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Abstract

Background: With the recent development of microarray and high-throughput sequencing (HTS) technologies, a
number of studies have revealed catalogs of copy number variants (CNVs) and their association with phenotypes
and complex traits. In parallel, a number of approaches to predict CNV regions and genotypes are proposed for
both microarray and HTS data. However, only a few approaches focus on haplotyping of CNV loci.

Results: We propose a novel approach to infer copy unit alleles and their numbers in each sample simultaneously
from population-scale HTS data by variational Bayesian inference on a generative probabilistic model inspired by
latent Dirichlet allocation, which is a well studied model for document classification problems. In simulation
studies, we evaluated concordance between inferred and true copy unit alleles for lower-, middle-, and higher-
copy number dataset, in which precision and recall were ≥ 0.9 for data with mean coverage ≥ 10× per copy unit.
We also applied the approach to HTS data of 1123 samples at highly variable salivary amylase gene locus and a
pseudogene locus, and confirmed consistency of the estimated alleles within samples belonging to a trio of CEPH/
Utah pedigree 1463 with 11 offspring.

Conclusions: Our proposed approach enables detailed analysis of copy number variations, such as association
study between copy unit alleles and phenotypes or biological features including human diseases.

Background
With the recent development of microarray and high-
throughput sequencing (HTS) technologies, extensive
efforts have elucidated catalogs of haplotypes and geno-
mic variations such as single nucleotide polymorphisms
(SNPs), indels, copy number variations (CNVs) and other
structural variations in population [1-3]. Based on these
catalogs of genomic variations and haplotype structures,
a number of genome wide association studies (GWAS)
have been conducted to identify associations between
genomic variations and phenotypes.
Recent studies also revealed that CNVs affect pheno-

types and complex traits, such as human diseases [4-8].

In parallel, a number of methods for detecting CNV loci
and inferring copy numbers at each CNV locus have
been proposed for both microarray and HTS technolo-
gies [9-13]. In particular, high coverage and PCR-free
sequencing data enable us to estimate copy numbers of
CNVs at higher resolution than former technologies
because of its quantitative stability. Even for deletions,
which are losses of genomic regions with various size, it
requires sequencing data with 20× to 30× depths per
diploid genomes for accurate detection [13,14].
Not only an absolute copy number, but also characteris-

tics of each copy unit at CNV locus are expected to pro-
vide critical information about genetic structure and
biological function of the locus. For example, nonsynon-
ymous mutations on coding regions are known to affect
biological functions. Hence, identifying these copy units is
essential for understanding biological effects of CNVs.
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The difference among copy units is characterized by
haplotypes of variable sites in the units (Figure 1) that
are supposed to be introduced by mutations during evo-
lutional history in population. If those sequences are
similar to each other, i.e., a ratio of mutated bases
among all the bases are less than ten percent, then
alignment of reads to the reference genome using tools
such as BWA [15] will yield an information including
the number of mismatched bases observed at variable
sites of the CNV locus. This information reflects copy
numbers of each copy unit in sequenced samples.
There are some difficulties in determining sequence and

copy numbers of each copy unit at CNV locus from
sequenced data of samples. First, observable counts of
bases come from diploid sequences for autosomal chro-
mosomes, and the true combination of bases at multiple
heterozygotes sites is not apparent from the data. Second,
at CNV loci, because copy unit alleles are similar to each
other, reads are aligned to the same locus of the reference
genome. These problems complicate the task to infer
sequences and copy numbers of copy units for each sam-
ple from read alignment data. The former problem is
called phasing, and several approaches to infer haplotypes
from SNP and indel genotypes of multiple samples are
developed [16-18]. Recently, phasing approaches of an
another type which utilize co-occurrence of multiple het-
erozygote variants on HTS read are devised [19,20]. In
particular, HapMonster [20] performs simultaneous esti-
mation of haplotype phasing and variant calling and

succeeds in improving both of their performances, which
suggests that treating genotype and haplotype with a uni-
fied statistical model is promising approach. In contrast to
a number of phasing approaches have been devised today,
there are only a few approaches for inferring haplotypes of
the variable sites in CNV locus [21-23] and they all use
microarray data of population as input data. There seems
to be no approaches for this task from sequencing data at
present, which might be due to a lack of PCR-free, high
quality, and high coverage sequencing data of population.
In this study, we propose a novel approach to estimate

