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Abstract

Background: We present the two Bacteria Track tasks of BioNLP 2013 Shared Task (ST): Gene Regulation Network
(GRN) and Bacteria Biotope (BB). These tasks were previously introduced in the 2011 BioNLP-ST Bacteria Track as
Bacteria Gene Interaction (BI) and Bacteria Biotope (BB). The Bacteria Track was motivated by a need to develop
specific BioNLP tools for fine-grained event extraction in bacteria biology. The 2013 tasks expand on the 2011
version by better addressing the biological knowledge modeling needs. New evaluation metrics were designed for
the new goals. Moving beyond a list of gene interactions, the goal of the GRN task is to build a gene regulation
network from the extracted gene interactions. BB’13 is dedicated to the extraction of bacteria biotopes, i.e. bacterial
environmental information, as was BB’11. BB’13 extends the typology of BB’11 to a large diversity of biotopes, as
defined by the OntoBiotope ontology. The detection of entities and events is tackled by distinct subtasks in order
to measure the progress achieved by the participant systems since 2011.

Results: This paper details the corpus preparations and the evaluation metrics, as well as summarizing and
discussing the participant results. Five groups participated in each of the two tasks. The high diversity of the
participant methods reflects the dynamism of the BioNLP research community.
The highest scores for the GRN and BB’13 tasks are similar to those obtained by the participants in 2011, despite of
the increase in difficulty. The high density of events in short text segments (multi-event extraction) was a difficult
issue for the participating systems for both tasks. The analysis of the BB’13 results also shows that co-reference
resolution and entity boundary detection remain major hindrances.

Conclusion: The evaluation results suggest new research directions for the improvement and development of
Information Extraction for molecular and environmental biology. The Bacteria Track tasks remain publicly open; the
BioNLP-ST website provides an online evaluation service, the reference corpora and the evaluation tools.

Background
Motivation and related work
Large-scale experimental approaches in the field of biology
shift the focus of researchers towards transversal questions
that involve very diverse biological knowledge. The
researcher needs new tools to deal with the growing num-
ber of relevant publications. The domain of text-mining
for biology (BioNLP) develops automatic methods to assist
the analysis of knowledge expressed in natural language

scientific articles. Periodic shared tasks measure the pro-
gress of the community methods by formally comparing
the method predictions to a reference annotation on test
data [1,2]. The goals of the shared tasks evolve with the
advances in BioNLP, moving towards a better adaptation
to the needs of biologists. It is reflected through the diver-
sity of biology questions (e.g. regulation, disease, metabo-
lism, and environment), types of documents (e.g. abstracts,
papers, Web pages) and the related biologist research
activity (e.g. knowledge curation, system modeling, and
data normalization).
The third series of BioNLP Shared Task that took

place in 2013 (BioNLP-ST’13) proposed six tasks under
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the Knowledge Base domain. BioNLP-ST’13 encourages
the development of methods that improve the extraction
of fine-grained complex events in systematic and concise
ways [3]. The common organization of BioNLP-ST’13
includes an official evaluation of the participant systems
by an automatic comparison of their predictions on the
test sets to reference data. The evaluation took place at
a fixed date after a period for the training of methods
using the reference corpora provided by the task organi-
zers. The two Bacteria Track tasks were organized
within this framework.
The creation of the BioNLP Bacteria Track in 2011 [4]

followed the LLL initiative in 2005 [5]. It was motivated
by research questions brought up by bacteria research
that encompass all levels of knowledge from the molecu-
lar to the physiological and phenotypic levels. This is
exemplified by the GRN and BB tasks.

Gene regulation network
Gene regulation networks are key components in the
understanding of cell processes and more generally of
living organisms. More and more research efforts are
being invested in the design of regulation networks for
species of all kingdoms [6,7]. Systems biology aims to
integrate the knowledge from heterogeneous sources in
consistent predictive models of gene regulation [8,9].
Beyond experimental data, which is the main source to
date, the abundance of regulation descriptions in litera-
ture has been a strong motivation for the development of
dedicated Information Extraction (IE) methods [5,10,11].
The goal of the LLL task was the extraction of binary
directed interactions between the agent protein and the
target gene from which the regulation network can be
derived in a straightforward way. The gene interaction
information extraction task has posed a challenge for
years due to the spread of information over large collec-
tions of scientific data, the complexity of the underlying
biological phenomena and the linguistic diversity of the
descriptions.
[2] and [12] showed that the use of a fine-grained bio-

logical model for the representation of the events facili-
tates the understanding and validation of the extracted
knowledge by the biologists and its integration with
other data sources. A fine-grained model was implemen-
ted in the Bacteria Gene Interaction (BI) task in 2011. It
describes in detail interactions at the biological level and
underlying cellular mechanisms at the molecular level
[4]. The activation of the transcription of a gene is an
example of a biological interaction. The physical binding
of a protein to a DNA site is an example of a molecular
level phenomenon.
The BI model is formalized by biological entities and

n-ary events between entities and events. The biological
entities are mainly proteins and genes, their subparts

(e.g. site), families (e.g. gene cluster) and aggregates (e.g.
protein complex).
The GRN task goes one step beyond BI by making the

design of the regulation network its primary goal. It has
several benefits compared to the BI text-bound event
extraction. Regulation networks are needed by biologists
in order to enrich their biological models and to inte-
grate text knowledge with other sources of knowledge.
Because the knowledge extracted from text is directly
bound to its sources, end-users can more easily assess
its quality, compared to other bioinformatics methods
such as transcriptomic profile screening [13]. Moreover,
the evaluation of regulation network quality better
reflects the biologist needs because it abstracts from
text-mining peculiarities, such as the linguistic complex-
ity of the text descriptions and information redundancy.
The GRN annotation model is built upon the BI

model, and also includes inference rules to automatically
deduce the regulation network from text-bound events.
The inference rules provides a continuity between
event-based extractions and the regulation network,
allowing to benefit from both types of knowledge.
The biological question behind the LLL and BI tasks is

the cell process regulation network of the model bacter-
ium Bacillus subtilis (Bs) with a focus on sporulation,
one of the most studied developmental processes. This
choice was motivated by the abundance of publicly
available information in PubMed abstracts and the rich-
ness of the biological phenomena described in them.

