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Abstract

Background: The third edition of the BioNLP Shared Task was held with the grand theme “knowledge base
construction (KB)”. The Genia Event (GE) task was re-designed and implemented in light of this theme. For its final
report, the participating systems were evaluated from a perspective of annotation. To further explore the grand
theme, we extended the evaluation from a perspective of KB construction. Also, the Gene Regulation Ontology
(GRO) task was newly introduced in the third edition. The final evaluation of the participating systems resulted in
relatively low performance. The reason was attributed to the large size and complex semantic representation of the
ontology. To investigate potential benefits of resource exchange between the presumably similar tasks, we
measured the overlap between the datasets of the two tasks, and tested whether the dataset for one task can be
used to enhance performance on the other.

Results: We report an extended evaluation on all the participating systems in the GE task, incoporating a KB
perspective. For the evaluation, the final submission of each participant was converted to RDF statements, and
evaluated using 8 queries that were formulated in SPARQL. The results suggest that the evaluation may be
concluded differently between the two different perspectives, annotation vs. KB. We also provide a comparison of
the GE and GRO tasks by converting their datasets into each other’s format. More than 90% of the GE data could
be converted into the GRO task format, while only half of the GRO data could be mapped to the GE task format.
The imbalance in conversion indicates that the GRO is a comprehensive extension of the GE task ontology. We
further used the converted GRO data as additional training data for the GE task, which helped improve GE task
participant system performance. However, the converted GE data did not help GRO task participants, due to
overfitting and the ontology gap.

Background
The BioNLP Shared Task (BioNLP-ST) has been orga-
nized three times since 2009. The goal is to provide the
community with shared resources for the development
and evaluation of fine-grained information extraction
(IE) systems, particularly for the domain of molecular
biology and medicine. Each time, it was organized with a
grand theme (a goal shared by all the tasks): introduction

of the event extraction task, generalization, and knowledge
base (KB) construction, for the 1st, 2nd, and 3rd editions,
respectively [1-3].
Initially motivated by the Genia annotation [4], the tasks

of BioNLP-ST are designed for intrinsic evaluation, with
the hope of complementing more application-oriented
tasks of extrinsic evaluation, e.g. the Protein-Protein Inter-
action (PPI) extraction task of BioCreative [5]. While an
extrinsic evaluation measures the performance of a system
in the context of a specific application, i.e. its utility in
the entire application, an intrinsic evaluation focuses on
measuring the performance of a system in isolation,
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independently from a specific application [6]. For example,
while the BioCreative PPI task is explained in the context
of database curation specifically, the potential application
of BioNLP-ST tasks is often broadly explained.
Until its second edition, the participants in BioNLP-

ST tasks were evaluated from a perspective of annota-
tion: The annotation instances in the submitted and
gold annotations are individually compared for evalua-
tion. For its third edition in 2013, BioNLP-ST attempted
to broaden the scope of its potential applications to
include KB construction, which is expected to be closer
to the interest of general domain scientists, e.g. biolo-
gists, and set it as its grand theme.
Among the tasks organized in BioNLP-ST, the Genia

Event (GE) task is the sole task that has continued from
the beginning [7-9]. For its third edition, the grand
theme - KB construction - was considered in the design
and implementation of the task: the coreference task [10]
was integrated, for improved sensitivity of knowledge
harvesting, and recently published full papers were added
to the benchmark dataset [9]. However, the evaluation of
the participating systems was still carried out in the same
way as previously, in the context of corpus annotation,
without implementing the grand theme into it much.
The work presented in this paper addresses extension

of the GE task evaluation, considering KB construction
as a potential application of the task. Specifically, what
is intended with the new evaluation is to measure the
effect of abstracting out schematic differences in annota-
tion, which is not a concern of domain scientists, but
rather of annotation practitioners. An example of sche-
matic differences in annotation is illustrated in Figures 1
and 2. The example text reads that the signaling cascade
that involves the protein MyD88 induces the expression
of the protein NFAT5. However, the interpretation is
represented differently in annotations in the two figures.
In Figure 1, the two words signaling and dependent are
annotated as triggering two successive regulation events,
whereas in Figure 2, the word dependent is not anno-
tated as triggering a regulation event, but as connecting
the protein MyD88 to the signaling cascade as a causal
factor. To annotation practitioners, and those who are
interested in automating the annotation, this is an
important issue, as it is related to the consistency of the
annotations. This is the perspective from which the

original evaluation is performed. We call it annotation-
oriented evaluation. Domain scientists, however, would
not be interested in such a difference, and would want
to avoid being affected by it during their use of a KB.
This is the perspective of the new evaluation, which we
call KB-oriented evaluation.
The paper reports the results of the KB-oriented eva-

luation on all of the final submissions to the GE task in
2013. It complements the overview paper for the task [9],
which provides a general introduction to the task and
reports the results of the annotation-oriented evaluation.
This paper also provides a comparison of the GE task

to the Gene Regulation Ontology (GRO) task [11], which
is to automatically annotate biomedical documents with
the Gene Regulation Ontology [12]. GRO is a conceptual
model of gene regulation. It includes 507 concepts, which
are cross-linked to such standard ontologies as Gene
Ontology and Sequence Ontology and are integrated into
a deep hierarchical structure via is-a and part-of rela-
tions. It is much larger than the Genia ontology, and its
concepts are generally more specific than the Genia
ontology concepts used in the previous GE tasks.
The complex structure of the GRO enables us to

evaluate participant systems at different abstraction/
generalization levels. However, its large size and complex
semantic representation make the event extraction based
on the ontology highly challenging. One of the issues of
the GRO task is that its dataset is small compared to the
size of the ontology. In this paper, we test whether the
conversion of the GE task dataset, whose ontology has a
large overlap with the GRO, into the GRO task may help
address this issue.

