeson K,
Schork N, Murray S, Topol E, Levy S, Frazer K: Evaluation of next
generation sequencing platforms for population targeted sequencing
studies. Genome Biology 2009, 10(3):1-13.

4. Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2.
Nature Methods 2012, 9(4):357-359.

5. Li H, Durbin R: Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics 2009, 25(14):1754-1760.

6. Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, Wang J: SOAP2: an
improved ultrafast tool for short read alignment. Bioinformatics 2009,
25(15):1966-1967.

7. Liu C-M, Wong T, Wu E, Luo R, Yiu S-M, Li Y, Wang B, Yu C, Chu X, Zhao K,
Li R, Lam T-W: Soap3: ultra-fast gpu-based parallel alignment tool for
short reads. Bioinformatics 2012, 28(6):878-879.

8. Liu Y, Schmidt B, Maskell DL: Cushaw: a cuda compatible short read
aligner to large genomes based on the burrows-wheeler transform.
Bioinformatics 2012, 28(14):1830-1837.

9. Menon RK, Bhat GP, Schatz MC: Rapid parallel genome indexing with
mapreduce. Proceedings of the Second International Workshop on
MapReduce and Its Applications MapReduce ‘11, ACM, New York, NY, USA;
2011, 51-58.

10. Tung Nguyen DR, Weisong Shi: Cloudaligner: A fast and full-featured
mapreduce based tool for sequence mapping. BMC Research Notes 2011,
4(171).

11. Li Y, Patel JM, Terrell A: Wham: A high-throughput sequence alignment
method. ACM Trans. Database Syst 2012, 37(4):28-12839.

12. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment
search tool. J Mol Biol 1990, 215(3):403-410.

13. Clement NL, Snell Q, Clement MJ, Hollenhorst PC, Purwar J, Graves BJ,
Cairns BR, Johnson WE: The GNUMAP algorithm: unbiased probabilistic
mapping of oligonucleotides from next-generation sequencing.
Bioinformatics 2010, 26(1):38-45.

14. Flicek P, Birney E: Sense from sequence reads: methods for alignment
and assembly. Nat Meth 2009, 6(11Suppl):S6-S12.

15. Yianilos PN: Data structures and algorithms for nearest neighbor search
in general metric spaces. SODA ‘93: Proceedings of the Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms pp Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA; 1993, 311-321.

16. Navarro G: Searching in metric spaces by spatial approximation. The
VLDB Journal 2002, 11(1):28-46.

17. Bell RM, Koren Y: Lessons from the netflix prize challenge. SIGKDD Explor
Newsl 2007, 9(2):75-79.

18. Yianilos PN: Excluded middle vantage point forests for nearest neighbor
search. Technical report NEC Research Institute, Princeton, NJ; 1998, July.

19. Yianilos PN: Excluded middle vantage point forests for nearest neighbor
search. DIMACS Implementation Challenge, ALENEX’99 1999.

20. Yianilos PN: Locally lifting the curse of dimensionality for nearest
neighbor search. Proceedings of the Eleventh Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA) 361-370.

21. Mao R, Miranker WL, Miranker DP: Pivot selection: Dimension reduction
for distance-based indexing. Journal of Discrete Algorithms 2012,
13(0):32-46, Best Papers from the 3rd International Conference on Similarity
Search and Applications (SISAP 2010).

22. Richter DC, Ott F, Auch AF, Schmid R, Huson DH: Metasim-a sequencing
simulator for genomics and metagenomics. PLoS ONE 2008, 3(10):3373.

23. Afrati FN, Sarma AD, Menestrina DD, Parameswaran A, Ullman J: Fuzzy joins
using mapreduce. Technical report, Stanford University [http://ilpubs.
stanford.edu:8090/1006].

doi:10.1186/1471-2105-15-S7-S1
Cite this article as: Clement et al.: ADaM: augmenting existing
approximate fast matching algorithms with efficient and exact range
queries. BMC Bioinformatics 2014 15(Suppl 7):S1.

Clement et al. BMC Bioinformatics 2014, 15(Suppl 7):S1
http://www.biomedcentral.com/1471-2105/15/S7/S1

Page 11 of 11

http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S7
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S7
http://www.ncbi.nlm.nih.gov/pubmed/18846087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22827831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22827831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22827831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22388286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19497933?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19497933?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22285832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22285832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22576173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22576173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19861355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19861355?dopt=Abstract
http://ilpubs.stanford.edu:8090/1006
http://ilpubs.stanford.edu:8090/1006

	Abstract
	Background
	Results

	Background
	Related work
	Hash-based methods
	Suffix-tree methods
	Distance-based methods

	Ensemble approach (ADaM)

	Methods
	Euclidean space vs metric space
	Guarantees of exact methods
	Implementing an exclusion area
	Controlling the exclusion area
	Pivot selection

	Constructing and querying the APF
	Construction
	Querying

	Integration into ADaM

	Results
	Metric space index comparison
	Specific index with simulated data
	Incorrect alignments

	Discussion
	Query seed length
	Values of τ
	Pivot selection
	Specifications

	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	References

