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Abstract
Background:  Many RNA viruses do not have a single, representative genome but instead form a
set of related variants that has been called a quasispecies. The sequence variability of such viruses
presents a significant bioinformatics challenge. In order for the sequence information to be
understood, the complete mutational spectrum needs to be distilled to a biologically relevant and
analyzable representation.

Results:  Here, we develop a "selection mapping" algorithm--QUASI--that identifies the positively
selected variants of viral proteins. The key to the selection mapping algorithm is the identification
of particular replacement mutations that are overabundant relative to silent mutations at each
codon (e.g., threonine at hemagglutinin position 262). Selection mapping identifies such
replacement mutations as positively selected. Conversely, selection mapping recognizes negatively
selected variants as mutational "noise" (e.g., serine at hemagglutinin position 262).

Conclusion:  Selection mapping is a fundamental improvement over earlier methods (e.g., dN/dS)
that identify positive selection at codons but do not identify which amino acids at these codons
confer selective advantage. Using QUASI's selection maps, we characterize the selected mutational
landscapes of influenza A H3 hemagglutinin, HIV-1 reverse transcriptase, and HIV-1 gp120.

Background
Antigenic drift and the generation of viral quasispecies
Some RNA viruses form a quasispecies--a set of related

viral variants that coexist in field populations and even

within single infected individuals (reviewed in

[1,2,3,4,5]). The emergence of immunologically distinct

members of a viral quasispecies through mutation and

subsequent immune selection is called "antigenic drift."

Antigenic drift is thought to be important in human im-

munodeficiency virus (HIV) infection and the continuing

seasonal influenza epidemics because immunity gener-

ated against one viral quasispecies member selects for

escape variants. Attributed in part to antigenic drift are

the moderately high failure rate and the short-lived effi-

cacy of influenza vaccines [6], the failure of synthetic

foot-and-mouth disease virus vaccines [7], and the ina-

bility of recombinant HIV vaccines to provide complete

protection against field strains of the virus [8].

The hemagglutinin (HA) envelope surface glycoprotein-

-the major neutralizing determinant of influenza A--is a

classic example of an antigenically drifting protein [9].

Walter Gerhard and colleagues demonstrated that the

immune pressure exerted by monoclonal antibodies
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(Abs) selects for HA escape mutants in model systems

[10,11]. Later, Dimmock and colleagues showed that pol-

yclonal anti-sera also select for escape mutants [12,13].

Similarly, much of the observed variability of glycopro-
tein 120 (gp120), the principal surface antigen of HIV, is

thought to reflect antigenic drift [14,15,16,17]. The corre-

lation of intra-patient viral diversity with immune re-

sponse strength has been cited as evidence that the

immune response is a selective factor in HIV antigenic

drift [18,19,20,21,22].

Phylogenetic analyses describe divergence within a viral

population, and these methods have been used to infer

the selective advantages of viral variation

[18,19,20,21,22,23,24,25,26,27,28,29,30]. A more direct

indication of the selective advantage gained through var-

iation is an observed overabundance of replacement mu-

tations relative to silent mutations in viral proteins [31].

Such analyses of gp120 and its V regions indicate that re-

placement mutations are generally over-represented in

this protein and thus appear to confer selective advan-

tage to HIV-1 [22,24,25,26,27,28,29,30,32,33,34,35]. In

more detailed analyses, several groups tested individual

codons for replacement mutations that are, as an aggre-

gate, overabundant [23,36,37,38]. However, none of

these methods determine which replacement mutations

are actually positively selected. Also, when replacement

mutations of varying fitness are lumped together, posi-

tively selected mutations may remain undetected among
negatively selected mutations.

To overcome these limitations, we have developed a "se-

lection mapping" algorithm. The cornerstone of selec-

tion mapping is the testing of each observed replacement

mutation at each codon to identify those particular re-

placement mutations that are overabundant relative to

silent mutations at that codon. Such replacement muta-

tions are determined to be positively selected. Negatively

selected variants are recognized as "noise" and are there-

after ignored. Here, we use the selection mapping meth-

od to identify the positively selected variants of influenza

A HA (H3 serotype), HIV-1 reverse transcriptase (RT),

and HIV-1 gp120.