Bacteria biotope
The previous work on the Bacteria Biotope task (BB’11)
has stressed the importance of microorganism environ-
ment information. The formal description of biotopes
and their properties is an essential step for the study of
interactions between the organisms and their environ-
ment. In particular, it is needed in order to correlate
genetic specificity to environmental properties and to
explain the adaptation of organisms to their habitats and
their evolution. The application domains of this funda-
mental research are broad, from the health of humans,
plants, and animals, to food processes including plant
growth enhancement [4]. Biotope descriptions are abun-
dant in scientific documents, but they cannot be used as
such for biological studies. Their form is extremely vari-
able: the biotope descriptions may be very complex from
a linguistic point of view, including many embedded bio-
tope names and properties. A normalization of biotope
descriptions using a reference is required for their com-
parison. The extraction of the relations between the
organism and the biotope entities is also difficult to auto-
mate due to the abundance of entity mentions in short
spans of texts. This motivated the organization of the
Bacteria Biotope Task in 2011. The goal of BB’11 was the
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identification and categorization of bacterial habitat enti-
ties in natural language texts, their linking to their sub-
parts (i.e. part-of event) and their linking to the bacteria
that live there (i.e. localization event). The good results of
the participants on BB’11 demonstrate the feasibility of
this IE task.
Since 2011, the development of new sequencing techni-

ques has had a major impact on the field of metage-
nomics. Metagenomics studies microorganism sequences
in their environments, thus avoiding strain cultivation.
The number of metagenomics studies has grown expo-
nentially in the last few years. This has resulted in a con-
siderable increase in the diversity of the microorganisms
that can be studied. This is appealing for information
extraction tools that can automatically analyze biotope
descriptions of the microorganisms so that these biotopes
and genes from different metagenomics experiments can
be compared on a large scale.
The categorization of biotopes is a form of normaliza-

tion that is necessary for the generalization of biotope
observations. BB’11 defined seven broad biotope categories
that were a priori considered as relevant for biological stu-
dies. Participant methods had to categorize the extracted
biotope mentions according to these categories. The lim-
ited number of categories affects the ability of bioinfor-
matics methods to find useful correlations between gene
sequences and biotopes. This motivates the use of a large
set of categories organized in a hierarchical structure.
Moreover, [14] has shown that the lexical information
contained in ontologies can make the task easier.
OntoBiotope is an ontology of microorganism habitats

[15]. Its modeling principle and its lexicon reflect the
usual biotope classification used by biologists to describe
microorganism isolation sites (e.g. GenBank, GOLD,
EnvO) [16-18]. OntoBiotope is developed and main-
tained by the Meta-omics of Microbial Ecosystems
(MEM) network in which 30 microbiologists from INRA
(French National Institute for Agricultural Research)
from all fields of applied microbiology participate. The
relevance of OntoBiotope terms has been evaluated
through the PubMedBiotope semantic search engine
[19]. It identifies and categorizes biotopes in a collection
of 600 000 PubMed abstracts by applying the ToMap
method (Text to Ontology Mapping) [20] to the Onto-
Biotope ontology. This suggests that the ontology is
fully appropriate as a new fine-grained categorization
plan for the BB’13 task.
The BB’11 corpus is a collection of encyclopedia-like

web pages. They are comprehensible by non-biologists
and they share many linguistic characteristics in common
with scientific articles. The limited size of encyclopedic
webpages, compared to full research articles, is appropri-
ate for a first attempt at a novel task, while preserving
the generalization of trained IE systems.

Methods
This section describes the corpora features, the event
representation and the evaluation metrics for the two
tasks. More details and examples can be found on the
task website [21] and the ACL BioNLP Shared Task
articles that are devoted to the two tasks [22,23].

Gene regulation network
Biological and molecular representation in GRN
The goal of the GRN task is the extraction of a regula-
tion network from text. The network is represented by a
directed graph where the nodes are the genes and the
arcs represent the interactions between them. Biological
studies qualify the kind of interaction between biological
entities according to the effect of the agent on the target,
or to the mechanism by which the agent regulates the
target. We defined six interaction types for the GRN
regulation network representing the whole range of
effect and mechanism regulation types [22]. The effect
can be either Activation (positive regulation), Inhibition
(negative regulation), or Requirement (the agent is
necessary). Additionally, regulations can either be direct,
which means that the agent protein physically interacts
with the target gene, or indirect, which means that the
regulation may be the result of a cascade of interactions.
Direct regulations are particularly informative; the litera-
ture describes direct regulations at the molecular
mechanism level as either physical Binding of a protein
to DNA, or as the effect of a protein on gene Transcrip-
tion as represented in Figure 1.
Molecular mechanisms are frequently detailed in the

literature on bacteria and are very useful to determine
the nature of the regulation. Moreover, the events
involve not only proteins and genes, but also parts of
them, families, complexes, or even cascades of nested
events.
The six types of gene interactions are thus not sufficient

to represent the whole complexity of interaction descrip-
tions: a more comprehensive annotation model is neces-
sary. It should allow the biologists to annotate the corpus
by ensuring that entities, relations and events map easily
to text elements and have an unequivocal biological inter-
pretation. It must also be flexible enough to contend with
linguistic phenomena like ellipsis and metonymy. The
GRN annotation model meets these requirements. It accu-
rately represents biological concepts and phenomena and
is suited for text annotations, from the most generic indir-
ect interactions (e.g. “X inhibits the expression of Y”), to
the most detailed descriptions of physical interactions.
The text annotation model comprises two levels: the bio-
logical level and the molecular level. The biological level
includes (1) the same interaction type events as the regula-
tion network, (2) transcription events (Transcription by
and Transcription from) and (3) regulon membership

Bossy et al. BMC Bioinformatics 2015, 16(Suppl 10):S1
http://www.biomedcentral.com/1471-2105/16/S10/S1

Page 3 of 16



events (Member/Master of Regulon). The interaction type
events will be denoted by Interaction:type in the following,
as in Interaction:Regulation. Network inference rules auto-
matically and directly infer network arcs and nodes from
text annotations. In cases where the interaction arguments
are not genes or proteins, but nested events, the events are
reduced to the participating genes. Example 1 of Figure 2
illustrates a nested event and Example 3 shows the result-
ing Regulation arc.
The molecular level of the annotation model repre-

sents the role of the promoter of the regulated gene and
the binding of the protein on the promoter as illustrated
by Example 2 of Figure 2. The model defines a Master
of Promoter event that relates the binding protein to the
promoter and more generally the Bind to event relates
the binding protein to any site. The model also defines
a Promoter of event that relates the promoter to its gene
and more generally the Site of event relates any binding
site to its DNA region (gene or promoter).
Inference rules derive the Interaction arcs of the net-

work and their types from these molecular low-level
events. Inference is done in two steps, (i) inference of
biological annotations from the molecular annotations,
and (ii) inference of the network arcs from the biological
annotations. Example 2 of Figure 2 illustrates the

inference of molecular to biological annotations. Exam-
ple 3 shows the result of the inference of the network
arc Interaction: Binding.
[22] formally specifies the annotation model and the

inference rules that produce the regulation network
from the text annotations. The specifications were made
available on the GRN BioNLP-ST 13 webpage, as well
as a tool for checking the predicted events against the
annotation model and for inferring the network from
these predictions.

