
PROCEEDINGS Open Access

Fast lossless compression via cascading Bloom
filters
Roye Rozov1, Ron Shamir1*, Eran Halperin1,2,3

From RECOMB-Seq: Fourth Annual RECOMB Satellite Workshop on Massively Parallel Sequencing
Pittsburgh, PA, USA. 31 March - 1 April 2014

Abstract

Background: Data from large Next Generation Sequencing (NGS) experiments present challenges both in terms of
costs associated with storage and in time required for file transfer. It is sometimes possible to store only a
summary relevant to particular applications, but generally it is desirable to keep all information needed to revisit
experimental results in the future. Thus, the need for efficient lossless compression methods for NGS reads arises.
It has been shown that NGS-specific compression schemes can improve results over generic compression methods,
such as the Lempel-Ziv algorithm, Burrows-Wheeler transform, or Arithmetic Coding. When a reference genome is
available, effective compression can be achieved by first aligning the reads to the reference genome, and then
encoding each read using the alignment position combined with the differences in the read relative to the
reference. These reference-based methods have been shown to compress better than reference-free schemes, but
the alignment step they require demands several hours of CPU time on a typical dataset, whereas reference-free
methods can usually compress in minutes.

Results: We present a new approach that achieves highly efficient compression by using a reference genome, but
completely circumvents the need for alignment, affording a great reduction in the time needed to compress. In
contrast to reference-based methods that first align reads to the genome, we hash all reads into Bloom filters to
encode, and decode by querying the same Bloom filters using read-length subsequences of the reference
genome. Further compression is achieved by using a cascade of such filters.

Conclusions: Our method, called BARCODE, runs an order of magnitude faster than reference-based methods,
while compressing an order of magnitude better than reference-free methods, over a broad range of sequencing
coverage. In high coverage (50-100 fold), compared to the best tested compressors, BARCODE saves 80-90% of the
running time while only increasing space slightly.

Background
Deep sequencing has become almost ubiquitous in biol-
ogy over the last decade. In the past five years, sequen-
cing costs were halved every 5 months, while storage
costs were halved every 14 months [1]. The long term
effect of this trend is a growing gap between our capacity
to store and analyze sequencing data, and our capacity to
generate such data. For sharing results of large-scale
experiments, the effects have already become readily
apparent: physical hard disk transfer has become a

common practice, and cloud analysis platforms have
been embraced in order to avoid the prohibitive time
requirements needed to download or store huge volumes.
As a result, much effort has been placed on representing

sequencing data more compactly. Specialized compression
tools tailored to this context have emerged, improving
upon general purpose compressors, such as gzip. These
tools fall into two categories - reference-based [2,3], and
reference-free [4-6]. The former methods utilize knowl-
edge of the genome from which reads were extracted
(with mutations and errors), while the latter use no prior
information. A recent article described the Pistoa
Sequence Squeeze competition, wherein the relative merits

* Correspondence: rshamir@tau.ac.il
1Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv, Israel
Full list of author information is available at the end of the article

Rozov et al. BMC Bioinformatics 2014, 15(Suppl 9):S7
http://www.biomedcentral.com/1471-2105/15/S9/S7

© 2014 Rozov et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:rshamir@tau.ac.il
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

of many of these methods were compared. This article also
introduced new high performance methods that were
among the competition leaders [1].
Compression algorithms are evaluated by two main cri-

teria: their compression ratio, namely, the ratios of com-
pressed file sizes to original file sizes, and by their speed.
In the context of compressing reads, compression ratios
are often expressed in terms of the average number of bits
per base for a fixed read length. Currently, reference-based
methods generally compress most effectively, but require
long run times. In order to compress reads, reference-
based methods first call on a short-read aligner to find a
best alignment position for each read. Such an alignment
typically has only a few (or no) mismatches relative to the
reference. Reads can then be represented as integers mark-
ing reference positions instead of as sequences, along with
the set of differences relative to the reference. Further
refinements can then be applied, such as sorting the reads
by reference position and then encoding differences
between consecutive positions to use fewer bits, and
employing Huffman coding to encode more common
mutations with less bits than rare ones [3,2]. Reference-
free methods employ a variety of techniques, including
boosting schemes for general purpose compressors [4,6],
rough assembly for the sake of emulating reference-based
compression [5], and arithmetic coding/context modeling
approaches, which trade increases in run time for better
compression ratios [1].
There is therefore an inherent tradeoff between run-