Methods
Representation
Since its first edition in 2009, the annotation of the
BioNLP-ST has been provided in the so-called a* format.
In addition to the a* format, in the third edition of the
GE task, the datasets are also provided in a new format,
which is motivated by the following two issues.
1. For ease of implementation: The a* format is actu-

ally a quite complex format for which to implement
reader and writer modules: it has to handle three delimi-
ter characters, tab, space, and colon, in a structural way,
and has to handle coordination of arguments based on
number suffixes. The complexity is an extra overhead

Figure 1 Annotation example 1 in visualization. MTb induces
NFAT5 gene expression via the MyD88-dependent signaling cascade

Figure 2 Annotation example 2 in visualization.
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that has nothing to do with the task itself. The burden of
the implementation prevents the participants from con-
centrating on the task. Using a more standard format
would let them spend more time on the task itself.
2. For flexible representation and retrieval of infor-

mation: As the a* format requires any piece of informa-
tion related to an event to be represented in an event-
centric n-ary relationship, it is hard to represent partial
information. For example, even if there is a system which
is very good at extracting causal relationships, since the
information cannot be represented without successfully
extracting some other part, e.g. the theme, of the relevant
event, there is no way to evaluate the potential of the sys-
tem. Also, from a KB perspective, the n-ary relationship
makes the representation unsuitable to inference, which
is necessary to provide flexible access to the contents of a
KB. For example, from the annotation in Figures 1 and 2,
users may want to retrieve the information that the pro-
tein MyD88 is a causal factor of NFAT5 gene expression,
regardless of how it is represented in annotation, which,
however, requires inference over the explicit annotation.
To fulfill a KB-oriented use case, a more inference-
friendly representation would be beneficial.
To address these issues, we present a new format. It is

a JSON application. Note that JSON is currently one of
the most widely used standard data formats and most
major programming languages already have public reader
and writer modules for it. Being provided with the bench-
mark dataset in JSON, the developers do not need to
implement reader and writer modules themselves. The
new format is also designed to be relation-centric, and all
the information is represented by binary relations, which
are more elementary than events. The new format is thus
flexible enough to represent various aspects of informa-
tion, and it is inference-friendly.
For example, the annotation illustrated in Figure 3 is

represented in the a* format as shown in Figure 4. The
format is basically a variation of the CSV (comma-sepa-
rated values) format with the tab character as the the
primary delimiter. In the format, the annotation state-
ments, which are n-tuples, are in the second column,
while the ID of each statement is in the first column.
The statements which have their ID beginning with the
prefix T are entity annotations, and they are in the form
of triples, (entity-type, beginning-caret-
offset, ending-caret-offset), which state that

the text span between the beginning- and ending-
caret-offsets denotes an entity of the entity-
type. In the a* format, the elements of the triple are
delimited by the space character. The statements
which have their ID beginning with the prefix E
are event annotations. They are in the form of typed
n-tuples, (event-type:trigger-entity-id,
arg1-type:arg1-entity-id, ...), representing
the predicate-argument structure of an event. The
order of the tuple, n, varies according to the number
of arguments. Note that in the example, the event E1
has two arguments, E2 (Theme) and T1 (Cause). As
the a* format is event-centric, the event is represented
as one statement representing its predicate-argument
structure, regardless of the number of arguments
involved in it.
Figure 5 shows the same annotation in the JSON for-

mat. As can be seen, the JSON format is more self-
descriptive than the a* format. A denotation type of
annotation, which is stored in the array denotations,
states that a span of text “denotes” an object. The rela-
tion type of annotation, which is stored in the array
relations, states that two objects, of which one is subject
and the other is object, are related to each other via a
predicate. Note that the JSON format is relation-centric:
a relation is represented by a single statement. In the
example, the two (binary) relations, R1 and R2, together
with the denotation, E1, correspond to the event E1 in
the a* format. Such a conversion from n-ary relation to
n binary relations is a standard process in description
logic [13]. As a relation can be represented individually,
a partial piece of information about an event, e.g. the
causal relation, R2, can be represented independently
from the other relation, R1, of the event. Through infer-
ence over relations, implicit information also can
become accessible. For example, by defining the relation
themeOf as a transitive one, it becomes straightforward
to access the information that the protein Sox6 nega-
tively regulates the protein Epsilon Globin. Note that the
denotation annotations also can be seen as a special
case of relation annotations, with text spans as their
subjects. For more detailed information on the JSON
format, readers are referred to the web document [14].
Considered at an abstract level, the pros and cons of

the two formats become clearer. The a* format is closer
Figure 3 Annotation example 3 in visualization.

Figure 4 Annotation example 3 in BioNLP a* format.
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to the relational database (RDB) model, i.e. tables, and
the JSON format is closer to the resource description fra-
mework (RDF) model, i.e. graphs. The former is often
more efficient for optimized applications, e.g. event-cen-
tric processing, while the latter is more flexible and infer-
ence-friendly. The GE task supports both models by
providing the benchmark dataset in both formats, and
also tool for converting between them.

KB construction
To evaluate the annotation submitted by the participants
from the perspective of KB construction, we built a KB
from the annotations of each participant. As the frame-
work of the KB, we have chosen to use the Resource
Description Framework (RDF) [15], a widely accepted
knowledge representation framework recommended by
the World Wide Web Consortium (W3C) [16].
As the vocabulary for RDF statements, some existing

open vocabularies were considered [17,18]. However, we
found that they are focused on retaining provenance of

information. As our purpose of constructing the KBs in
this work is for evaluation of annotation, we have chosen
to develop a minimal in-house vocabulary, which we call
text annotation ontology (TAO). Then, we implemented a
converter from the JSON format to RDF. In fact, the
JSON format is very close to RDF, as each annotation
statement is already a triple. Converting it to RDF is
explicating its semantics using an RDF vocabulary.
Figure 6 shows an annotation example in RDF using

TAO. As can be seen in lines, 6, 9, 12, and 15, each deno-
tation annotation introduces an entity which is of the
type tao:Context_entity. As the name implies, an
instance of the class tao:Context_entity is an
entity defined in a specific context, denoted by a span of
text. The predicate tao:denoted_by connects a con-
text entity, as the subject, to a span of text, as the object.
It is an inverse predicate of tao:denote. The URLs
used for the span specification, e.g. http://pubannotation.
org/docs/sourcedb/PMC/sourceid/1359074/divs/0/spans/
0-4, are dereferenceable ones which are provided by the

Figure 5 Annotation example 3 in JSON.