Information extraction challenges in the GRN task
The GRN corpus has been designed by following the
BioNLP annotation standard [3]. It was selected from
Pubmed abstracts on Bacillus subtilis transcription. All
together, the information represented by the corpus had

Figure 1 Sketching out regulatory bacterial gene transcription
molecular mechanisms. (1) The RNA polymerase must bind to a
transcription factor called sigma factor, to be able to transcribe DNA
to RNA. (2.a) The sigma factor specifically recognizes a transcription
promoter DNA sequence motif, upstream part of the gene, and
drives the RNA polymerase to it. (2.b) DNA is copied into RNA from
the Transcriptional Start Site (TSS), while the sigma factor is released
and available for another RNA polymerase. (3.a) A transcriptional
regulator binds to a specific motif around the promoter site, and in
this example (3.b) activates transcription.

Figure 2 From molecular mechanisms to biological interaction.
1) the network arc between gerE and cwlH in Ex. 3 is inferred from
the Interaction:Regulation event. Since the interaction target is an
event, the target is reduced to its participant (cwlH); 2) a) Bind_to
and Site_of represent low-level biological phenomena from which
we can deduce the Master_of_promoter relation of 2) b); c) the
Interaction:Binding relation can be deduced from
Master_of_Promoter and Promoter_of; 3) the combined interactions
from examples 1) and 2) produce the network with 3 edges and
two arcs.
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to be sufficient to build a regulation network centered
on the sporulation of Bs.
The annotation model is based on the Bacteria Genic

Interaction (BI) proposed in BioNLP-ST 2011. The man-
ual annotation of the whole GRN corpus confirmed that
it captures all of the descriptions of genic interactions
without ambiguity. The regulation network that has
been inferred from the annotations has been checked
against state of the art knowledge [24,25] with a focus
on the sporulation of Bacillus subtilis [26]. Its formal
validity was checked by applying the inference rules to
the corpus annotations.
Unlike most task corpora, the GRN corpus is a set of

sentences isolated from PubMed abstracts. This is done
for two reasons. Isolated sentences provide all the regu-
lation network information. The prediction of the cor-
rect relations among the entities in the sentences is
challenging as previously demonstrated by the LLL and
Bacteria Genic Interaction (BI) tasks. This challenge is
the result of a high number of entities (almost 5 per
sentence on average), their diversity (11 types) and the
diversity of the events (15). The sentences are provided
with the gold entities (genes, proteins, promoters, etc.)
and their text span, allowing the participant methods to
focus on relation extraction.
The GRN corpus was split into the training, develop-

ment and test sets, ensuring that the distribution of
event types and entities in the training and development
sets was representative of the test set. The molecular
level annotations account for 60% of the annotations,
and the biological level interactions for 40%. At the bio-
logical level, Transcription and Regulation interactions
combined account for half of the interactions.
The small number of arcs in the network compared to

the number of events is due to two factors (Table 1).
First, some regulations are repeated in the text and
represented by a single arc in the network. Second,
some of the network regulations are inferred from sev-
eral molecular events.

Prediction evaluation metrics
The evaluation must assess the quality of the predicted
gene regulation network with regards to the knowledge

contained in the corpus. The reference network has
been inferred from the manual corpus annotations using
the inference rules detailed above. Therefore, the evalua-
tion compares the predicted networks to the reference
network.
The evaluation accepts predicted networks in two pos-

sible formats. In the first, the submission includes the
prediction of text-bound events from which the predicted
network is inferred. Alternatively, regulation network
submissions without any text annotations are also valid.
These formats allows for a greater diversity of prediction
methods. They may or may not use the low-level annota-
tions and the inference rules. They can even make use of
information from external sources in order to build a
network prediction.
The evaluation algorithm compares two directed

labeled graphs, the first one representing the reference
network and the second representing the predicted net-
work. Both graphs have the same set of edges and the
comparison can rely exclusively on the comparison of
arcs because the annotated corpus accounts for all of the
gene mentions, along with their normalizations. Figure 3
illustrates the different comparison cases for two net-
works represented by a hypothetical 2-edge graph.
Two kinds of errors are noteworthy. The inversion

error reverses the direction of an interaction by confus-
ing the agent and the target roles. It is quite detrimental
for the design of a systems biology model because the

Table 1. Figures of the GRN corpus

Sentences 201

Words 4 936

Molecular events 495

Biological Interactions 334

Events 819

Entities 917

Network nodes 133

Network edges 242 Figure 3 Typology of errors in the GRN network.
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inversion can cause negative side effects that are costly
to recover. The substitution error occurs when an arc is
correctly predicted, but its label is incorrect. From the
target application point of view, the cost of a posteriori
recovery of a substitution error is equivalent to the cor-
rection of a false positive (FP) or a false negative (FN).
However, an evaluation framework without substitution
errors counts these errors twice: as a false negative and
as a false positive. In the case of the F-score, calculated
on the basis of FP and FN errors exclusively, both recall
and precision account for each substitution. Since the
F-score is the harmonic mean of recall and precision, it
penalizes the substitution twice, overestimating the
deviation from the reference. These standard metrics are
therefore inadequate for GRN. Instead, we use the Slot
Error Rate (SER) as proposed by [27]. The SER is related
to the Levenshtein distance and to the Word Error Rate
(WER) that is widely used in speech recognition
evaluations.
The SER is defined as:

SER =
S +D + I

N

where S is the number of substitutions (mismatches),
D the number of deletions (false negatives), I the num-
ber of insertions (false positives) and N the number of
items (arcs) in the reference. The SER indicates the pro-
portion of errors in a prediction in comparison to the
reference. The lower the SER, the better the prediction.
A SER equal to zero means that the prediction is per-
fect. However the SER is unbound since the number of
insertions is unbound. By design, the SER requires an
analysis that isolates the substitution errors and allots
them the same weight as insertions and deletions.
The GRN evaluation algorithm handles the arc predic-

tion errors for all of the pairs of genes mentioned in the
test set as shown in Figure 3. The number of errors for
the whole graph is therefore the sum of errors for each
individual pair.
Although the SER has already been used to evaluate