time and compression ratio. Specifically, even though
compression ratios are impressive for reference-based
methods, their running times are often prohibitively high.
In this work we propose a new method, Bloom filter
Alignment-free Reference-based COmpression and
DEcompression (BARCODE, abbreviated to BRC below),
which achieves high compression ratios with a dramatic
decrease of runtime. BARCODE does so by leveraging
the space efficiency of Bloom filters, probabilistic data
structures allowing queries of set membership. Their use
has recently grown in popularity in bioinformatics
[7,8,5,9], mainly to avoid the memory overhead needed
to store large collections of k-length substrings of
sequenced reads (k-mers) used to represent nodes of de
Bruijn graphs in de novo assembly. To the best of our
knowledge, this is the first use of Bloom filters for NGS
compression.
Here, we adopt a similar scheme to that used for

assembly in two recent works [8,10]. We hash whole
reads into BFs as a means of compression. In tests per-
formed, BARCODE’s run times are closest to those refer-
ence-free methods while its compression ratios near
those of reference-based methods. In as little as a ninth
of the running time, we are able to compress to within
less than 20% of the compression ratios observed for

reference-based methods. We demonstrate that with
higher coverage levels, BARCODE’s efficiency improves,
whereas reference-based methods show no improvement,
while the gap in run time grows more severe. By compar-
ing our method with several existing tools, we show its
superior balance of speed and compression efficiency.

Methods
Technical background
A Bloom filter (BF) is an array A of size m having all
positions initially marked 0. Elements are inserted into
A by applying a collection of h hash functions: the out-
put of each specifies a position to be marked with a 1
in A. Querying whether or not an element has been
inserted involves applying the same h hash functions
and checking the values at the positions they return. If
at least one hash function returns 0, the element defi-
nitely was not inserted; if all 1s return, either it has
been inserted, or it is a false positive. For a BF of size
m, n entries can be inserted by h hash functions to
achieve a false positive rate F ≈ (1 − e(−hn/m))h. In [11],
it is shown that for fixed m and n, F is minimized with
h = ln(2)r, where r = m/n. Plugging this value back in
for F leads to F = cr, where c = 0.6185.

Encoding and decoding using a Bloom filter
Our method involves two basic processes: BF loading
and querying. We initially assume all reads are unique
and later relax this assumption. We load all reads into a
BF B, and then use the reference genome to query it.
We query B with read length subsequences (and their
reverse complements) from all possible start positions
on the genome. This allows us to identify all of the
potential reads that correspond to genome positions, a
set that covers most of the hashed reads. Some of the
accepted reads will be false positives. In order to avoid
them in the decoding process, we identify a set FP cor-
responding to all reads accepted by B that are not in the
original read set. Additionally, since the reads are taken
from a specimen whose genome contains mutations
compared to the reference (and since sequencing is
error-prone), some reads will not be recovered by
querying the genome. We call this set of reads FN. FN
and FP are stored separately from B, and compressed
using an off-the-shelf compression tool. For a set of
unique reads, this suffices to allow a complete recon-
struction of the reads.
Decoding proceeds by decompressing B, FN, and FP,

and then repeating the querying procedure. We initialize
the read set to FN. Then, we query B with each position
from the genome as done to identify elements of FP.
Whenever B accepts we check if the accepted read is
not also in FP, and add it to the read set if it isn’t. To
remove the unique read restriction, we first move all