Results and Discussion
Selection map of influenza A H3 hemagglutinin
QUASI identifies 25 HA codons where one or more re-

placement mutations are positively selected in the influ-

enza A H3 virus (Fig. 1). [From our neutral drift testing

of QUASI, we expect a maximum of about 2-3 false posi-

tives (see Materials and Methods)]. The distribution of

these positively selected codons is of particular interest.

Without exception, the codons where variants are posi-

tively selected are on the HA surface (Fig. 2, left). The
parsimonious explanation of this result is that HA vari-

ants are primarily selected for escape from B-cell immu-

nity. If T-cell immunity is instead the primary selective

force affecting HA variation, then either all T-cell immu-

nity escape variants are coincidentally solvent-exposed,
or HA T-cell epitopes are determined by Ab protection

[39]. These 25 codons include 13 outside those identified

as positively selected by Walter Fitch and colleagues

[40]. We attribute our new findings primarily to sites

where many variants are negatively selected but where at

least one variant is positively selected. The Fitch group

also identifies 6 additional codons as positively selected.

We believe that these are false positives caused by the

Fitch group's assumption that HA is, on average, neutral-

ly drifting; these six codons may be less negatively select-

ed than average, but they nevertheless appear to be

negatively selected. Additionally, our data, while largely

the same as those analyzed by the Fitch group, do have

some differences.

Wiley et al. proposed four antigenic sites where field and

laboratory mutations could be grouped on the HA sur-

face [41]. These putative antigenic sites are indicated in

Figure 1 and the right side of Figure 2. Positively selected

variants are correlated (Fisher's exact test) with antigen-

ic site A (p = 5.27 × 10-3), antigenic site B (p = 1.12 × 10-
3), and antigenic site C (p = 1.0 × 10-5). In contrast, anti-

genic site D is not particularly correlated with positively

selected variants. We believe the lack of positively select-

ed variants spanning antigenic site D may explain a dec-
ades-old puzzle. In the fully assembled HA protein, site

D is buried in the trimer interface and therefore is not

generally accessible to Ab [41,42]. At the time that the

antigenic sites were proposed, residues in and around

the trimer interface were variable and found on the mon-

omer surface, so they were grouped and labeled as anti-

genic site D even though it was unclear how site D was

recognized by Ab [41]. In fact, the only two positively se-

lected variants QUASI identifies in site D are solvent-ex-

posed at the extreme edge of the HA trimer (Fig. 2).

Based on QUASI's selection map of HA, we now conclude

that those mutations found in the trimer-buried portion

of HA do not confer significant advantage on influenza A.

That is, while the trimer-buried portion of antigenic site

D includes the sound and fury of variability, it signifies

nothing.

While QUASI finds that antigenic sites A-C are signifi-

cantly associated with positively selected variation, this

association may be a simple consequence of the sites'

surface exposure. As can be seen in the left-hand side of

Figure 2, positively selected variants are scattered across

the entire exposed surface of HA. There are positively se-

lected variants outside the antigenic sites, and there are

subregions of the antigenic sites where variation is nega-
tively selected. Thus, it may be more appropriate to view
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antigenic sites as more positional than functional. In-

deed, more recent demarcations of antigenic sites en-

large antigenic sites A-D and add an additional antigenic

site, site E, and these sites are now considered primarily

positional rather than functional [6,43].

Selection map of HIV-1 gp120
At 123 codons, QUASI's selection map of gp120 indicates

that one or more non-consensus amino acids are posi-

tively selected in HIV-1 (Fig. 3). Most positively selected

variants appear to be on the gp120 surface (not shown),

but in contrast to HA, gp120 includes several monomer-

buried positively selected variants (at sites I225, V270,

N295, H333, I345, T387, I424, and L453). Additionally,

some of the positively selected variants that appear to be

solvent-exposed may normally be buried (some loops are

absent from the core protein crystal structure [44]). The

burial of positively selected variants in the gp120 mono-

mer confirms that gp120 quasispeciation is not selected

solely for escape from B-cell immunity.