sequence and copy numbers of copy unit at CNV locus
from population-scale sequencing data. In the proposed
approach, we construct a generative model of sequenced
reads and estimate copy unit sequences and their copy
numbers for each sample simultaneously using the
expectation maximization (EM) algorithm and the varia-
tional Bayesian (VB) inference. The similar models and
techniques have been studied in topic models of natural
language processing [24,25]. Recently, several bioinfor-
matics approaches such as TIGAR [26] applies the VB
inference to estimate transcript isoform abundance from
RNA-Seq data.
Due to a limited resolution in identifying allelic ratio

with microarray data, previous approaches have been
applied to CNVs whose copy numbers are less than or
equal to four per diploid [21-23]. On the contrary, our
probabilistic model can analyze higher copy number loci
with high coverage HTS data, in which the computational

Figure 1 Illustration of the copy unit alleles and their distributions in a population. a). A CNV locus of diploid genome of sample 1 who
has one copy of allele a, two copies of allele b, and one copy of allele c at the locus, b). Alleles of each sample are shown, c). Four copy unit
alleles at a CNV locus are aligned. Difference among these alleles is characterized by bases at variable sites.
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complexity is linear with respect to the number of samples
and the number of copy unit alleles.
We verified performance of the approaches in simula-

tion studies with various configurations of copy numbers.
In a real data analysis, we apply our methods to HTS
data of 1123 samples at highly variable salivary amylase
gene locus and a pseudogene locus. We also confirmed
consistency in predicting copy numbers of copy unit
alleles for CEPH trio samples with 11 offspring.

Methods
Preprocessing
A precondition is that there is sequenced read data of N
individual samples, and the read data is aligned to refer-
ence sequences that represent sequences at predefined
CNV loci. We assume that each sample has combina-
tions of K copy unit alleles with which each one has
copy number more than or equal to zero at the CNV
loci. From aligned data of multiple samples, we can
identify M variable sites of the alleles to distinguish
them.

The generative model
We construct a generative model of aligned reads at vari-
able sites of CNV loci. In the model, each observed base
of the n-th sample is assumed to be generated from one
of K alleles that follows K dimensional multinomial dis-
tribution with the parameters θn, and the base observa-
tion probability at the variable site x from allele k follows
multinomial distribution with the parameters jkx. We
also introduce Dirichlet priors a for parameters θn.
The joint probability of observed bases b and the hid-

den variables z and θ given parameters a and j is
decomposed as follows:

P(b, z, θ |α,ϕ) =
N∏
n=1

P(bn|zn,ϕ)P(zn|θn)P(θn|α)

=
N∏
n=1

(
M∏
x=1

dnx∏
t=1

P(bnxt|znxt,ϕ)P(znxt|θn)

)
P(θn|α),

where bnxt denotes the t-th observed base at variable
site x of sample n, which is one of the nucleotide char-
acters: Λ = {A, T, C, G}, znxt denotes the allele index
which generates the base bnxt, and dnx denotes the num-
ber of observed bases at site x of sample n. The three
terms in this equation are calculated as follows:

P(bnxt = b|znxt = k,ϕ) = ϕkxb,

P(znxt = k|θn), = θnk,

P(θn|α) ≡ Dir(θn|α) = �(
∑

kαk)∏
k�(αk)

K∏
k=1

θ
αk−1
nk ,

where Γ is the gamma function. In this study, we use
ak = 1 (k = 1... K), which assumes uniform priors for θn.