NER and IE tasks [28], it is still an unconventional mea-
sure. The interpretation of SER as an absolute figure is
difficult due to a lack of familiarity. For convenience we
also compute the recall, precision and F-score:

Recall =
M

N
Precision =

M

P

where M is the number of correct matches and P the
number of predicted arcs. However, the F-score should
be not used as an absolute indicator of the performance
of a prediction. The ranking of the participant systems
according to either the SER or F-score may show discre-
pancies depending on the proportion of substitutions
amongst errors. If two predictions exhibit comparable

SER scores, one may have a significantly lower F-score if
it contains more substitutions than the other.
The SER measure used in GRN is thus aware of the

recovery cost with respect to the application need. Its
computation breaks down the prediction errors in a way
that meets the expectations of the target biology
community.
The predicted gene regulation networks are used for

different purposes, whose requirements vary in terms of
accuracy. We distinguished two main usages for which
we conducted two complementary alternative evalua-
tions. First, Systems Biology applications require very
high quality and manually curated models. The predicted
network cannot be used directly as is, rather it facilitates
bibliographic searches by pointing out relevant sections
in the literature. In this context, the important informa-
tion is contained in the topology of the network, com-
pared to the exact categorization of the regulations. We
therefore specify the shape evaluation by removing the
regulation types, both in the reference and the predicted
networks. Multiple arcs between gene pairs are reduced
to one. Thus, in the shape evaluation, there is either no
arc or there is one arc between two genes. Furthermore,
there are no longer any substitution errors. There is no
objection to the use of F-score for the shape evaluation
and the F-score ranking is the same as the SER ranking.
The second alternate evaluation focuses on gene regu-

lations of effect types. Effect regulations indicate the
functional influence of an agent on a target gene. As for
pathway models, the main expectation for a regulation
network is a graph with arcs labeled with effect types,
i.e. the generic Regulation type and the Activation, Inhi-
bition, Requirement types. We thus designed the effect
evaluation framework by removing all mechanism regu-
lation types (i.e. Binding and Transcription). If there is a
single mechanism type arc between two genes, then this
arc is relabeled as a generic Regulation. If there are one
or two effect type arcs along with a mechanism arc,
then the mechanism arc is removed (it is in fact rela-
beled as a Regulation arc and it becomes redundant
with the effect arcs). Since there are different types of
effects, substitution errors may occur and therefore the
F-score remains inaccurate and SER is preferred.
These three evaluation settings: the official shared task

evaluation, the network shape evaluation and the evalua-
tion of effect regulations, provide useful means to assess
the participant method results from several different
perspectives.

Bacteria biotopes
The BB task aims to extract text-bound entities and
events. It involves three kinds of entities: bacteria, geo-
graphical places and other habitats. The last two are
defined as bacteria biotopes. All entities have to be
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detected, meaning that their character position in the
document must be predicted. The entity spans may be
discontinuous. This extension of BB’11 allows us to
represent entity strings that are segmented into non con-
tiguous parts. For example, the animal intestine entity in
the text animal and human intestine is discontinuous
and overlaps with the human intestine entity. Only habi-
tats need to be categorized. Habitat categorization is
characterized as the assignment of relevant concepts of
the OntoBiotope ontology. The version of OntoBiotope
that is used for the BB task defines 1,756 concepts in a
hierarchical structure. The deepest point of the ontology
contains ten levels.
The two BB task events (Localization and PartOf )

are binary events. Localization links bacteria entities to
their biotope entities (geographical and habitats). Many
habitat entities are physically embedded such as organs
in hosts, or substances in containers. This information
is particularly important in the case of hosts where the
interaction of the bacteria with an organ strongly
depends on the host itself. Therefore, the role of the
PartOf event is to link sub-parts of living organisms
that are bacterial hosts, to the living organisms
themselves.
The detection and categorization of entities and the

extraction of events among them are considered separately
in two distinct sub-tasks. These two sub-tasks are com-
bined in the form of a third sub-task. Compared to BB’11
where all of the goals were combined in a single task, for
BB’13 the efficiency of IE methods can be evaluated with
respect to the different goals.

- The novel goal of entity categorization with a large
ontology deserved a specific sub-task. The goal of
sub-task 1 is the detection and categorization of
habitat entities.

- The goal of sub-task 2 is the extraction of the
Localization and PartOf events between entities of
the three types. The annotations of all candidate
entities are provided to the participants. By separat-
ing this sub-task, the measure of the event extraction
quality is independent of the measure of the entity
extraction quality.
- Finally, the goal of the third sub-task is the com-
plete task, including the detection of entities of their
three types without their categorization and the
extraction of the two types of events.

Figure 4 gives examples of the annotations provided to
the participants and the expected predictions for the
three sub-tasks.

Corpus characteristics
Table 2 gives a summary of the distribution of entities
and events in the BB’13 corpus. The BB corpus texts
were selected from the collection of bacteria description
web pages used in BB’11 [4]. The selection ensured that
the distribution of the annotations and the linguistic
phenomena are representative [23]. The analysis of the
corpus peculiarities with respect to the task goals gives
an insight into the potential difficulties for the informa-
tion extraction methods.

Entities
The morphological similarity between ontology concepts
and the entities to be tagged can be used to facilitate
the categorization. We found that 60% of BB corpus
habitat entities have forms different from the concept or
synonym that they should be tagged with. A straightfor-
ward and naive strategy consists of a direct match of
ontology habitat entries to the test text after lemmatiza-
tion. It yields a high Slot Error Rate (SER) of 0.74,

Figure 4 Examples of the provided information and the expected prediction in BB’13.
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which is a low baseline. The participant scores range
from 0.46 to 0.66 SER, significantly better than the base-
line. This shows that category assignment is a non trivial
problem.
The repetition rate of the entity occurrences and of

their categories is an important factor to take into
account when designing the prediction method. A quar-
ter of the habitat entities occur more than once in BB’13,
which is a significant proportion. It represents half of the
total number of habitat occurrences. Only a small num-
ber of repeated entities (112 occurrences) belong to sev-
eral different ontology categories. Consequently, the
propagation of the most likely category annotations of a
given entity to all its occurrences is a first-line strategy.
Discontinuous entity annotations may also be difficult to

detect automatically. Table 3 gives the typology of discon-
tinuous annotations with their distribution in the corpus.
In most cases, discontinuous annotations occur in coordi-
nations where the head (intestine in animal and human
intestine) or the argument is shared by the members of
the coordination. Range structures such as in regions with
tropical to sub-tropical climate are also frequent in bac-
teria biotope documents. They are mostly used to describe
physico-chemical conditions. A small rate of entity anno-
tations are discontinuous (96, or 1.8%), and most of them
are habitats. Processing discontinuous entities should
therefore have a low impact on the information extraction
method results.