Figure 6 Annotation example 3 in RDF.
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PubAnnotation service [19]. Each relation annotation is
simply represented by a statement using either of the
predicates in the GE task namespace, e.g., genia:the-
meOf , or genia:causeOf .
Using the vocabulary, the annotation submitted by

each of the 10 participants has been converted into a
RDF graph, which then has been loaded into a RDF
store.

Queries
To evaluate the 10 KBs constructed from the final sub-
missions, 8 queries were prepared in SPARQL, as shown
in Table 1. The queries are designed to demonstrate the
effect of abstracting out schematic differences in annota-
tion. We consulted with biologists and bioinformaticians
to prepare queries useful to domain scientists, within
the scope of the GE task. However, this is not meant to

Table 1. Queries used for the KB evaluation

# Meaning SPARQL

Q1 Find the proteins that are in the context of gene expression. SELECT DISTINCT ?s1 WHERE {
?t1 a genia:Protein; tao:denoted_by ?s1 .
?e1 a genia:Gene_expression .
?t1 genia:themeOf ?e1.

}

Q2 Find the proteins that are in the context of localization. SELECT DISTINCT ?s1 WHERE {
?t1 a genia:Protein; tao:denoted_by ?s1 .
?e1 a genia:Localization .
?t1 genia:themeOf ?e1.

}

Q3 Find the protein that are in the context of binding. SELECT DISTINCT ?s1 WHERE {
?t1 a genia:Protein; tao:denoted_by ?s1 .
?e1 a genia:Binding .
?t1 genia:themeOf ?e1.

}

Q4 Find the protein pairs that bind to each other. SELECT DISTINCT ?s1 ?s2 WHERE {
?t1 a genia:Protein; tao:denoted_by ?s1 .
?t2 a genia:Protein; tao:denoted_by ?s2 .
?e1 a genia:Binding .
?t1 genia:themeOf ?e1 .
?t2 genia:themeOf ?e1 .
FILTER (?s1 < ?s2)

}

Q5 Find the protein pairs of which one regulates the other. SELECT DISTINCT ?s1 ?s2 WHERE {
?t1 a genia:Protein; tao:denoted_by ?s1 .
?t2 a genia:Protein; tao:denoted_by ?s2 .
?t1 genia:themeOf ?e1.
?t2 genia:causeOf ?e1.

}

Q6 Find the protein pairs of which one regulates the other (transitive). SELECT DISTINCT ?s1 ?s2 WHERE {
?t1 a genia:Protein; tao:denoted_by ?s1 .
?t2 a genia:Protein; tao:denoted_by ?s2 .
?t1 genia:themeOf+ ?e1.
?t2 genia:causeOf ?e1.

}

Q7 Find the protein pairs of which one regulates expression of the other. SELECT DISTINCT ?s1 ?s2 WHERE {
?t1 a genia:Protein; tao:denoted_by ?s1 .
?t2 a genia:Protein; tao:denoted_by ?s2 .
?e1 a genia:Gene_expression .
?t1 genia:themeOf ?e1.
?e1 genia:themeOf ?e2.
?t2 genia:causeOf ?e2.

}

Q8 Find the protein pairs of which one regulates expression of the other (transitive). SELECT DISTINCT ?s1 ?s2 WHERE {
?t1 a genia:Protein; tao:denoted_by ?s1 .
?t2 a genia:Protein; tao:denoted_by ?s2 .
?e1 a genia:Gene_expression .
?t1 genia:themeOf ?e1.
?e1 genia:themeOf+ ?e2.
?t2 genia:causeOf ?e2.

}
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be an extrinsic evaluation, and the set of queries is not
comprehensive. Rather, it is meant to be an intrinsic
evaluation, to highlight focused features of a system.
Each of the prepared queries thus has its own goal,
which is described below.
Note that a characteristic feature of BioNLP-ST anno-

tation is that the annotation instances are all anchored
to the text pieces that refer to them, and such annota-
tion can be considered as a semantic index to specific
context. As it is a strong feature of BioNLP-ST annota-
tion, we assume that users of the KBs induced from
such annotation would want to retrieve information
together with the specific parts of literature that talk
about it for evidence or for the full context of the infor-
mation. The SPARQL queries in the table are con-
structed considering that.
The first three queries, Q1, Q2, and Q3, represent

simple query needs: to find proteins in the events of a
specific type, Gene_expression, Localization, and Binding,
respectively. Note that in the queries, the proteins and
the events are to be bound to the variables ?t1 and ?e1,
respectively, and that for the reason discussed above,
they are formulated to return the text spans, to be
bound to the variable ?s1, that “denotes” the proteins.
The two queries Q3 and Q4 represent different levels

of specificity of similar search needs: while Q3 is to
search for single proteins in the context of binding, Q4
is to search for protein pairs binding to each other.
Note that in the SPARQL construct of Q4, the two pro-
teins bound to the variables ?t1 and ?t2 are themes of
the event bound to ?e1, and they need to be different to
each other (stated by the FILTER constraint).
The next two queries, Q5 and Q6, are prepared to