Rozov et al. BMC Bioinformatics 2014, 15(Suppl 9):S7
http://www.biomedcentral.com/1471-2105/15/S9/S7

Page 2 of 8

repeated reads to FN before loading B. We treat reads
containing ‘N’ characters similarly. These two additions
allow us to circumvent an inherent limitation of Bloom
filters - the loss of multiplicity information - and
reduces the entropy in the (now multi-) set FN, making
it more compressible. The encoding process with one
BF is detailed in steps 1-4 of Figure 1 and Algorithm 1.
The relative contributions of error reads and repeated
reads to FN are discussed in the appendix.
Algorithm 1 Encode one Input: R, G; Output: B, FN,

FP Conventions: Let g be the length of the reference
genome G, qi be the ith genome query, ℓread be the
sequenced read length, and P be the set of genome
queries accepted by B. For brevity, we exhibit queries
from only the forward strand, whereas our implementa-
tion queries (and accepts from) both strands.
FN := {r : r ∈ R and (r is repeated in R or r contains

an ‘N’)}
R’ := R \ FN
for all r ∈ R’ do

insert(r, B)

end for
for all i ∈ [1, g − ℓread + 1] do

;if qi ∈ B then
P := P ∪ qi

end if

end for
FN := FN ∪ {R’ \ P}
FP := P \ R’
return (B, FN, FP)

Encoding and decoding using a BF cascade
Although appealingly simple, we found the above
method did not offer competitive compression, as the
costs imposed encoding FP and FN outweighed the ben-
efit of storing the unique reads in B. Thus, to reduce
the number of false positives that need to be com-
pressed separately, we use a cascade of BFs as in [10].
To this end, we rename B and FP above as B1 and FP1,
respectively. We consider B1 to be the first BF in a cas-
cade, and each element of FP1 is then hashed into a
subsequent BF B2. We note that since B2 is meant to
store false positive reads it should reject true reads:
thus, any element of R’ (the set of unique reads)
accepted by B2 is a false positive relative to B2. Thus, to
identify FP2, we add each element accepted by querying
R’ against B2. This process can be continued for any

Figure 1 The encoding process. Step 1 separates the unique reads set R’ from the repeated reads set FN. In step 2 unique reads (R’) are hashed into a BF
B1 and the rest assigned to a set FN. In steps 3-4 all read-length sequences of the reference genome G are queried and reads accepted by B1 that are not
in R’ are added to FP1. Steps 5-10 show subsequent encoding via a BF cascade. False positives relative to each BF are input to the next BF. Each BF is then
queried by using the set loaded into the last BF in the cascade. In step 11 additional compression is perfomed on the resulting BFs and sets. Orange
arrows indicate assignments. Purple arrows marked with Q(.) indicate BF queries with sets denoted in parenthesis. Blue arrows indicate BF loading.

Rozov et al. BMC Bioinformatics 2014, 15(Suppl 9):S7
http://www.biomedcentral.com/1471-2105/15/S9/S7

Page 3 of 8

desired number of BFs. Once BFs are loaded in this way,
to identify real reads, we query each BF in the cascade
and accept reads only if the index of the first BF to
reject them is even.
Since elements inserted to BFj are necessarily a subset

of those inserted to BFj−2, we see an exponential drop-
off in BF size (since F is fixed). Since sizes for successive
BFs alternately depend on n and (2g − n)rF ≈ 2grF (the
number of false positives expected for 2g queries from
G multiplied by the cost per element, assuming g >> n),
we expect the total file size to be approximately (nr +
2grF + nrF + 2grF2 + ...) bits. Using F = cr from above,
we observe that for an infinite cascade, the average
number of bits per read is then

(
ρ
2gρcρ

n

)
(1 + cρ + c2ρ + ...) =

(
1 +

2gcρ

n

)(
ρ

1 − cρ

)
. (1)

Here the left hand side represents the sum of costs due
to the expected number of elements in each BF for an
infinite cascade. In practice, we use four BFs and a
numerical solver in scipy [12] employing the L-BFGS-B
[13] algorithm to find the value of r minimizing the
above expression. The small list FP4 is encoded separately
along with FN. The process is described in Figure 1 steps
5-11 and Algorithm 2. Decoding proceeds using queries
from G as before, but in this case each accepted read is
used to query subsequent BFs until rejection. This is
depicted in Figure 2and Algorithm 3.
Algorithm 2 Encoding Let Bj be the jth BF loaded

(j ∈ [2, 4]) with FPj-1, S ∩ Bj is short-hand notation for
the subset of S accepted by Bj.