Two competition-group epitopes have been identified for

broadly neutralizing anti-gp120 Abs: the CD4-binding

site (CD4BS) and the CD4-induced (CD4i) epitopes (ref-
erences in [45]). Each epitope includes only a single non-

consensus positively selected variant (Fig. 3). Thus,

broadly neutralizing Abs appear to be those that engage

few protein positions where variation is positively select-

ed. Based on this observation, we propose that the neu-

tralizing spectra of Abs may be predicted if the epitopes

are known. For example, we would predict that the anti-

CD4BS Abs will have particular trouble recognizing

gp120 molecules carrying the positively selected variant

of the CD4BS epitope (D→N at codon 474). This predic-

tion is fulfilled in that the 15e anti-CD4BS monoclonal

Ab fails to react to gp120 from HIV strain RF, a strain

that carries this D→N mutation [46]. We also predict

that gp120 molecules carrying the positively selected

I→F mutation at codon 423 will be poorly recognized by

the anti-CD4i Abs.

It is worth commenting on the GPGRAF motif (gp120

residues 312-317) that is sometimes (though increasingly

rarely) referred to as "highly conserved." Because QUASI

identifies non-consensus variants at two codons of this

motif as positively selected (Fig. 3), it may be inappropri-

ate to refer to the GPGRAF motif as "highly conserved."

Instead, five positively selected variants appear to exist

at this region in addition to GPGRAF: GPGKAF, GP-
GRTF, GPGKTF, GPGRVF, and GPGKVF.

Figure 1
Selection Map of influenza A HA (H3 serotype). Positively selected variants are at those codons where one or more mutations
from the consensus confer selective advantage on the virus (capitalized and listed below the consensus). Lowercase letters
indicate mutations where the neutral drift hypothesis is not ruled out. Negatively selected variants are not shown. The anti-
genic sites [41] are colored: A, red; B, yellow; C, green; D, blue. The selective advantage of the mutations at sites 156, 186, and
276 may have been conferred during viral passage in culture, so these mutations may not be positively selected in the field [58,
59].
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Figure 2
Positively Selected Sites vs. Antigenic Sites. Spatial relationships of the influenza HA positively selected variants plotted on the
3Å resolution HA crystal structure [41]. The white line is the backbone worm. Relevant Cα atoms are colored. Left: Advanta-
geous Variants. Codons where variants are positively selected are colored red. Right: Antigenic Sites. The antigenic sites [41]
are colored: A, red; B, yellow; C, green; D, blue. Figure 2 was generated using GRASP [60].
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Kwong et al. roughly divide the gp120 three-dimensional
structure into outer (β9-β19 and β22-β24) and inner (N-

α1, β4-β8, and α5-C) domains joined by a bridging sheet
(β2, β3, β20, and β21) [44]. As indicated by Kwong et al.,

Figure 3
Selection Map of HIV-1 gp120. Positively selected variants are at those codons where one or more mutations from the consen-
sus confer selective advantage on the virus (capitalized and listed below the consensus). Lowercase letters indicate mutations
where the neutral drift hypothesis is not ruled out. Negatively selected variants are not shown. Numbering is according to the
HXBc2 sequence, where residue one is the amino-terminal methionine of the signal sequence. The asterisk indicates a 310Q-
311R insert in HXBc2 that is not common enough to include in the profile (the alignment gap is the consensus sequence, and
2H+σ < 1.5). The hyphens in the numbering indicate codons absent from HXBc2. Many of the positively selected gp120 variants
lie outside the variable regions, V1-V5, and are instead found in the constant regions proposed by Starcich et al. [61]. This is
not troubling in that the V1-V5 designations were based on an analysis of only five gp120 sequences, so the "variable" and "con-
stant" designations are not truly indicative of variability (B. Foley, Los Alamos, pers. commun.; this paper). For more appropri-
ate positional references, we indicate secondary structure motifs [44]. The four numbered regions are repetitive and gap-filled
and for which we could not generate a reasonable alignment; because we are unable to align these subregions reliably and
because the alignment is a prerequisite of our analysis, we cannot reasonably comment further on these regions. The CD4BS
epitopes are yellow; CD4i epitopes are blue; positions that belong to both CD4BS and CD4i are green [45].
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all three domains include variable regions; as QUASI

shows, diversity in all three regions is positively selected

(Fig. 3). The selective advantage we find rendered by di-

versity in some of these regions (e.g., the "silent face")
has been attributed to neutral drift [44,45], thus QUA-

SI's results run counter to previous interpretations. That

is, QUASI finds that diversity in regions proposed to be

inaccessible to the immune system nevertheless confers

selective advantage on HIV. QUASI's findings may be

consistent with the existence of gaps in the carbohydrate

groups thought to mask the silent face from gp120 from

immune surveillance. Interestingly, in carbohydrate-

building models of gp120, these gaps correspond to co-

dons where we find variation is positively selected (P.