The EM algorithm and the VB inference
We estimate the posterior distribution of the hidden
variables z and θ and a parameter vector � which
describes emission probability of each base for given
variable site x and allele k, and calculate the marginal
log likelihood:

L(X|�) ≡ logP(X|�) =
∫

log P(X,Y |�)P(Y|�)dY ,

where X = {b} is data, Y = {z, θ} denotes hidden vari-
ables, and F = {�} denotes parameters to be estimated.
According to the EM algorithm framework, we can

maximize lower bound of the log likelihood by estimat-
ing the posterior P(Y\X, F) for given parameters F (E
step) and maximizing the lower bound by varying para-
meters F for given posterior distribution (M step) itera-
tively. In the latter M step, we further approximate the
posterior distribution with factorized functions:

Q(Y) = Q(z, θ) = Q(z1 . . . zN, θ1 . . . θK) =

(
N∏
n=1

M∏
x=1

dnx∏
t=1

Q(znxt)

) (
K∏
k=1

Q(θ k)
)
,

Q(znxt) ≡ Multinom (znxt|wn) =
∏
k
wI(znxt=k)
nk ,

Q(θn) ≡ Dir(θn|rn) = �(
∑

krnk)∏
k�(rnk)

∏
k

θ
rnk−1
nk ,

where we introduce new parameters w and r to
describe the approximate distributions of z and θ,
respectively, and I (statement) denotes the indicator
function which equals to 1 if the statement is true,
otherwise 0.
In the E step, we update the parametrized function Q

iteratively according to following formulas to maximize
the lower bound L:

wnxtk ∝ ϕkxbnxt exp[�(rnk) − �(
∑

k
rnk)], (1)

rnk =
M∑
x=1

dnx∑
t=1

wnxtk + αk, (2)

where Ψ is the digamma function, which is the first
derivative of the log Gamma function.
In the M step, we update the parameters � according

to following formula:

ϕkxb ∝
N∑
n=1

dnx∑
t=1

I(bnxt = b)wnxtk. (3)

Computational complexity
In the E step, Eq. (1) shows that wnxtk depends on t only
through the observed base bnxt. From this fact and Eq.
(2) and Eq. (3), it is clear that the computational com-
plexity of each iteration is O(NMK|Λ|), where |Λ| is the
number of possible bases. One of the ways to determine
the number of alleles K is that, estimate the marginal
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log likelihood of the model for each value K with its
lower bound and select the most likely value K̂ which
provides highest one.

Results and discussion
Simulation analysis 1
Data preparation
In the simulation analysis 1, we set the number of copy
unit alleles four, the number of variable sites at CNV
region M = 16, nucleotide bases of these sites as shown
in Table 1 the number of samples N = 12 with which
four samples have two alleles, another four have three
alleles, and the remainder have four alleles, respectively.
Each allele of samples is chosen with equally probability
from the four alleles. From these samples, we generate
histogram of bases at the variable sites that correspond
to aligned HTS read data. The number of observed read
at each variable site follows a mixture of Poisson distri-
bution for each copy unit allele and their means are set
to 15 in this analysis. We also take into account 1%
sequencing errors that mutates the correct base to one
of the other three bases.
Evaluation of the results
We estimated that the number of alleles K as four,
which maximized log likelihood L as shown in Figure 2.
For evaluation of allele concordance between true and
predicted set, we defined precision and recall of the pre-
dictions as follows:

precision ≡
K∑
k=1

maxl∈{1...K0}rkl
K

, (4)

recall ≡
K0∑
k=1

maxl∈{1...K}rlk
K0

, (5)

where K0 is the number of true alleles which equals to
four in this case and rkl represents the ratio of matched
bases at variable sites between the predicted allele k and
the true allele l. The concrete definition of rkl is as follows:

rkl =

∑M
x=1 I(b̂kx = b(0)lx )

M
,

where b̂kx ≡ argmax
b∈�

ϕkxb is a predicted base at vari-
able site x of the predicted allele k and b(0)lx

is a base at
variable site x of the true allele l.
We verified that at K = K0, precision and recall are

both maximized as shown in Figure 3.

Table 1 Copy unit alleles and their bases at variable sites
used in simulation analysis 1

No. Bases at variable sites

1 ATTGCGATATTGCGAT

1 ACGGATTTACGGATTT

3 CTTCGGAACTTCGGAA

4 CGATTGAACGTCGTAC

For simplicity, we assume that all the bases at variable sites have bases taken
from one of four characters: A, T, C, and G.

Figure 2 Lower bound of log likelihood in simulation analysis 1.
Estimation of log likelihood by its lower bound in simulation analysis
1 against variable number of alleles K. The true number of alleles
K = 4 is correctly predicted by maximizing the log likelihood.