Events
The PartOf and Localization events account for one
quarter and three quarters of the events, respectively.
The frequency of PartOf events in the corpus is far
from negligible. The scores obtained by BB’11 partici-
pant methods on the two event types were similar, with
a slightly lower score for PartOf.
Events whose arguments are local to the sentence

(intra-sentence events) are easier to extract. Cross-sen-
tence extraction remains challenging because it may
require anaphora resolution. In the BB’13 corpus, half of
the Localization event arguments (54%) occur in the
same sentence, while the rate is higher (63%) for the
PartOf events (Table 4). The methods that use a repre-
sentation of the examples that is based on individual
sentences, such as syntactic dependency paths between
the event arguments, cannot identify all events without
an additional step to deal with inter-sentence events. It
should be noted that almost all of the arguments for the
two events are found within the same paragraph, as
shown in the third column of Table 4. This significantly
restricts the range of argument candidates, in particular
the bacteria argument of the Localization event.
Human annotators frequently cannot choose a single

bacterium name occurrence as the valid argument of a
Localization event, to the exclusion of all other occur-
rences of the name. In this case, the annotator attaches
an equivalence set of relevant bacteria occurrences to the
event. The prediction of any of the members of the
equivalence set is considered equal, and therefore evalu-
ated as valid.
A significant portion of the entities are not involved in

any events. This affects more than half of the bacteria
and one third of the habitats and geographical places
(Table 5). This is unusually high compared to the other
BioNLP tasks and may require the development of an
adequate strategy.

Corpus preparation
The preparation of the BB’13 corpus was completed fol-
lowing a three-step annotation process, for which we

Table 2. Figures of the Bacteria Biotope corpus
annotation

Document 131

Word 43,851

Bacteria 2,220

Geographical 288

Habitat 2,675

OntoBiotope cat. 2,097

Total entities 5,183

Localization 1,837

Part of Host 475

Total events 2,312

Table 3. Distribution of discontinuous annotations in
BB’13 corpus

Linguistic structure Frequency

and 68

or 11

enumeration 6

range 5

combination of insertion and coordination 1

tmesis (insertion) 6

Total 97

Table 4. Distribution of the event arguments in the text

% intra sentence events % intra paragraph events

Localization 0.54 0.94

PartOf 0.63 0.98

All events 0.56 0.95

Table 5. Rate of candidate arguments that belong to an
event (Localization or PartOf)

Argument Type Habitat Bacteria Geographical Entity

Percentage of entities
involved in events

63% 44% 65% 55%

Bossy et al. BMC Bioinformatics 2015, 16(Suppl 10):S1
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used the AlvisAE Annotation Editor [29]. First, the
AlvisNLP pipeline automatically pre-annotated the enti-
ties and their categories to speed-up the manual annota-
tion process. Next, eight biologists and computer
scientists performed a double-blind manual annotation
after a training period. They followed detailed guidelines
that limited the number of different interpretations of the
task goals. Finally, the conflict resolution phase resulted in
the final annotation. This final phase was done using the
AlvisAE conflict detection tool. The annotators also used
a Forum and a Wiki to debate guidelines interpretations
and to record their decisions. The guidelines were revised
accordingly. A revision tracking tool identified and dis-
played the annotations that should be checked because
they were potentially affected by subsequent revisions. The
annotators achieved a consensus annotation by debating
the conflicts.
Compared to the preparation of the BB’11 corpus, the

annotation was facilitated in two ways: the use of the
AlvisAE editor and the automatic pre-annotations. Using
AlvisAE the manual annotation of events between enti-
ties, equivalence sets and entity categories is completed
using simple clicks and drag-and-drops. The graphical
display of the annotations makes validations and revi-
sions easier, while limiting the risks of errors. The man-
ual detection and categorization of entities is a time-
consuming task, due to the high number of categories
and entities to be tagged. AlvisAE supports the manual
association of relevant OntoBiotope concepts to habitat

entities by synchronizing the text annotation text and by
displaying the ontology, as shown in Figure 5.
The automatic pre-annotation detects habitat entities

and predict their categories. It had a strong impact on
the manual annotation effort. It is supported by
AlvisNLP. It is done by the method described in [14]. It
consists of the terminological analysis of the corpus
using the BioYaTeA term extractor [30] that detects
candidate entities. Next, terms are tagged using the
ToMap method that assigns the categories [20]. ToMap
is based on the phrase similarity syntactic analysis prin-
ciple, such as used in MetaMap [31]. However, it is
applicable to all types of termino-ontologies and corpora
in French and English. In order to measure the quality
of the pre-annotation and estimate the gain in time, we
evaluated the pre-annotation to the reference corpus
using the BB’13 task metrics. Table 6 gives the scores
obtained on the test corpus of sub-task 1 for the three
pre-annotation steps: habitat entity detection, habitat
entity categorization and the combination of detection
and categorization. The categorization score is obtained
using the boundaries of the reference entities. This
score is of importance when measuring the impact of
detection errors on further categorizations.
The ToMap categorization method is very efficient

(90% F-measure) when applied to the reference entities.
The F-measure significantly decreases by 24 points when
ToMap is applied to predicted entities (F-measure =
0.66). A detailed analysis of the errors showed that the

Figure 5 OntoBiotope category assignment with AlvisAE annotation editor.
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entity detection errors are in general deletion errors
(429), rather than insertion errors (31) or incorrect
boundaries. In other words, the BioYaTeA term analysis
method is accurate for the prediction of entity bound-
aries. On the other hand, the ToMap method filters out
too many correct entities when assigning categories.
Conversely only a few of the incorrect entities are pre-
served and ToMap generally assigns the correct category
to the remaining entities. In terms of time gain for the
annotators, the pre-annotation method significantly facil-
itates the entity categorization, which was the main issue.
On the other hand, the missed entities had to be manu-
ally identified by the annotators.

Prediction evaluation metrics
The BB’11 metrics were used when possible for the sake
of comparison of the BB’13 results to previous ones.
The novelty of sub-task 1 required the design of new
suitable metrics.