(B1, FN, FP1) := Encode one(R, G) # we initialize by
calling Algorithm 1

F P2 := R’ ∩ B2
for j = 3 to j = 4 do
for all r ∈ FPj−1 do
insert(r, Bj)

end for
FPj := FPj−2 ∩ Bj

end for
return (B1, B2, B3, B4, FN, FP4)

Algorithm 3 Decoding Input: (B1, B2, B3, B4, FN, FP4,
G); Output: (Rrc) For brevity, reconstruction of only one
strand is shown.

Rrc := FN
for all i ∈ [1, g − ℓread + 1] do
for j = 1 to j = 4 do
if qi � εBj then
if j is even then
Rrc := Rrc ∪ qi

end if
continue {increment i}

end if

end for
if j = 4 and qi ∈ FP4 then
Rrc := Rrc ∪ qi
end if
end for
return Rrc

Additional compression
BF parameters are automatically set to make each BF
more compressible. This involves incrementing the
number of hash functions for each BF from 1 to the
minimal number that allows it to both have an uncom-
pressed file size lower than a preset threshold (we used
500 MB) and obtain the value of F from equation 1.
Typically, this results in h being in the range of 1 to 3.
We do this in order to reduce each BF’s compressed
size (at the expense of increasing its RAM occupation);
this practice is introduced in [11].
Once BFs are loaded and the sets FP4 and FN are

identified, we use 7zip [14] to compress the B1, ..., B4
and SCALCE [4] to compress the output lists FP4 and
FN. In principle, any general compression tool can be
used for the BFs, and it is preferable to use a tool that
takes advantage of existing sequence overlaps among
the leftover reads to compress them efficiently.

Results and discussion
Comparison on simulated reads
We simulated reads from Human (hg19) chromosome
20 using dwgsim [15]. This tool introduces mutations
into the reference genome and then samples reads from
both genome strands using a user-defined per base error
rate. We sampled 100 bp single end reads at various
coverage levels with a 0.001 mutation rate and a per
base error rate increasing from 0 to 0.005 from the 5’ to
the 3’ end of reads (in line with current estimates of
Illumina error rates [16]). We also demonstrated the
effect of varying the error rate In Figure 4. All reported
results were run on a 16 core AMD Opteron 6140
(2.6 GHz) 128 GB RAM server, running the Ubuntu
12.04 Linux operating system.
We found that BARCODE compresses more effec-

tively at higher coverage. Although the proportion of
reads in FN increases as the proportion of unique reads
decreases (Table 1), BARCODE benefits from SCALCE’s
increasing efficiency due to greater redundancy among
FNs. BARCODE’s decode times were similar to its
encode times, as would be expected since both rely on
the same genome querying procedure.
To demonstrate that our use of BFs improves upon

SCALCE’s compression results, we compared our results
with SCALCE run on all reads. We also tested quip [5]
and fastqz [1], state-of-the-art tools in terms of both
compression efficiency and speed [1]. All three tools

Rozov et al. BMC Bioinformatics 2014, 15(Suppl 9):S7
http://www.biomedcentral.com/1471-2105/15/S9/S7