Kwong, pers. commun.).

A "non-neutralizing" face has been identified where

binding Abs generally do not neutralize HIV when gp120

is oligomerized [45,47]; these data were interpreted as

indicating that the non-neutralizing face is occluded in

the trimer and that binding Abs are raised against shed

gp120 monomers. However, QUASI finds numerous

positively selected variants on the non-neutralizing face

of the inner domain. Assuming the "non-neutralizing"

appellation is appropriate, how do mutations on this face

provide selective advantage to the virus? The obvious an-

swer is that mutations provide escape not from direct B-

cell immunity but from other levels of immunity, such as

T-cell immunity [including major histocompatibility
complex (MHC) presentation] or indirect Ab immunity

via Ab-dependent cellular cytotoxicity (where gp120

molecules found on infected cell surfaces are mono-

mers).

To determine if HIV-1 viral sequences retain evidence

that T-cell immunity is a significant selective force affect-

ing HIV quasispeciation, we used QUASI to generate a

selection map of HIV-1 RT (Fig. 4). Because RT is not a

surface-expressed protein, it is not plausible that the

positively selected variants of RT have been selected by

direct B-cell immunity. A priori, RT quasispeciation

could have been the result of neutral drift, but because

QUASI finds that replacement mutations confer selec-

tive advantage on the virus, we reject the neutral drift hy-

pothesis at the 22 RT codons. If T-cell immunity

(including MHC presentation) is a selective pressure

shaping RT quasispeciation, positively selected variants

should be associated with T-cell epitopes. When known

T-cell epitopes [48] are plotted on the RT selection map,

the positively selected variants are found to localize sig-

nificantly (Fisher's exact test) both with helper T-cell

epitopes (p = 3.27 × 10-2) and CTL epitopes (p = 6.58 ×
10-3). We conclude that T-cell immunity is a significant

selection pressure shaping the quasispeciation of RT and

presumably is a significant factor in the quasispeciation

of other HIV proteins.

Thus, because positively selected gp120 variants found
throughout gp120 may be selected by T-cell immunity,

QUASI's finding that the non-neutralizing face includes

positively selected variants is not at odds with models

where the non-neutralizing face forms the gp120 trimer

interface. Nor are QUASI's results incompatible with the

silent face being silent to B-cell immunity. QUASI's find-

ing that positively selected variants may be buried in the

gp120 monomer is consistent with escape from T-cell

immunity.

In addition to the selection pressure exerted by T-cell im-

munity, 3'-azido-3'-deoxythymidine (AZT) may also

have provided selection pressure for RT quasispeciation

in the sequences selection mapped by QUASI [59,51]. In-

deed, QUASI identifies six of the eight mutations known

to be associated with AZT resistance [52] as positively se-

lected (N67, R70, W210, Y215, and F215) or possibly pos-

itively selected (L41) to HIV-1 (Fig. 4). The exceptions,

two mutations of codon 219, are informative. Whereas

mutations at other codons are necessary for high resist-

ance to AZT, mutations at codon 219 are not, and codon

219 mutations arise late in infection after earlier muta-

tions have already rendered RT resistant to AZT [53]. We

conclude that the additional AZT resistance conferred by

codon 219 mutations did not provide significant selective
advantage to the profiled HIV viruses, possibly because

HIV had already acquired the maximum effective AZT

resistance selectable, in vivo, when mutations arose at

this codon. Alternatively, the lysine at codon 219 may be

important for proper in vivo RT function such that the

advantage conferred by increased AZT resistance does

not adequately compensate for impaired RT function.

The RT sequences we analyze were taken from patients

who either had no anti-RT treatment or were treated

mainly with AZT (though some patients who were treat-

ed with AZT were also treated with 2',3'-dideoxyinosine)

[49,50,51]. Therefore, we would predict that mutations

associated with resistance to other anti-RT drugs should

not be positively selected in the sequences QUASI ana-

lyzed. As predicted, QUASI identifies none of the 50 RT

mutation associated with resistance to other drugs as

positively selected (compare Figure 4 to the Los Alamos

database [52]).