compare search performance with and without infer-
ence: both are to search for protein pairs of which one
regulates the other. However, while Q6 uses transitivity
reasoning (indicated by the plus sign, ‘+’) on the predi-
cate, genia:themeOf , Q5 does not. By using the
transitivity inference, when it is known that A is a
theme of B and B is a theme of C, it is assumed that A
is also a theme of C.
Figure 1 shows an annotation example which can be

found by Q6 but cannot be found by Q5. The protein
NFAT5 is a theme of the Gene_expression event
represented by expression, and it is not retrieved by Q5.
However, the Gene_expression event is a theme of
the regulation event represented by signaling, which is
again a theme of the regulation event represented by
dependent. By the transitivity inference, NFAT5 is
assumed to be a theme of the regulation event repre-
sented by dependent. Through the process, the protein
MyD88 can be found as a regulatory factor of NFAT5.
As discussed in the section Background, alternative
annotation is possible. For example, Figure 2 shows a

possible variation of the annotation: it does not capture
the word dependent as a trigger for a regulation event,
but instead it connects the protein MyD88 as a cause to
the regulation event expressed by signaling. Note that
such an annotation variation would not be important to
the domain scientists who are potential users of the
KBs, but it is rather a matter of annotation guidelines
and consistency. Therefore, from a KB perspective, it
would be a natural demand to abstract out such an
annotation difference. The transitive inference in the
SPARQL query Q6 implements such a demand.
The last two queries Q7 and Q8 represent more speci-

fic query needs to search for the causal factors of pro-
teins in a specific type of event (Gene_expression
in the queries), with and without transitivity inference.

KB evaluation
Using the method described in the section KB construc-
tion, each final submission to the GE task is converted
into RDF statements which are then stored in a graph.
From the 10 submissions, 10 graphs are generated, each
of which representing a KB to be constructed from the
annotation in the corresponding submission. To repre-
sent a gold KB, a gold graph is generated from the gold
annotation of the test data set, using the same method.
The 11 graphs are then stored in a RDF store (specifi-
cally, Virtuoso Open Source Edition version 7.1.0 is
used).
The SPARQL queries explained in the section Queries

are submitted to the RDF store, and the results from
each graph are compared to the results from the gold
graph. The results are then evaluated in terms of recall,
precision and F1-score.

Comparison of the GE and GRO tasks
Table 2 shows the basic statistics of the GE and GRO
datasets. The dataset of the GE task consists of full
papers collected from PubMed Central [20], using the
MeSH terms [21] NF-kappa B and transcription factors.
The dataset of the GRO task consists of abstracts col-
lected from PubMed [22], using a list of human tran-
scription factors. It is thus expected that the subject
domain of the two datasets would be close to each
other, i.e. NF-kappa B transcription factors vs. human
transcription factors, while the nature of the texts might
be quite different, i.e. full papers vs. abstracts [23].
We tested whether the dataset of the GE task can be

used to improve the performance of participant systems
when it is converted into the GRO task format, and vice
versa. We converted the datasets of the two tasks into
each other’s format to measure the overlap of the two
tasks in terms of corpus annotations as well. This may
help lead us to a unified framework for the shared tasks.
We performed the conversion via equivalence mappings
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between the concepts of the two task ontologies. Table 3
shows the equivalence mappings used for the conversion.
In fact, the GE’13 corpora also used the concepts of Dea-
cetylation and Ubiquitination, but we ignored them since
there is no correspondent in GRO for them. Note that
we mapped Binding from Genia to BindingToProtein
from GRO, because all participants of Binding events in
the GE’13 corpora are proteins.
We converted the training data of the two tasks into

each other’s format according to the mappings in Table 3.
When converting the GE data to the GRO task, the Genia
concepts are replaced with the corresponding GRO con-
cepts according to the table. When converting the GRO
data to the GE task, not only the GRO concepts found in
the table, but also those whose ancestors have mappings
to the Genia concepts, are converted. For example, an
instance of the GRO concept RegulationOfGeneExpression
is converted to an instance of the Genia concept Regula-
tion, since RegulationOf GeneExpression is a subconcept of
the GRO concept RegulatoryProcess, which is equivalent
to Regulation.
We used the converted data for increasing the training

data set size of the two tasks, especially where the GRO
task’s participants suffered from the relatively low amount
of training data. For example, we combined the GRO task
training data and the conversion of the GE task training
data and used them for training the TEES system [24] on

the GRO task. We measured the system performance
before and after the data conversion to see its effect and
analyzed the results. We also tested the other conversion,
and with another event extraction system as reported in
the next section.

Results and discussions
Results of KB-oriented evaluation
This section reports the results of the KB-oriented evalua-
tion that has been carried out on the KBs induced from
the final submissions to the GE task in 2013. For the pur-
pose of comparison, the results of annotation-oriented
evaluation on the four event types, Gene-expression, Loca-
lization, Binding, and REGULATION-ALL (which sub-
sumes all the regulation types, Regulation, Positive- and
Negative-regulation), are shown in Tables 4 and 5.
Table 6 shows the results for the queries Q1 and Q2.