Page 4 of 8

either output compression results or ratios separately for
sequences, read names, and quality scores. We note that
the best performers in the Sequence Squeeze competi-
tion in terms of base compression ratio, Sam-comp and
CRAM, did not provide such outputs and thus did not
allow direct comparison. Quip and fastqz also include

both reference-based and reference-free modes. We per-
formed alignment via bowtie2 [17] for quip runs while
fastqz performed its own alignment. To ensure a fair
comparison, all tools were run as a single thread when
possible, including calls to 7zip and SCALCE from BAR-
CODE. Fastqz used three threads during its run, as this

Figure 2 Decoding the reads. Following decompression of BFs, FP4, and FN, BF querying commences. Each read accepted by a BF is used to
query subsequent BFs until rejection. Reads rejected by even BFs or accepted by B4 and in FP4 are added to the reconstructed reads, Rrc. Purple
arrows are consistent with Figure 1. Orange arrows indicate additions to Rrc, the reconstructed reads.

Table 1 BRC performance with varying coverage.

coverage time (sec) |R| (M) |FP4| (K) |FN | (M) BF size (MB) FP4 size (MB) FN size (MB) compression bits/base

10 410 6.3 3.7 2.0 8.5 0.38 36.8 0.58

20 590 12.6 6.8 4.4 14.2 0.68 66.8 0.52

30 800 18.9 9.3 7.1 19.0 0.94 93.8 0.48

40 1006 25.2 20 10.2 22.8 2.01 119.0 0.46

50 1220 31.5 16 13.5 26.4 1.66 143.0 0.43

Reads were simulated from hg19 chromosome 20 with 100 bp single end reads. A mutation rate of 0.001 was used along with 0-0.005 per base error rate along
the length of each read. Run times include additional compression steps performed by SCALCE and 7zip in single thread mode. R - the read set. FP4 - the final
false positive set. FN - the set of reads not encoded by the BFs.

Rozov et al. BMC Bioinformatics 2014, 15(Suppl 9):S7
http://www.biomedcentral.com/1471-2105/15/S9/S7

Page 5 of 8

was not a user-selectable parameter, but each thread
was assigned to one of sequences, qualities, and names.
Figure 3 compares BARCODE with other tools in terms
of run time and compression efficiency. A full listing of
program parameters used is provided in Table 2.
Overall, we found the compression ratio improved

with greater coverage for all reference-free methods, and
remained essentially constant for reference-based meth-
ods. Figure 3 shows that reference-based compressors
are better in compression ratios but reference-free com-
pressors are faster (An exception to this trend was
fastqz, whose reference-based version is faster than its
reference-free version, likely due to the use of context
model-based arithmetic coding). Quip performed poorly
in compressing sequences without a reference, showing
it has apparently been optimized for speed and perhaps
compression of qualities and read names. SCALCE
shows strong dependence of compression ratio on cov-
erage, as would be expected by its leverage of the recur-
rence of long subsequences. BARCODE takes advantage
of this trend to also improve with higher coverage, even
as the proportion of reads hashed to BFs decreases (See
Table 1). BARCODE’s times are closest to SCALCE and
reference-free quip, and its compression ratios approach
those of reference based methods, especially at higher
coverage values. For most coverage values, it maintains
an order of magnitude time advantage vs. reference-
based methods (~2-3x vs. fastqz, ~5-7x vs. quip), as well
as an order of magnitude compression advantage of the
tested reference-free methods.

Higher coverage, longer reads
We tested scenarios of higher coverage and longer read
lengths: (1) coverage 100 and read length 100 bp, (2) cover-
age 100 and read length 200 bp, and (3) coverage 200 and
read length 400 bp. Table 3 shows a continuation of the
trends expressed at lower coverage levels. Higher coverage
aided reference-free methods, but not reference-based meth-
ods. Longer reads improved compression ratios in each case
with the exception of fastqz -r. We observed larger impacts
on run time as a result of doubling read length than
coverage.