Conclusion
We have developed an algorithm for using sequence data

to map the positively selected mutations of viral quasis-

pecies. We have used this method to map the positively

selected variants of influenza A HA, HIV-1 RT, and HIV-

1 gp120. Other obvious targets for selection mapping are
the hepatitis C and foot-and-mouth disease viruses. We
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believe that potentially the most illuminating use of se-

lection mapping may be the comparison of viral subpop-

ulations to determine which variants are advantageous

under different selective pressures. For example, selec-

tion mapping of HIV isolates with different cellular trop-

isms will allow the determination of mutations that are

positively selected depending on the host cell type. Also,

we may use selection mapping to analyze HIV break-

through infections to determine if vaccines prevented

the HIV quasispecies from inhabiting normally advanta-

geous regions of the quasispecies sequence space. Final-

ly, we propose that the positively selected viral variants

(as opposed to all viral variants) should be included in fu-

ture, highly multivalent vaccines designed to compen-

sate for B-cell-selected antigenic drift.

Materials and Methods

QUASI--the selection mapping algorithm
An executable version of the QUASI software is attached

as an additional file (see additional file 1). Also attached

are a users' manual (user.txt - see additional file 2) and a

FASTA to QUASI file converter PERL script (F2Q.pl -

additional file 3). Current versions of QUASI are availa-

ble from the authors or may be accessed at the Los Alam-

os Influenza Sequence Database (http://

www.flu.lanl.gov/).

For a set of viral nucleotide sequences, we determine the

variants that confer selective advantage by measuring

the empirical replacement to silent mutation ratio (R:S)

of each possible amino acid replacement and then com-

paring this observed ratio to that which would be expect-

ed if mutation were unselected. An R:S that is found to be

higher than expected indicates that the replacement mu-

tation tested is positively selected, while a lower-than-

expected observed R:S indicates that the tested replace-

ment mutation is negatively selected.

Testing for an overabundance of replacements across a

protein as a whole is a reasonable approach when only a
few nucleotide sequences are available, but because a

Figure 4
Selection Map of HIV-1 RT. Positively selected variants are at those codons where one or more mutations from the consensus
confer selective advantage on the virus (capitalized and listed below the consensus). Lowercase letters indicate mutations
where the neutral drift hypothesis is not ruled out. Negatively selected variants are not shown. T-cell epitopes are colored yel-
low (helper T-cell epitopes) and red (CTL epitopes). Variants that confer AZT resistance are blue. Numbering is from the
beginning of the RT protein. Epitope positions are taken from the Los Alamos HIV database epitope maps [48]. Known MHC
associations of the epitopes are as follows: 1: A2, B61; 2: A28; 4: broad; 6: B35; 7: A2, A*0201; 8: B35, B*3501; 9: B51; 10:B7;
11: B35, B*3501, B7; 12: A3, A3.1, A11, A33, A*6801; 13: B35, B*3501; 14: A2; 15: A*0201; 18: B44; 19: B*5701; 21:
DR5(11.01); 23: Bw62.
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large number of mutated viral sequences are currently

available, such aggregation is unnecessarily crude. Better

are approaches that test for an overabundance of re-

placement mutations at individual codons [23,36,37,38].
However, these methods lump together replacement

mutations and thus allow negatively selected mutations

to conceal positively selected mutations and vice versa

(e.g., replacement mutations at a codon may be negative-

ly selected as a group despite the fact that one or more

particular replacement mutations are positively select-

ed).

To overcome these limitations, the QUASI algorithm

does not test the overall R:S of the entire protein as an

aggregate, nor does QUASI test the R:S of a codon to all

its replacement mutations taken as a whole. Rather,

QUASI tests the R:S of each particular replacement mu-

tation at each codon. That is, QUASI measures the R:S of

the mutations from a consensus codon towards each in-

dividual replacement amino. For example, if the consen-

sus codon at a protein position were ttt (Phe), QUASI

would test the R:Ss of all point mutations from ttt. One

of these mutations is ttt→tat (Tyr). QUASI calculates the

expected R:S for ttt→tat under the null hypothesis of

neutral drift. The expected S is one because only one mu-

tation (ttc) is silent, and the expected R is also one be-

cause only one point mutation of ttt (tat) codes for Tyr,

so the expected R:S is one, in this case. If QUASI rejects

the (Jukes-Cantor) neutral drift null hypothesis because
the observed R:S is significantly higher than one, then