Each row in the table shows the result from the KB
induced from the annotation submitted by the team indi-
cated by the label in the first column. Note that GS means
the KB induced from the gold annotation. With these sim-
ple queries, which do not require abstraction or inference,
the results are similar to the results from the annotation-
oriented evaluation. There is a small difference in the
number of true positives, which is because the annotation-
oriented evaluation counts the number of “events”, while
the KB-oriented evaluation counts the number of proteins
involved in the events.
Table 7 shows how much the performance drops when

pairs of binding proteins are required to be retrieved
instead of single proteins. The performance drop is sub-
stantial, even considering that the complexity is expected
to be quadratic: when the performance of finding single
proteins is P, the performance of finding pairs is expected
to be P × P, e.g., 59.12% × 59.12% = 34.95% vs. 28.19% in
the case of TEES-2.1, and 63.20% × 63.20% = 39.94% vs.
19.35% in the case of HDS4NLP. This is because even after
two proteins are correctly found to be connected to the
same trigger indicating the event Binding, it still needs to
be determined whether the two proteins are involved in a
single binding event (collective parsing) or in two separate
events (distributive parsing). Note that the terms, collective
and distributive parsing, are inspired from the linguistic
terms collective and distributive reading. The results indi-
cate that the system HDS4NLP is generally good at
extracting individual predicate-argument relations (see

Table 2. Basic statistics of GE’13 and GRO’13 benchmark datasets

GE’13 GRO’13

Train. Devel. Test Train. Devel. Test

Documents 10 papers 10 papers 14 papers 150 abstracts 50 abstracts 100 abstracts

Entities 3692 4452 4686 5902 1910 4007

Events 2817 3199 3348 2175 747 2319

Table 3. Mappings between the Genia ontology concepts
for the GE’13 task and the GRO concepts for the GRO’13
task

Genia concept GRO concept

Acetylation Acetylation

Binding BindingToProtein

Gene_expression GeneExpression

Localization Localization

Negative_regulation NegativeRegulation

Phosphorylation Phosphorylation

Positive_regulation PositiveRegulation

Protein Gene

Protein Protein

Protein_catabolism ProteinCatabolism

Protein_modification ProteinModification

Regulation RegulatoryProcess

Transcription Transcription
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Table 4. Results of annotation-oriented evaluation on Gene-expression and Localization. Acronyms: GS=gold standard,
P=positives, TP=true positives, R=recall, P=precision, F=f-score

Gene_expression Localization

P TP R / P / F P TP R / P / F

GS 619 619 99 99 -

EVEX 600 504 81.42 / 84.00 / 82.69 56 47 47.47 / 83.93 / 60.65

TEES-2.1 600 504 81.42 / 84.00 / 82.69 59 50 50.51 / 84.75 / 63.29

BioSEM 526 457 73.83 / 86.88 / 79.83 47 42 42.42 / 89.36 / 57.53

NCBI 641 495 79.97 / 77.22 / 78.57 47 39 39.39 / 82.98 / 53.42

DlutNLP 580 480 77.54 / 82.76 / 80.07 39 35 35.35 / 89.74 / 50.72

HDS4NLP 556 501 80.94 / 90.11 / 85.28 66 50 50.51 / 75.76 / 60.61

NICTANLM 761 506 81.74 / 66.49 / 73.33 52 31 31.31 / 59.62 / 41.06

USheff 450 386 62.36 / 85.78 / 72.22 27 23 23.23 / 85.19 / 36.51

UZH 497 406 65.59 / 81.69 / 72.76 39 34 34.34 / 87.18 / 49.28

HCMUS 790 488 78.84 / 61.77 / 69.27 61 32 32.32 / 52.46 / 40.00

Table 5. Results of annotation-oriented evaluation on Binding and REGULATION-ALL. Acronyms: GS=gold standard,
P=positives, TP=true positives, R=recall, P=precision, F=f-score

Binding REGULATION_ALL

P TP R / P / F P TP R / P / F

GS 333 333 - 1944 1944 -

EVEX 306 137 41.14 / 44.77 / 42.88 1336 630 32.41 / 47.16 / 38.41

TEES-2.1 318 141 42.34 / 44.34 / 43.32 1436 643 33.08 / 44.78 / 38.05

BioSEM 302 158 47.45 / 52.32 / 49.76 1115 547 28.19 / 49.06 / 35.80

NCBI 299 125 37.54 / 41.81 / 39.56 865 481 24.74 / 55.61 / 34.25

DlutNLP 308 136 40.84 / 44.16 / 42.43 1185 515 26.49 / 43.46 / 32.92

HDS4NLP 412 139 41.74 / 33.74 / 37.32 780 411 21.14 / 52.69 / 30.18

NICTANLM 344 107 32.13 / 31.10 / 31.61 891 420 21.60 / 47.14 / 29.63

USheff 224 105 31.53 / 46.88 / 37.70 1050 324 16.67 / 30.86 / 21.64

UZH 264 74 22.22 / 28.03 / 24.79 1912 381 19.60 / 19.93 / 19.76

HCMUS 478 129 38.74 / 26.99 / 31.81 693 215 11.06 / 31.02 / 16.31

Table 6. Results of KB-oriented evaluation for Q1 (Find the proteins in the context of gene expression) and Q2 (Find
the proteins in the context of localization)

Q1 (Gene_expression) Q2 (Localization)

P TP R / P / F P TP R / P / F

GS 604 604 - 94 94 -

EVEX 604 497 82.28 / 82.28 / 82.28 56 45 47.87 / 80.36 / 60.00

TEES-2.1 604 497 82.28 / 82.28 / 82.28 59 48 51.06 / 81.36 / 62.75

BioSEM 537 456 75.50 / 84.92 / 79.93 52 43 45.74 / 82.69 / 58.90

NCBI 647 493 81.62 / 76.20 / 78.82 46 38 40.43 / 82.61 / 54.29

DlutNLP 591 475 78.64 / 80.37 / 79.50 38 35 37.23 / 92.11 / 53.03

HDS4NLP 563 500 82.78 / 88.81 / 85.69 68 50 53.19 / 73.53 / 61.73

NICTANLM 748 501 82.95 / 66.98 / 74.11 52 30 31.91 / 57.69 / 41.10

USheff 452 386 63.91 / 85.40 / 73.11 26 23 24.47 / 88.46 / 38.33

UZH 496 404 66.89 / 81.45 / 73.45 40 34 36.17 / 85.00 / 50.75

HCMUS 763 481 79.64 / 63.04 / 70.37 68 31 32.98 / 45.59 / 38.27

Acronyms: GS=gold standard, P=positives, TP=true positives, R=recall, P=precision, F=f-score.