Conclusions
We have presented a new approach to compressing
sequencing reads, bridging the gap between the speed of

Figure 3 A comparison of sequence compressors. The figure
shows elapsed real run time vs. compression ratios of read sequences
in bits per base for read length 100 bp. The measurements of each
method for different coverage levels are connected by a line. Points
correspond to coverage levels from 10 to 50 in multiples of 10 from
left to right. Methods denoted with an “-r” were run with the
reference-based option. Run times were measured with /usr/bin/time
using a single thread on the same Linux server.

Figure 4 The effect of varying error rate. BARCODE runs are
shown with error rates varying from 5’ to 3’ ends as indicated in
the figure legend. Compression ratios increase with greater error,
but higher coverage compensates somewhat. Overall, as coverage
increases, run time is effected by increasing error more than
compression ratios, as can be seen by the decreasing slopes
between fixed coverage points between the green and red curve
and between the red and purple curves.

Table 2 Program parameters used in compression tool
comparison (Figure 3)

Program Parameters

dwgsim -C coverage level -H -e 0.0-0.005 -R 0.0 -1 read length
-2 0 -y 0.0

bowtie2 -x chr20 -U input fastq -S

SCALCE input fastq -T 1 -A -n library -o output prefix

quip (default) -o=quip -i=sam input sam

quip
(reference)

-o=quip -r ref fa -i=sam input sam

fastqz (default) c input fastq output prefix

fastqz
(reference)

c input fastq output prefix r packed ref file

BRC rec load bf -err rate 0 -e 0 -i 4 reads file packed ref file

Rozov et al. BMC Bioinformatics 2014, 15(Suppl 9):S7
http://www.biomedcentral.com/1471-2105/15/S9/S7

Page 6 of 8

alignment-free, reference-free methods and the compres-
sion efficiency of reference-based methods. We have tested
the dependence of extant sequence compressors on cover-
age levels and shown that while reference-based methods
compress most efficiently, they place a heavy burden on
CPU times due to alignment and cannot leverage added
redundancy to benefit compression ratios. Reference-free
methods do benefit from higher coverage, but maintain a
considerable distance from reference-based methods in
terms of compression ratios even at the highest levels
tested. Although we have shown that our new method,
BARCODE, obtains a better trade-off than either of these
extremes, we maintain that there remains much room for
improvement, even when considering the inherent con-
straints imposed by the Kolmogorov complexity of the
data. We note that further comparison to other methods
like CRAM [3] and sam_comp [1] is needed.
BARCODE is currently a proof-of-principle implemen-

tation, and thus we expect that further optimization will
improve run time and compression efficiency. Compres-
sion ratios may be improved by taking advantage of better
general compression tools available such as the ZPAQ
library [18], as fastqz and sam_comp do. Thus far, we have
not utilized arithmetic coding techniques because they
employ multiple threads and thus introduce significant
additional resource requirements. Our approach can also
be extended to allow for fast access to variants in the origi-
nal data by using conventional BFs that are not com-
pressed, and by compressing FN/FP reads using encoding
that allows fast random access (at some expense of com-
pression ratio). We aim to investigate these paths in the
future.

Appendix
Real data test
We examined BARCODE’s performance on the C. Elegans
data set tested in the Sequence Squeeze competition,
SRR065390_1. This data set consists of 33415360 100 bp
reads, amounting to 33-fold coverage of the genome. BAR-
CODE’s compression ratio on this data was 0.46 bits per
base, and run time was 1203 seconds, in line with

experiments described in the main text and comparable
with reference-based methods tested in the Sequence
Squeeze competition [1].