QUASI classifies this replacement mutation (Tyr) as pos-

itively selected. Conversely, if QUASI rejects the null hy-

pothesis because the observed R:S is significantly lower

than one, then QUASI determines that this replacement

mutation is negatively selected. QUASI performs this

procedure for all replacement point mutations [e.g., in

the example case, Tyr (tat), Ile (att), Leu (tta, ttg, and

ctt), Val (gtt), Ser (tct), and Cys (tgt)].

In this paper, selection mapping is carried out independ-

ent of the underlying phylogeny. QUASI uses R:S to re-

ject the null hypothesis that the mutational space

surrounding the consensus codon is distributed random-

ly among all nine possible R or S point mutations (except

stop codons, which are considered to be disallowed).

This allows R:S calculations to be applied to viral se-

quences whose ancestral sequence is unclear or un-

known. This is a both an advantage and a disadvantage

over analyses that rely on phylogeny. Phylogeny is diffi-

cult to determine accurately and uniquely, and relying on

phylogeny ignores the persistence of positively selected

replacement mutations (the major effect of selection).

On a practical level, using phylogeny to reconstruct vi-

ruses' mutational histories and then using intuited muta-
tions leaves one with insufficient data to determine

positively-selected codons [36] unless, as some have

done, one assumes observed drift is neutral and then

tests for codons where selection is more positive than av-

erage [23,38]. The significance problem can be com-
pounded when one is looking for independent

occurrences of particular mutations; often, there simply

has not been enough sequence evolution in HIV or influ-

enza to map positively selected variants if the retention

of positively selected mutations is ignored. The draw-

back of ignoring phylogeny is a potentially high false pos-

itive rate (see below).

Empirical R:S is compared to neutral R:S by means of a

two-sided test of the binomial distribution. For each co-

don, we test the null hypothesis that all nine point mu-

tants are equally probable. The quotient p = R/(R+S) is

the probability of a replacement mutation at this codon

if each nucleotide is equally mutable and each of the

three mutational targets at that codon are equally likely.

The numerator, R, is the number of point mutations that

lead from the consensus codon to the target amino acid.

The chance of observing r replacement mutations is giv-

en by the binomial distribution, 

  , where n is the number of codons providing data for this

position. To form a two-sided test, we sum all terms

b(kn,,p) such that b(kn,,p) is not greater than b(rn, p,),

wherek is in the set (0,...,n) and r is the number of ob-

served replacement mutations. In other words, we sum

the chances of all events that are no more likely than that

of the observation. If this sum, α, is small (e.g., not great-

er than 0.05), we reject the null hypothesis at the α level
of significance.

Working example
We analyze the following scenario as a working example

(Table 1).

The consensus codon is given as ttt (Phe; Table 1, column

1). Each observed mutation is also given (Table 1, col-

umns 1-3)

Because we know the frequency of silent mutations (giv-

en as 10 in this example; Table 1, column 3), we also

know the expected R:S for each replacement mutation

(Table 1, column 4). That is, if selection is neutral for any

particular replacement mutation, we can calculate the
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incidence of each replacement mutation we expect to ob-

serve (by looking at a table of the genetic code).

Using the given frequency of each mutation observed, we
also know what the observed R:S is in each case (Table 1,

column 5).

Now we use a two-tailed test of the binomial distribution

to determine if each observed R:S is significantly differ-

ent from the corresponding expected R:S (Table 1, col-

umn 6). In some cases, the differences are significant, in

which case the appropriate replacement mutation is as-

signed positive or negative selection (positive if the ob-

served R:S is larger than expected and negative if the

observed R:S is lower than expected). Otherwise, the se-

lection is assigned to be neutral drift.

The QUASI algorithm thus indicates at this exemplary

codon that both tyrosine and serine are positively select-

ed; isoleucine, leucine, and cystine are negatively select-

ed; and the selective advantage or disadvantage of valine

is indistinguishable from neutral drift. Any other ttt co-

don will have its own selective pressures assessed in a

similar but independent testing procedure.