Measure for entity detection and categorization
The goal of sub-task 1 is the prediction of habitat entities
in text and their categorization. The recall and precision
measures could be defined as usual,

Recall =
S
N

Precision
S
P

where N is the number of reference entities and P the
number of predicted entities. The prediction of imprecise
entity boundaries and approximate categories should be
counted as partial errors and not as full errors since an
approximation of the biotope reference is better than no
prediction at all. S represents the sum of the similarities
S between reference entities and their corresponding par-
tial matching entity. For the same reasons that were
given above for GRN, the SER measure is more appropri-
ate here than the F-measure since it overestimates the
partial match errors.
In the SER formula, Insertions represent false positives

i.e. predicted entities that do not overlap with any refer-
ence entity. Deletions represent false negatives, i.e. refer-
ence entities that do not overlap with any predicted
entity. Substitutions are inversely proportional to the
similarity between the predictions and the references
that partially overlap.

The similarity between the predicted entity and the
reference entity depends on two criteria: the similarity
of their entity boundaries Se and the similarity of their
categories Sc.
In BB’11, the similarity Se of entity pairs was measured

as the ratio between the size of the overlapping text seg-
ments and the size of the two merged text segments. Se is
equal to 1 (maximum) if the two entities are equal and
tends to be zero for barely overlapping segments.
Formally, it is a variant of the Jaccard index applied to seg-
ments. The analysis of the BB’11 participant results
demonstrated its significance [4]. We extended this mea-
sure to take into account the discontinuity of entity spans.
In the same way as for entity boundaries, approximate

predictions of the entity categories should not be counted
as full errors. Moreover, the evaluation should favor ances-
tor predictions over sibling predictions, since the predic-
tion of an overly general category remains correct, even
though it is less precise. Additionally, the prediction infor-
mation wealth should decrease faster than the number of
nodes on the path from the prediction to the reference.
The Wang semantic similarity fits these requirements [32].
It has been successfully applied in previous work to com-
pute semantic distances in ontologies [33].
The similarity Ssub-task1 between the prediction and the

reference for sub-task 1 is defined as the product of the
entity similarity and the category similarity, yielding a
measure between zero and 1,

Ssub−task1 = Sc.Se

The SER substitution factor is simply the opposite of
the similarity Ssub-task1 and is defined as:

S = 1− Ssub−task1

Measure for event prediction
The evaluation of sub-tasks 2 and 3 results measures the
quality of the event predictions. Additionally, the evalua-
tion of sub-task 3 measures the quality of the arguments
of the correct events. These goals can be formalized as a
categorization problem of all the pairs of entities for
which recall, precision and F1 measures are appropriate.
We then used the same setting as for BB’11. The accu-
racy of the biotope argument is measured by Se as in
sub-task 1, whereas the accuracy of the bacteria argu-
ment is measured using a strict equality.

Entity pairing
The scores defined above assume that each predicted
entity matches a single reference entity and vice versa.
Given the approximation of boundaries and categories,
the possible matching between prediction and reference
is not unique as illustrated by Figure 6. We defined the

Table 6. Automatic pre-annotation scores by AlvisNLP

SER Recall Precision F1

Detection & categorization 0.44 0.58 0.78 0.66

Entity detection 0.37 0.64 0.86 0.74

Entity categorization 0.34 0.67 0.90 0.77

Categorization with reference entity NA 0.90 0.90 0.90
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criteria for selecting the pairing as the one that maxi-
mizes the participant prediction score.

Bacteria track results
Five teams participated in BB, five teams in GRN and two
teams participated in both. We analyzed the relevance of
the corpus and evaluation metrics, the method strengths
and their relevance for biological applications with respect
to the results. The comparison of the 2013 results to the
previous series that took place two years ago shows the
evolution of community methods on challenging informa-
tion extraction tasks.

Gene regulation network
Table 7 shows the evaluation results and the characteris-
tics of each GRN submission. The best prediction scored
an SER of 0.73 (University of Ljubljana). The GRN task
attracted submissions that use diverse prediction meth-
ods. Two participants, EVEX [34] and K.U.Leuven [35],
directly submitted a network graph (Table 7). The
remaining three teams submitted text-bound events that
were evaluated using the inferred network. One of them,
IRISA [36], only submitted the high level text-bound
Interaction events. The other two teams, University of
Ljubljana [37] and TEES-2.1 [38], submitted both Inter-
actions and low-level events.
The distinction between the three types of errors

(deletion, insertion and substitution) allows us to better
qualify the strengths and weaknesses of the predictions.
Except for IRISA, all predictions have roughly the same
error profile: a high number of missed arcs and a
relatively low number of substitutions and incorrect

insertions of arcs. This is reflected by the low recall that
ranges from 13% to 34%, while the precision ranges
from 44% to 68%.
The IRISA submission shows a much more balanced

profile with nearly the same number of substitutions,
deletions and insertions. This submission is also bolder
since its network contains more than twice as many
arcs (91) than the others (the second by University of
Ljubljana has 44 arcs).
The results of the shape evaluation (without regulation

types) are much more optimistic, even though the rela-
tive ranking of submissions remains unchanged with the
noticeable exception of IRISA (from fourth to first) with
a 75% F-score and an impressive gain of 0.40 SER.
Regardless of their ranking, all predictions yield a high
precision score: the highest is 88% for the University of
Ljubljana team and the lowest is 74% for IRISA, whose
main strength is the recall compared to the others.
We conclude that systems are better at predicting reg-

ulations, but less accurate at typing them. The TEES-2.1,
EVEX and University of Ljubljana submissions show the
smallest SER gains (+0.12, +0.12 and +0.13 respectively)
suggesting that these systems are slightly more accurate
in choosing regulation types.
In the effect evaluation (without mechanism types,

Binding and Transcription), the ranking of submissions
remains unchanged with a nominal SER change for all.
We conclude that the prediction of mechanism labels is
quite accurate for all systems and that the most challen-
ging aspect of the GRN task is the determination of
effect labels (Activation, Inhibition, and Requirement),
which is most important for biological applications.

Bacteria biotope
Five teams submitted ten predictions to the three BB
sub-tasks (Table 8) [39-41,38,36]. Provisional results
were provided following the submissions; we present in
this paper the definitive results. The participant teams
had different performances with respect to the three
sub-tasks that require different skills.

Habitat detection and categorization (sub-task 1)
Our analysis of the sub-task 1 results focuses on how
the detection of entities and their categorization inter-
act. We are also interested in the way in which the task

Figure 6 Example of two possible matches between the
reference and the prediction.