Contributions of repeated reads vs. errors to FN
FN is comprised of repeated reads filtered out to preserve
their multiplicities, and reads differing from the reference
because of errors or variations. Here, we describe the rela-
tive contributions of each part. The expected number
of repeated reads can be described probabilistically.
Assuming reads are sampled independently from G, given

a read r, the probability of drawing r again is 1 − 1
G . For R

reads, the probability of observing no repetitions is

then
(
1 − 1

G

)R−1. Thus, the expected number of repeated

reads is R
(
1 − (

1 − 1
G

)R−1
)
. Since we hash reverse com-

plement reads from reference strands separately, we revise
the length considered to 2G. Since we wish to count
the total multiplicity of each repeated read, the contribu-
tion of repeated reads to FN is thus approximated by

2R
(
1 − (

1 − 1
2G

)R−1
)
. Clearly, this contribution depends

on coverage, as shown in Table 4.
We model the contribution of error to FN using

Binom(100, p) with p = 0.0025, the mean error over the
read length used in our simulated reads (where error
varies from 0 to 0.005 from the 5’ to 3’ ends). Most of

Table 3 Performance comparison on high coverage values and read lengths longer than 100.

Time (sec) coverage quip scalce fastqz BRC quip -r fastqz -r

50 759 533 5426 1220 9544 4063

100 1599 1016 10417 2211 20216 7479

100, len 200 1280 1165 8760 1400 21705 7400

200, len 400 2284 2518 15706 2209 51628 17769

Compression (bits/base) 50 2.0 0.62 0.97 0.43 0.34 0.32

100 2.0 0.53 0.58 0.40 0.34 0.32

100, len 200 1.8 0.43 0.61 0.37 0.19 0.45

200, len 400 1.7 0.32 0.41 0.31 0.12 0.41

Reads were generated as described in the main text. Quip -r times include bt2 alignment.

Table 4 Counts of repeats vs. errors with increasing
coverage. The proportion of reads due to errorsremains
roughly constant, while the proportion due to repeats
increases as coverage increases.

Coverage |R| (M) repeats (M) |FN| (M)

10 6.3 0.3 2.0

20 12.6 1.3 4.4

30 18.9 2.8 7.1

40 25.2 4.9 10.2

50 31.5 7.4 13.5

errors with increasing coverage. The proportion of reads due to errors remains
roughly constant, while the proportion due to repeats increases as coverage
increases.

Rozov et al. BMC Bioinformatics 2014, 15(Suppl 9):S7
http://www.biomedcentral.com/1471-2105/15/S9/S7

Page 7 of 8

the mass is carried by the one and two error terms,
leading to a relative error proportion estimate of(
100
2

) (
1 − p

)98
p2 +

(
100
2

)
(1 − p)99p . Table 4 shows

this proportion is independent of coverage level.

Availability
BARCODE can be downloaded at http://www.cs.tau.ac.
il/~heran/cozygene/software.shtml.

List of abbreviations
BF- Bloom filter; BRC - BARCODE; bpb - bits per base; bp - base pairs

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RR developed the method. RS and EH designed the experiments. RR
implemented the method and performed experiments. All authors analyzed
results, co-wrote the manuscript, and read and approved the final
manuscript.

Acknowledgements
RR would like to thank Oron Navon and Roy Ronen for helpful comments in
preparation of the manuscript.

Declarations
RS was supported in part by the Israel Science Foundation (grant 317/13)
and by the Raymond and Beverly Sackler chair in bioinformatics. RR was
supported in part by a fellowship from the Edmond J. Safra Center for
Bioinformatics at Tel-Aviv university, and by the Center for Absorption in
Science, the Ministry of Immigrant Absorption in Israel. EH is a faculty fellow
of the Edmond J. Safra Center for Bioinformatics at Tel Aviv University. EH
was partially supported by the Israeli Science Foundation (grant 1425/13),
and by National Science Foundation grant III-1217615.
This article has been published as part of BMC Bioinformatics Volume 15
Supplement 9, 2014: Proceedings of the Fourth Annual RECOMB Satellite
Workshop on Massively Parallel Sequencing (RECOMB-Seq 2014). The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/15/S9.

Authors’ details
1Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv, Israel.
2Molecular Microbiology and Biotechnology Department, Tel-Aviv University,
Tel Aviv, Israel. 3International Computer Science Institute, Berkeley, CA, USA.