Kim et al. BMC Bioinformatics 2015, 16(Suppl 10):S3
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also Table 6), while TEES-2.1 does a much better job in
determining collective vs. distributive parsing.
Table 8 shows how much the performance changes

when transitive inference is used to abstract out the
schematic difference in annotations, which is a concern
of annotation-oriented evaluation, but not of KB-
oriented evaluation. Some systems exhibit much better
performance in KB-oriented evaluation than in annota-
tion- oriented evaluation, e.g., TEES-2.1 (20.81% ®
46.02%), NCBI (11.27% ® 29.81%), and NICTANLM
(7.19% ® 27.12%). Note that regulation events in the
GE task annotation are represented in a recursive man-
ner, which may require more computation than that for
simple type events. When the top two systems, EVEX
and TEES-2.1, are compared, it may be said that EVEX
is more optimized to the annotation-oriented evaluation,
which is the original official evaluation of the GE task.
Note that it is often the case for a retraining approach
to be optimized to the object function. It is notable that

while in the context of automatic annotation, the perfor-
mance with regulation-type events looks almost too
poor to be useful, in the context of KB application, it is
much more encouraging, though not sufficient. The
observation in Table 9 is similar to that in Table 8 as
the contrast may be less dramatic.
The experimental results of the extended evaluation

provide additional insight to the performance of the sys-
tems. For example, while EVEX is evaluated to perform
best for production of gold annotation. TEES-2.1 is eval-
uated better when the application is KB construction.

Results of task dataset conversion
Table 10 shows the statistics of the conversion using the
equivalence correspondences. As shown in the table,
most of the entities and events of the GE data are con-
vertible to the GRO task, while many of the entity
events of the GRO data are not. Table 11 shows the
most frequent GRO concepts that correspond to Genia

Table 7. Results of KB-oriented evaluation for Q3 (Find the protein in the context of binding) and Q4 (Find the
protein pairs binding to each other)

Q4 (pair Binding) Q4 (pair Binding)

P TP R / P / F P TP R / P / F

GS 300 300 - 83 83 -

EVEX 324 182 60.67 / 56.17 / 58.33 122 27 32.53 / 22.13 / 26.34

TEES-2.1 336 188 62.67 / 55.95 / 59.12 144 32 38.55 / 22.22 / 28.19

BioSEM 355 182 60.67 / 51.27 / 55.57 114 21 25.30 / 18.42 / 21.32

NCBI 318 177 59.00 / 55.66 / 57.28 167 24 28.92 / 14.37 / 19.20

DlutNLP 352 193 64.33 / 54.83 / 59.20 179 25 30.12 / 13.97 / 19.08

HDS4NLP 393 219 73.00 / 55.73 / 63.20 72 15 18.07 / 20.83 / 19.35

NICTANLM 369 175 58.33 / 47.43 / 52.32 177 21 25.30 / 11.86 / 16.15

USheff 252 156 52.00 / 61.90 / 56.52 43 13 15.66 / 30.23 / 20.63

UZH 255 143 47.67 / 56.08 / 51.53 0 0 00.00 / 00.00 / 00.00

HCMUS 491 207 69.00 / 42.16 / 52.34 75 19 22.89 / 25.33 / 24.05

Acronyms: GS=gold standard, P=positives, TP=true positives, R=recall, P=precision, F=f-score.

Table 8. Results of KB evaluation for Q5 (Find the protein pairs of which one regulates the other) and Q6 (Find the
protein pairs of which one regulates the other, transitive)

Q5 (Regulation) Q6 (transitive Regulation)

P TP R / P / F P TP R / P / F

GS 108 108 - 360 360 -

EVEX 61 18 16.67 / 29.51 / 21.30 197 126 35.00 / 63.96 / 45.24

TEES-2.1 65 18 16.67 / 27.69 / 20.81 218 133 36.94 / 61.01 / 46.02

BioSEM 45 14 12.96 / 31.11 / 18.30 155 90 25.00 / 58.06 / 34.95

NCBI 34 8 07.41 / 23.53 / 11.27 103 69 19.17 / 66.99 / 29.81

DlutNLP 69 20 18.52 / 28.99 / 22.60 174 106 29.44 / 60.92 / 39.70

HDS4NLP 31 13 12.04 / 41.94 / 18.71 31 17 04.72 / 54.84 / 08.70

NICTANLM 31 5 04.63 / 16.13 / 07.19 112 64 17.78 / 57.14 / 27.12

USheff 18 5 04.63 / 27.78 / 07.94 60 35 09.72 / 58.33 / 16.67

UZH 6 0 00.00 / 00.00 / 00.00 21 8 02.22 / 38.10 / 04.20

HCMUS 94 9 08.33 / 09.57 / 08.91 156 33 09.17 / 21.15 / 12.79

Acronyms: GS=gold standard, P=positives, TP=true positives, R=recall, P=precision, F=f-score.
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concepts and their ancestor concepts. Note that among
the 4,193 convertible entities, 1,042 entities (24.9%) are
converted via proper subsump- tion (or non-equivalence)
relations between the two ontologies, e.g., Protein >
TranscriptionFactor, where A > B indicates the concept
A subsumes the concept B; in other words, B is a subcon-
cept of A. Table 12 shows the most frequent GRO con-
cepts that are not convertible to the GE task, including
those that indicate where the gene regulation events take
place (e.g. organism, tissue, cell), DNA without specific
location of interest, protein domains, chemicals, quantita-
tive changes without clear causal effects, and disease.
We converted the training data of each task to the

other task format and used the converted data as addi-
tional training data for the latter task. For example, we
converted the GRO task training data to the GE task for-
mat, used it together with the original training data of
the GE task to train the TEES system on the GE task,
and evaluated the system against the GE task test data.
We followed the same procedure for the GE->GRO con-
version. We used the default settings of version 2.1.1 of
the system [25].
The GRO®GE conversion (i.e. using the converted