Table 7. Official scores of the GRN task

Participant Submission ML algorithm SER Recall Precision Shape SER Effect SER

U. of Ljubljana Interaction +low-level LC-CRF 0.73 0.34 0.68 0.60 0.74

K.U.Leuven Network SVM 0.83 0.23 0.50 0.64 0.83

TEES-2.1 Interaction + low-level SVM 0.86 0.23 0.54 0.74 0.84

IRISA Interaction kNN 0.91 0.41 0.40 0.51 0.87

EVEX Network - 0.92 0.13 0.44 0.79 0.91

Bossy et al. BMC Bioinformatics 2015, 16(Suppl 10):S1
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metrics can help evaluate the method relevance for real-
life applications.
Table 9 displays the prediction results of the five parti-

cipants. Column a. gives the official results. In order to
better evaluate the strengths and weaknesses of the
methods with respect to the detection and categorization
of entities, we computed alternative evaluation measures
with relaxed constraints shown in columns b and c. Col-
umn b provides the measures for the entity prediction
quality, without taking into account the categorization
prediction at all. Column c gives the measures of the
categorization quality without taking into account the
quality of the entity boundary prediction. The methods
obtain good results with over 70% F1 measure for the
best results. The scores are significantly higher (10 points
in average) than the official combined results of column
a. This confirms that entity detection errors affect the
categorization quality.
The new categorization challenge has been successfully

completed despite its novelty. As highlighted in the Back-
ground section, there is a strong need for methods capable
of normalizing biotope mentions, without necessarily
extracting the exact entity text. These good results on sub-
task 1 are thus very promising with respect to the applica-
tion needs of the bioinformatics domain.
The methods also obtain slightly lower, but overall

good results on the detection of entities, except for
LIMSI [39]. The analysis of the detection results shows
that the method errors are mainly insertion errors (false
positives) rather than substitutions (wrong boundaries)
and deletions (false negatives). This is confirmed by the
entity detection results in Table 10 that are obtained by
fully relaxing the boundary constraints. More precisely,
this means that an entity prediction is counted as a true
positive, if there is at least one character in common with
the reference. Boundary relaxation significantly increases
the detection results (Table 10). The differences are
figured in the parentheses. All methods yield F1-measure

scores over 70%. The insertion and deletion measures
stay unchanged. It is worth noting that the four F-
measure results are close although they were obtained
using different strategies that favor recall (IRISA, 91%)
or high precision (LIMSI, 92%). This confirms that an
overall improvement can be expected with more accu-
rate boundary predictions.
However, there is a need in bioinformatics for methods

capable of detecting biotope mentions without high
boundary accuracy. Fast reading of relevant scientific
documents is a significant example of such an applica-
tion. This result, in fact, meets the core of the application
needs, which is promising for future developments.

Event extraction (sub-task 2)
Table 11 gives the results obtained by the participant
methods on sub-task 2 where the entities were provided
and the Localization and PartOf events had to be pre-
dicted. PartOf event predictions are significantly worse
than Localization event predictions as opposed to BB’11.
The discrepancy does not seem to be caused by the diffi-
culty of PartOf extraction, but is rather suspected to be
related to the participant methods, no general conclusion
should be drawn. Higher precision than recall, as displayed
in Table 11, shows that most of the methods have trouble
generalizing from the training examples.
In the Methods section, the potential effect of the high

rate of inter-sentence events on method efficiency was
discussed. No significant increase in the scores was
observed for the intra-sentence PartOf events. Table 12
shows the results obtained through the extraction of
intra-sentence Localization events. The difference
between the regular and the intra-sentence results greatly
varies between methods. A 24 point improvement is
observed for TEES-2.1. This method uses syntactic path
features in order to describe intra-sentence events. This

Table 8. Participation to the bacteria biotope task

LIMSI LIPN TEES 2.1 IRISA Boun

Sub task 1 ✓ ✓ ✓ ✓

Sub task 2 ✓ ✓ ✓ ✓

Sub task 3 ✓ ✓

Table 9. Sub-task 1 results in BB’13

Official results (a) Habitat Detection (b) Category assignment with relaxed habitat boundaries (c)

Participant SER F1 SER F1 SER F1

LIPN 0.661 0.608 0.629 0.639 0.550 0.718

Boun 0.676 0.595 0.617 0.653 0.554 0.715

LIMSI 0.678 0.444 0.467 0.714 0.637 0.496

IRISA 0.932 0.574 0.895 0.603 0.814 0.668

Table 10. Sub-task 1 entity detection results, with
relaxed boundaries

SER Recall Precision F1

LIMSI 0.308 (0.370) 0.716 0.920 0.819 (0.375)

Boun 0.479 (0.197) 0.824 0.804 0.814 (0.219)

LIPN 0.487 (0.174) 0.803 0.803 0.803 (0.195)

IRISA 0.775 (0.157) 0.909 0.601 0.724 (0.150)
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hypothesis is confirmed by the high recall increase (+31
points). By contrast, the rote learning method of LIMSI is
not affected.
The methods of IRISA and Boun are slightly affected by

the inter-sentence evaluation since their scores decrease
by 3 and 7 points, respectively. Different reasons can be
suspected. IRISA method is based on a word-based lan-
guage model that does not use sentence boundaries. The
method may be sensitive to the length of the argument
context that is shorter and less discriminant on average
in single sentences than in the general case. This explains
the precision decrease for intra-sentence extraction (-8
points) that could be due to over-generalization. Boun
method selects the first mention of bacteria in a given
paragraph as the bacteria argument of any Localization
event in the paragraph. The intra-sentence evaluation
focuses on local events where this method strategy fails
more frequently, which explains the decrease in precision
(-11 points). The impact of intra-event extraction com-
pared to the regular task is very different depending on
the participant methods. Linguistic strategies such as ana-
phora resolution for linking entity references are critical
for certain methods, such as syntactic dependency-based
approaches, but potentially not useful for sequence-based
learning.