Figure 3 Allele concordance in simulation analysis 1 . The
precision and recall of inferred allele bases at variable sites are both
maximized at true number of alleles K = 4.
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Simulation analysis 2
Data, preparation
In this analysis, we used phased haplotypes of 45 males in
CEU population released in November 23, 2010 by the 1000
Genomes project [3]. We extract haplotype sequences in a
region of 10, 000 bp length at chrX:2, 800,001-2, 810,000 of
the hg19 reference genome. The region contains nine dis-
tinct haplotypes and 21 variable sites in the population. We
generate three different datasets from these haplotypes, that
simulate a) lower-, b) middle-, and c) higher-copy number
alleles. Copy numbers of alleles in each dataset are summar-
ized in Table 2 which are determined so that the total num-
ber of copy units in sample alleles equals to 45. Copy unit
alleles in these datasets are randomly chosen from the
45 haplotypes of the region without replacement. We gener-
ate histogram of bases at the variable sites as the same way
as in the simulation analysis 1, except for various mean
depth of coverage that is 3×, 5×, 10×, 15×, and 20× for each
copy unit allele from these datasets.
Evaluation of the results
We compare allele concordance for three datasets and
varying mean depth of coverage in terms of precision and
recall that are defined in Eq. (4) and Eq. (5) respectively.
For each dataset and mean depth of coverage, we apply
the proposed approach to 100 independently generated
histogram of bases at variable sites. Then, we take means
of precision, recall, and F-measure which is a harmonic
mean of precision and recall, for these replicated data.
From the results in Figure 4, we denote that allele concor-
dance is consistently improved by increasing mean cover-
age of depth. It is also noted that, although a dataset with
higher copy numbers is more difficult for accurate estima-
tion than with lower copy numbers as expected, our
approach achieves allele concordance > 0.9 in terms of
precision, recall, and F-measure with sufficient mean
depth of coverage, such as 10x per copy unit.

Real data application
Data, preparation
We estimate copy numbers of copy unit alleles at salivary
amylase gene (AMY1) locus using publicly available HTS

data of 1123 samples, in which 17 are high coverage data
around 50× per diploid genome of Coriell CEPH/Utah
pedigree 1463 provided by Illumina’s Platinum Genomes
project [27] and 1106 are low coverage data around 4×
per diploid genome released from the 1000 Genomes
project [3]. AMY1 is known as a CNV locus with highly
variable copy numbers [28], whose typical copy number
is six to ten.
We obtained BAM files, in which HTS reads were

aligned to the hgl9 reference sequence. We extracted
paired-end reads in FASTQ format that aligned to amy-
lase gene locus chrl:104,129, 283-104, 320, 531. Then,
we aligned the extracted reads with BWA [15] to a cus-
tom reference sequence that is comprised of extracted
sequences of gene coding loci of AMY1A and AMY2A
from the hgl9 reference sequence. After the alignment
process, we identify 57 variable sites within 835-th to
9200-th bases of AMY1A locus in the 17 high coverage
samples. To determine these variable sites, we adopted
criterion that observed counts of minor bases ≥ 15 at
least one of the 17 samples. For simplicity of analysis,
we omitted variable sites that contained deletions whose
observed ratio is ≥ 0.1 against the total observed bases
at the same sites.
Evaluation of the results
We identify copy unit sequences and copy numbers of
each copy unit at AMY1 gene locus from 1123 samples.
In this study we set the number of copy unit allele K to
four which provides maximal lower bound of the log
likelihood when varying K between one and 15. From
estimated results, we confirmed that copy numbers of
each allele for trio samples: NA12877 (father), NA12878
(mother), and their 11 offspring: NA12879, NA12880,
NA12881, NA12882, NA12883, NA12884, NA12885,
NA12886, NA12887, NA12888, and NA12893 are con-
sistent in a sense of heredity pattern of diploid alleles
indirectly (Figure 5), that is, estimated copy number of
each allele for offspring is less than or equal to the sum
of that of its parent samples (NA12877 and NA12878).
We also conducted the similar analysis for CHEK2P2,

which is a pseudogene located at chrl5:20,487,996-
20,496,839. The locus had 175 variable sites and its esti-
mated copy numbers ranged from three to 12 in mem-
bers of the CEPH/Utah pedigree 1463. The copy unit
allele K was chosen as 12, which maximized the lower
bound of the log likelihood when K was set from one to
15. The estimated copy numbers of haplotypes were
consistent within family members, as similar to AMY1
locus.