GRO data as additional training data for the GE task)
resulted in an increase of the performance from 38.2
F-score to 42.2 F-score. The conversion enhanced the
system performance in most of the event classes, which
may mean that the GE task requires more training data

to saturate the system performance and that the class
(or concept) distribution of the convertible data of the
GRO task is not heavily biased in comparison with the
GE task.
However, the GE®GRO shows a slightly negative

effect on the performance of the TEES system: The origi-
nal performance of the system in terms of F-measure was
24.9%, while it shows 24.0% F-measure with the addi-
tional data from the GE task, dropping F-measure by 0.9
percentage points. Table 13 shows the performance
change for some individual GRO concepts by the GE-
>GRO conversion. The first five concepts in the table are
those whose instances are increased by the data conver-
sion, but whose performance changes are below 5 per-
centage points. The last four concepts in the table are
those whose performance has changed by more than 5
percentage points and from which true positives identi-
fied by the system before the data conversion were above
10. Note that all these four concepts do not obtain any
new instances from the data conversion. As shown in the
table, all the four concepts show a performance drop.
This performance difference between the concepts that

obtained more instances from the data conversion and
those that did not may be due to the following factors: 1)
The five GRO concepts populated with additional
instances from the GE task are already highly populated
in the original GRO corpora, and thus their performance
is not affected much. The average number of instances
for the populated event concepts in the GRO’13 training
data is 48, while that of all event concepts is only 13 (see
Table 14). 2) The data conversion increases the imbal-
ance of instances among GRO concepts and causes over-
fitting and thereby performance drop. The average
number of instances per event concept that are converted
from the GE’13 training data is 287, which is larger than
the overall average 13 (see Table 14). 3) The different

Table 9. Results of KB evaluation for Q7 (Find the protein pairs of which one regulates expression of the other) and
Q8 (Find the protein pairs of which one regulates expression of the other, transitive)

Q7 (Regulation of Exp) Q8 (transitive Regulation of Exp)

P TP R / P / F P TP R / P / F

GS 111 111 - 128 128 -

EVEX 52 38 34.23 / 73.08 / 46.63 61 50 39.06 / 81.97 / 52.91

TEES-2.1 67 43 38.74 / 64.18 / 48.31 77 56 43.75 / 72.73 / 54.63

BioSEM 26 21 18.92 / 80.77 / 30.66 31 25 19.53 / 80.65 / 31.45

NCBI 37 25 22.52 / 67.57 / 33.78 37 32 25.00 / 86.49 / 38.79

DlutNLP 49 36 32.43 / 73.47 / 45.00 52 41 32.03 / 78.85 / 45.56

HDS4NLP 0 0 00.00 / 00.00 / 00.00 0 0 00.00 / 00.00 / 00.00

NICTANLM 42 24 21.62 / 57.14 / 31.37 40 30 23.44 / 75.00 / 35.71

USheff 31 20 18.02 / 64.52 / 28.17 29 20 15.63 / 68.97 / 25.48

UZH 10 2 01.80 / 20.00 / 03.31 10 3 02.34 / 30.00 / 04.35

HCMUS 38 16 14.41 / 42.11 / 21.48 38 16 12.50 / 42.11 / 19.28

Acronyms: GS=gold standard, P=positives, TP=true positives, R=recall, P=precision, F=f-score, Exp=Gene_expression.

Table 10. Statistics of conversion rates

GE ® GRO GRO ® GE

Entities Convertible 6,449 (98.1%) 4,193 (51.9%)

Non-convertible 125 (1.9%) 3,881 (48.1%)

Events Convertible 3,436 (92.5%) 1,094 (25.5%)

Non-convertible 280 (7.5%) 3,188 (74.6%)

Kim et al. BMC Bioinformatics 2015, 16(Suppl 10):S3
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Table 11. Most frequent GRO concepts and their ancestor concepts that correspond to Genia concepts

Genia concept (count) GRO concepts and their ancestors corresponding to the Genia concept (count)

Protein (2887) Protein (1521)

Gene (482)

TranscriptionFactor < TranscriptionRegulator < Protein (294)

Enzyme < Protein (264)

ProteinSubunit < Protein (143)

Regulation (289) RegulatoryProcess (221)

PositiveRegulationOfGeneExpression < RegulationOfGeneExpression < RegulatoryProcess (22)

NegativeRegulationOfTranscription < RegulationOfTranscription < RegulatoryProcess (18)

Gene_expression (237) GeneExpression (237)

Positive_regulation (229) PositiveRegulation (229)

Negative_regulation (145) NegativeRegulation (145)

Binding (126) BindingToProtein (126)

Localization (112) Localization (62)

Transport < Localization (36)

ProteinTargeting < ProteinTransport < Localization (12)

Transcription (105) Transcription (83)

TranscriptionOfGene < Transcription (22)

Table 12. Most frequent GRO concepts that are not convertible to Genia

Level 3 Level 4 Level 5 Level 6 Count

(under the branch of Continuant > PhysicalContinuant)

LivingEntity > Organism > Eukaryote 470

LivingEntity > Cell 383

Tissue 218

MolecularEntity > InformationBiopolymer > NucleicAcid > DNA 193

MolecularEntity > InformationBiopolymer > ProteinDomain 171

MolecularEntity > Chemical > OrganicChemical > AminoAcid 129

CellComponent 122

(under the branch of Occurrent > Process)

Increase 92

Disease 91

PhysicalInteraction > Binding > BindingOfProteinToDNA 71

MolecularProcess > Pathway > SignalingPathway 67

Mutation 47

The count of the last column is the count of the concept at the lowest level in each row.