Entity detection and event extraction (sub-task 3)
Sub-task 3 combines the extraction of the events and
the detection of the entities. The subtask entities include
not only habitats, but also geographical places and bac-
teria. Table 13 gives the results of the two participant
methods. The extraction of the entities significantly

penalizes the results of TEES 2.1 compared to the
results of sub-task 2 (-28), whilst LIMSI achieved similar
results. The cause of the low scores is different depend-
ing on whether the method is better at entity detection
(LIMSI) or event extraction (TEES 2.1). Table 14 shows
the prediction quality of biotope entities (habitat and
geographical), which is rather good (81 F-measure for
the best).
The relaxation of the biotope boundaries (table 15)

results in a greater improvement for the event extrac-
tion results of TEES 2.1 than LIMSI, which produces
more false positives and negatives than substitutions.
The relaxation of the strict boundary constraints for the
bacteria also increases F1 for both methods as shown in
table 13. The gain in precision is notably much higher
for TEES 2.1 (+22 points) that often predicted fragmen-
ted bacteria names, such as for instance D. and
VCD115, from D. deserti VCD115. The method of
LIMSI also produces false negative predictions of bac-
teria. The use of a relevant dictionary of bacteria names
such as the NCBI taxonomy should notably improve the
global results [4].
Not surprisingly, the best scores are achieved by both

methods when both bacteria and biotope boundaries are
relaxed and only intra-sentence event extraction is mea-
sured (table 15).
This detailed analysis of the evaluation measures thus

provides valuable suggestions and ideas regarding the
issues that need to be addressed. Entity boundary detec-
tion (especially for bacteria) and inter-sentence events
seems to be the main hindrances. The first challenge
could be easier to complete than the latter, given the
high scores obtained in BB’11.

Conclusions and discussion
The Bacteria Track is motivated by the evolution of the
biology field. The biology research domain is undergoing
a shift in terms of the scale of experiments and their
analysis. High throughput experiments provide compre-
hensive data over a large range of species. Whole cell

Table 11. Official results of sub-task 2 for BB’13 task

Participant Recall Precision F1 F1 PartOf F1 Localization

TEES 2.1 0.28 0.82 0.42 0.22 0.49

IRISA 0.36 0.46 0.40 0.2 0.45

Boun 0.21 0.38 0.27 0.2 0.29

LIMSI 0.04 0.19 0.06 0.0 0.07

Table 12. Results of sub-task 2 measured on intra-sentence events

Intra-sentence Scores Difference with the full task scores

Recall Precision F1 Recall Precision F1

TEES-2.1 0.51 0.82 0.63 +0.23 0 +0.21

IRISA 0.37 0.38 0.37 +0.01 -0.08 -0.03

Boun 0.19 0.29 0.23 -0.02 -0.09 -0.04

LIMSI 0.03 0.17 0.05 -0.01 -0.02 -0.01

Intra-sentence (Localization) Recall Precision F1 Recall Precision F1

TEES-2.1 0.66 0.82 0.73 +0.31 0 +0.24

IRISA-TexMex 0.48 0.38 0.42 +0.04 -0.08 -0.03

Boun 0.18 0.27 0.22 -0.05 -0.11 -0.07

LIMSI 0.03 0.30 0.06 -0.01 0.01 -0.01
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models and cross-species metagenomics studies are con-
ceivable provided experimental data is accurately linked
with knowledge corpora contained in the literature. The
goal of the Bacteria Track tasks is to demonstrate that
the BioNLP community is well-grounded to accompany
the progress of Microbiology research.
The GRN task targets biological processes and whole

cell models, whereas BB targets ecological information
for a large spectrum of bacteria species. The GRN and
BB task definition and evaluation procedures are tailored
to the biology knowledge modeling goals. The two cor-
pora provide a benchmark for BioNLP IE systems that
aim to measure their ability to build relevant knowledge
bases. The results of participant systems on the Shared
Task provide invaluable insight into their strengths and
limits from which a number of conclusions can be
drawn regarding the most promising research trends.
For both tasks we have proposed the Slot Error Rate
(SER) as a relevant evaluation measure. The SER has
effectively allowed us to discriminate the performance of
the submitted predictions. In particular, it contributed
to a better characterization of the strengths of each sub-
mission by distinguishing three types of errors: Inser-
tions (false positives), Deletions (false negatives) and
Substitutions (mismatches).

Gene regulation network task
The goal of the GRN task is to present systems biologists
with a regulation network, rather than a set of text-bound
events. Participant systems are able to produce results that
biologists can immediately grasp and evaluate. Methods
based on low-level events achieved using the three levels
of annotations and the domain expert inference rules. The
production of knowledge from text and domain rules is a
new IE paradigm that differs from the usual BioNLP infor-
mation extraction framework. The analysis of the submis-
sions showed that participants predicted mainly the low-
level events that were involved in the most formalized
inference rules. The other low-level events were rarely pre-
dicted or not predicted at all. More focused and distinct

processing for the extraction of elementary events and the
design of the abstract regulation network should improve
the quality of the results. In the future additional forma-
lized inference rules should also allow systems to focus on
the extraction of elementary events and improve the qual-
ity of inferred regulation networks.
The annotation model of the GRN corpus has char-

acteristics in common with the GE and GRO corpus
models [42,43] that also address molecular biology
questions. A unified shared model for the tasks should
make the generalization of the participant systems
easier for all three tasks. The EVEX submission was a
promising attempt towards this goal. Moreover, the
GRO annotation model heavily relies on the Gene
Ontology that could be used for the convergence of
the three models.

Bacteria biotopes task
The results on the BB sub-task 1 (entity recognition and
categorization) are very promising with respect to the
novelty of the goal. The evaluation score combines
boundary and categorization accuracy in a single mea-
sure. We have shown that incorrect boundaries nega-
tively impact the categorization and are thus penalized
twice. An even more application centered evaluation
metrics might reduce the impact of boundary accuracy.
The results on the BB sub-tasks 2 and 3 (event extrac-
tion with or without gold entities) are below the scores
on similar extraction tasks that contain only a few event
and entity types. After error analysis of the predictions,
we indicated plausible means of improvement. In parti-
cular, relevant approaches for the prediction of bacteria
names could be applied. The long distance events
between bacteria and their biotopes deserve a specific
treatment.
As was done after previous BioNLP shared tasks, the

data, evaluation services and resources for the two tasks
were made available. The test answers are not public in
order to ensure that the comparison of future results
remains possible.

Table 13. Scores on sub-task 3 of BB’13 Task

Official scores Scores with relaxed biotope boundaries Scores with relaxed bacteria boundaries

Participant Recall Precison F1 Recall Precision F1 Recall Precision F1

TEES 2.1 0.12 0.18 0.14 0.41 0.61 0.49 0.28 0.52 0.36

LIMSI 0.04 0.12 0.06 0.09 0.82 0.15 0.07 0.71 0.10

Table 14. Scores on biotope detection in sub-task 3 of
BB’13 Task

Participant SER Recall Precision F1

LIMSI 0.32 0.68 1.00 0.81

TEES 2.1 0.50 0.57 0.76 0.65

Table 15. Scores on intra-sentence Localization extraction
in sub-task 3 with relaxed entity boundaries

Participant Recall Precision F1

LIMSI 0.08 0.79 0.15

TEES 2.1 0.72 0.56 0.63
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