Conclusions
We proposed a novel computational approach to simulta-
neously infer copy unit alleles and their numbers in each
sample at CNV loci from HTS data. We verified the

Table 2 Configurations of copy numbers and number of
samples in three datasets used in simulation analysis 2

Dataset List of copy numbers and number of
samples

a) lower-copy number 1:5, 2:11, 3:6

b) middle-copy
number

2:2, 3:3, 4:4, 5:2, 6:1

c) higher-copy
number

3:1, 4:2, 5:3, 6:2, 7:1

For instance, a) lower-copy number set contains five samples with one copy,
11 samples with two copies, and six samples with three copies, respectively.
Configurations of datasets b) middle-copy number and c) higher-copy number
are shown in the same way.
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prediction performance in estimating copy unit alleles in
two different simulation analyses. In the simulation analysis
1, we prepared four alleles with 16 variable sites and suc-
ceeded to predict true number and sequences of prepared
alleles by maximizing the lower bound of log likelihood. In
the simulation analysis 2, we extracted known haplotype
sequences from 45 males in CEU population and con-
structed artificial CNV alleles with lower-, middle-, and
higher-copy numbers and varied depth of coverage.
Although a dataset with higher copy numbers is more

difficult for accurate estimation than with lower copy num-
bers, the approach achieved allele concordance > 0.9 in
terms of precision, recall, and F-measure with HTS data of
10× mean depth of coverage per copy unit. We also applied
the approach at highly variable salivary amylase gene locus
and a pseudogene locus from HTS real data of 1123 sam-
ples that includes 17 high- and 1106 low-coverage align-
ment data. With this application, we confirmed consistency
of inferred copy number for each allele of CEPH/Utah trio
samples (NA12877, NA12878, and their 11 offspring).

Figure 4 Allele concordance in simulation analysis 2. The precision, recall, and F-measure of inferred allele bases at variable sites are shown
for three datasets that simulate a) lower-, b) middle-, and c) higher-copy number alleles. As expected, the performance is consistently increased
along to mean depth per copy unit in all datasets.
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We model copy numbers of copy unit alleles for each
sample by relative amount of the alleles in the sample,
instead of inferring combination of integer copy numbers
of possible alleles explicitly which will be intractable for
high copy number alleles due to the exponentially
increasing number of possible states. Thanks to this fea-
ture, the computational complexity is linear order of
number of alleles K, number of samples N, and number
of variable sites M at CNV locus, as described in Meth-
ods section, and our approach is robust to increase in the
number of alleles and samples.

Although this study presents a promising approach for
CNV haplotyping from HTS data, there are several chal-
lenges beyond the current approach. First, utilizing full
features of HTS data, such as base qualities, paired-end
information, and cooccurrence of variable sites on single
reads may improve the inference accuracy. Second, using
or inferring the population history around CNV locus
might improve the accuracy. However, it might be also
needed to consider various events in the population his-
tory other than mutations such as duplications and recom-
binations around CNV loci and gene conversions [29,30],

Figure 5 Estimated copy number of each allele at AMY1 gene locus in real data analysis. Estimated copy numbers of four copy unit
alleles at AMY1 gene locus for trio samples are presented. The thin lines with labels NA12877 (father) and NA12878 (mother) represent copy
numbers of them and the 11 dashed and dotted thin lines are that of their offspring. The thick line represents the sum of copy numbers of the
parents. This result is consistent in a sense of heredity pattern in the trio samples, that is, copy number of offspring for each allele is less than or
equal to the sum of that of its parents.
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which will complicate the problem. Inference of diplotypes
of CNV loci is also an important future work. Third,
applying different approximation techniques such as a col-
lapsed VB inference [25] or belief propagation [31] used
for topic models of natural language processing to our
model might improve accuracy of the inference.
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