Table 13. Performance changes for different GRO concepts after using the additional converted data from the GE task

Concept No. of instances of concept in
the original training dataset of
GRO’13

No. of instances of concept
converted from the GE’13
training dataset

F-measure before
conversion
integration

F-measure after
conversion
integration

Change

GeneExpression 221 748 58.8% 63.7% 4.9%

PositiveRegulation 206 785 16.3% 13.7% −2.6%

RegulatoryProcess 183 305 24.1% 23.7% −0.4%

NegativeRegulation 124 512 16.5% 16.1% −0.4%

BindingToProtein 126 201 32.7% 32.1% −0.6%

SignalingPathway 66 0 54.6% 35.3% −19.3%

CellGrowth 17 0 32.3% 26.4% −5.9%

Mutation 45 0 23.3% 17.9% −5.4%

Disease 91 0 19.0% 10.1% −8.9%

Kim et al. BMC Bioinformatics 2015, 16(Suppl 10):S3
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styles of annotation between the two tasks [26] may lead
to heterogeneity of the combined data and thereby to lit-
tle synergistic gain.
We also examined whether the differences between the

two ontologies of the two tasks show specific impact on
system performance. We considered two differences: 1)
GRO differentiates between Gene and Protein, while the
Genia ontology has only the Protein concept; and 2) GRO
has more specific subconcepts of events than Genia (e.g.
PositiveRegulationOfGeneExpression < PositiveRegula-
tion). First, as shown in Table 11, 1,521 instances of the
GRO concept “Protein” and 482 instances of the GRO
concept “Gene” were converted to the Genia concept
“Protein”. If we only consider the GRO events at least one
of whose participants is a Gene instance or a Protein
instance, 570 events with a Protein instance and 116
events with a Gene instance were converted to the corre-
sponding Genia events with Protein instances. We assume
that these ratios of 25% (entity) and 17% (event) of Gene-
specific information in the GRO dataset would be similarly
found in the GE dataset, since the two datasets have large
overlaps. Second, as shown in Table 11, around 90% of the
GRO event instances are mapped to the equivalent Genia
concepts, while the rest belong to the GRO concepts that
are more specific than the mapped Genia concepts. In
short, the conversion of the GE data to the GRO format
ignores the fact that 10%-17% of the event instances
should be mapped to more specific concepts.

We compared the changes in errors (i.e. false posi-
tives, false negatives) of events that are related to the
differences by the data conversion. Table 15 shows the
number of errors in the events at least one of whose
participants (i.e. agent, patient) is either a Gene or Pro-
tein instance before and after the data conversion. As
shown in the table, it is not clear if the data conversion
has a positive or negative effect on the system perfor-
mance. Table 16 shows the number of errors in the
events of frequent subconcepts of the GRO concepts that
have equivalent Genia concepts (e.g. PositiveRegulation).
This table also does not show any definite effect of the
data conversion. These indefinite results may be due to
the small ratios of the affected instances.
We also tested the effect of the GE®GRO conversion

on a rule-based system [27]. (TEES is based on machine
learning.) The rule-based system was developed for
populating the E. coli transcription regulatory database
RegulonDB, and its results can be used for the GRO task
evaluation since the system represents all of the events
for database population with the GRO. Note, however,
that this experiment is preliminary since the system has
not been seriously adapted for the GRO task. The rule-
based system also shows a slight performance drop (from
16.3% to 15.2%). The highest performance gain was made
for the concept ProteinCatabolism (from 0% to 33.3%;
7 true instances), which was benefited by the data con-
version (see Table 3), while the largest performance drop
was seen for BindingOfTranscriptionFactor (from 19.4%
to 6.5%; 25 true instances), which was not benefited by
the data conversion.

Conclusions
The third edition of the BioNLP-ST was organized with
the grand theme of knowledge base construction, in
order to extend the potential applications of the tasks
by more carefully considering the perspective of domain
scientists. The paper presents an extended evaluation -
the KB-oriented evaluation - of the GE task, to better
fulfill the grand theme. Experimental results suggest that
the participating systems may be evaluated differently in
different application contexts, annotation vs. KB.

Table 14. Average number of instances per ontology
concept

(per applicable concept) GE GRO

Average number of instances 82 13

Average number of convertible instances to the other task 287 47

Table 15. Changes of errors in events with at least one
Gene/Protein participant by the data conversion

Before conversion After conversion

FP FN FP FN

Protein 85 121 67 125

Gene 26 58 31 57

Table 16. Changes of errors for frequent subconcepts of the GRO concepts that have equivalent correspondent Genia
concepts, by the data conversion

Concept No. of instances Before conversion After conversion

FP FN FP FN

BindingOfProteinToDNA 55 42 45 34 46

PositiveRegulationOfGeneExpression 33 11 25 6 28

Heterodimerization 32 6 25 4 25

BindingOfTranscriptionFactorToDNA 25 0 25 0 25

PositiveRegulationOfTranscription 24 0 4 0 4

FP stands for false positives and FN stands for false negatives.

Kim et al. BMC Bioinformatics 2015, 16(Suppl 10):S3
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The paper also presents a comparison of the GE task
to the GRO task toward a KB with richer semantics.
The inter-task resource conversion was found useful
only when the converted data did not bias the class dis-
tribution of the original data. In the case of GE®GRO
conversion, it could not improve either a machine learn-
ing-based system or a rule-based system.
As future work, the KB-oriented evaluation will be made

publicly available as an automatic online service, so that
the participants of the task can consider the aspect of KB-
oriented evaluation during their system development.
While the evaluation was carried out as an intrinsic eva-
luation, exploring its connection to a relevant extrinsic
evaluation, e.g., Task 2 (Biomedical question answering
over interlinked data) of Question Answering over Linked
Data (QALD)-4 [28], should be beneficial. Also, the com-
parison, and eventually an integration, of the GE and GRO
tasks will be explored toward information extraction (IE)
for KB with richer semantics.
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