Published: 10 September 2014

References
1. Bonfield JK, Mahoney MV: Compression of FASTQ and SAM format

sequencing data. PloS One 2013, 8(3):59190.
2. Kozanitis C, Saunders C, Kruglyak S, Bafna V, Varghese G: Compressing

genomic sequence fragments using SlimGene. Journal of Computational
Biology 2011, 18:401-413.

3. Hsi-Yang Fritz M, Leinonen R, Cochrane G, Birney E: Efficient storage of
high throughput DNA sequencing data using reference-based
compression. Genome Research 2011, 21:734-740.

4. Hach F, Numanagic I, Alkan C, Sahinalp SC: SCALCE: boosting sequence
compression algorithms using locally consistent encoding. Bioinformatics
2012, 28(23):3051-7.

5. Jones DC, Ruzzo WL, Peng X, Katze MG: Compression of next-generation
sequencing reads aided by highly efficient de novo assembly. Nucleic
Acids Research 2012, 40(22):171.

6. Cox AJ, Bauer MJ, Jakobi T, Rosone G: Large-scale compression of
genomic sequence databases with the Burrows-Wheeler transform.
Bioinformatics 2012, 28(11):1-6.

7. Pell J, Hintze A, Canino-Koning R, Howe A, Tiedje JM, Brown CT: Scaling
metagenome sequence assembly with probabilistic de Bruijn graphs.
Proceedings of the National Academy of Sciences 2012, I(1):1-11.

8. Chikhi R, Rizk G: Space-efficient and exact de Bruijn graph representation
based on a Bloom filter. Algorithms in Bioinformatics 2012, 236-248.

9. Melsted P, Pritchard J: Efficient counting of k -mers in DNA sequences
using a bloom filter. BMC Bioinformatics 2011, 12:333.

10. Salikhov K, Sacomoto G, Kucherov G.: Using cascading bloom filters to
improve the memory usage for de Brujin graphs. In Algorithms in
Bioinformatics Lecture Notes in Computer Science Darling, A., Stoye, J 2013,
8126:364-376.

11. Mitzenmacher M: Compressed Bloom filters. IEEE/ACM Transactions on
Networking 2002, 10.

12. Oliphant TE: SciPy: Open source scientific tools for Python. Computing in
Science and Engineering 2007, 9:10-20.

13. Zhu C, Nocedal J, Byrd RH, Lu P: Algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound-constrained optimization. 1997.

14. Pavlov I: 7zip compression software. [http://www.7-zip.org].
15. Homer N: Dwgsim read simulations software. [https://github.com/nh13/

dwgsim].
16. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J,

Pallen MJ: Performance Comparison of Benchtop High-Throughout
Sequencing Platforms. Nature Biotechnology 2012, 30:434-9.

17. Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2.
Nature Methods 2012, 9:357-359.

18. Mahoney M: ZPAQ compression software [http://mattmahoney.net/dc/zpaq.
html].

doi:10.1186/1471-2105-15-S9-S7
Cite this article as: Rozov et al.: Fast lossless compression via cascading
Bloom filters. BMC Bioinformatics 2014 15(Suppl 9):S7.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Rozov et al. BMC Bioinformatics 2014, 15(Suppl 9):S7
http://www.biomedcentral.com/1471-2105/15/S9/S7

Page 8 of 8

http://www.cs.tau.ac.il/~heran/cozygene/software.shtml
http://www.cs.tau.ac.il/~heran/cozygene/software.shtml
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S9
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S9
http://www.7-zip.org
https://github.com/nh13/dwgsim
https://github.com/nh13/dwgsim
http://mattmahoney.net/dc/zpaq.html
http://mattmahoney.net/dc/zpaq.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Technical background
	Encoding and decoding using a Bloom filter
	Encoding and decoding using a BF cascade
	Additional compression

	Results and discussion
	Comparison on simulated reads
	Higher coverage, longer reads

	Conclusions
	Appendix
	Real data test
	Contributions of repeated reads vs. errors to FN

	Availability
	List of abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