Minimum sequences
For each possible replacement mutation, a minimum

number of mutations will need to be observed for a selec-

tive event to be detected. This minimum number differs

depending on the consensus codon and the level of sig-

nificance. We have calculated the minimum number of

mutations needed to achieve the 5% significance level. At

the lower bound of this range, only 2 replacement muta-

tions will be required to detect positive selection for any

replacement mutation from cta or ctg. Any replacement

mutation from cta or ctg has an expected R:S of 1:4, and

thus an observed R:S of 2:0 will be sufficient to reject

neutral drift in favor of positive selection. Conversely,

detecting negative selection at a cta or ctg codon is diffi-

cult. At the upper bound of the range, a minimum of 17

observed mutations are required to detect negative selec-

tion at such a codon (0:17 is significantly lower than 1:4).

For the most-typical codon, the expected R:S is 1:3. For
these modal codons, at least 3 mutations must be ob-

served to detect positive selection (i.e., if observed R:S =

3:0). At the same most-typical codon, 12 mutations are

required, at a minimum, to detect negative selection (i.e.,

if observed R:S = 0:12). Because identification of positive

selection is generally the goal, the QUASI algorithm ap-

pears to have a practical advantage over extant selection

detectors, which require either many more mutations or

a biased expectation of neutral drift in order to detect

positive selection.

False-positive testing
False positives are likeliest when drift is completely neu-

tral (e.g., as was found by Suzuki and Gojobori [36]). One

may estimate the maximum frequency of false positives

by testing simulated sequences generated under neutral

drift parameters. We used the EVOLVER program of the

PAML package [54] to generate sequences drifting under

neutral Jukes-Cantor evolution. For each simulation, we

generated 300 related sequences of length 999 and with

average branch lengths varying in 0.1 length intervals

from 0.1 to 1.0; each parameter set was used to generate

10 sets of 300 sequences. False positive percentages [Fig.

5; false positive percentage = false positives / (false pos-
itives + neutral drift variants)] were extremely low (∼
2%) for relatively long branch lengths (0.1-1.0). Ex-

tremely high false positive rates (up to 70%) were found

for extremely short branch lengths (maximum at 0.001).

As accurate branch lengths are calculated using maxi-

mum likelihood phylogeny, these branch lengths may be

Table 1: 

Amino Acid Mutation(s) Obs. Exp. R:S Obs. R:S Selection

Phe (silent) ttt→ttc 10 na na na*

Tyr ttt→tat (Tyr) 24 1:1 24:10 positive (p = 0.02)
Ile ttt→att 1 1:1 1:10 negative (p = 0.01)
Leu ttt→tta or 3 3:1 3:10 negative (p = 0.0001)

ttt→ttg or
ttt→ctt

Val ttt→gtt 4 1:1 4:10 neutral (p = 0.18)
Ser ttt→tct 23 1:1 23:10 positive (p = 0.04)
Cys ttt→tgt 0 1:1 0:10 negative (p = 0.002)

*neutral by definition
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used to find the appropriate false-positive percentage.

For instance, if the branch length were 0.01 [as appears

appropriate for HA (unpublished observation)], then the

maximum false positive rate would be estimated at 32%.

We then use the calculated neutral drift frequency (from

QUASI) as an estimator for the maximum false positives.

If (as we report) HA is found to have 5 neutral drift vari-

ants, then we would expect a maximum of 2.3 false-pos-

itives.

Selection mapping
QUASI presents its results in the following format:

1. The consensus amino acids are written in capital let-

ters.

2. Beneath each consensus amino acid are written in cap-
ital letters all variants determined to be positively select-

ed (in descending order of frequency).

3. The negatively selected variants are not shown.

4. In lowercase letters and interspersed according to

their frequencies among the positively selected variants

are variants where the neutral drift null hypothesis can-

not be rejected with the given sequence data. As a rea-

sonable but arbitrary cut-off, we include apparently

unselected variants if they are among the 2H+σ most fre-

quent variants, where H is the Shannon information con-

tent of the site and σ is the standard error of its
estimation [55]. 

  is the ith fraction of amino acids at the site (the align-

ment gap is counted as a 21st amino acid). For the Shan-

Figure 5
Maximum Expected False Positives. The number of false positives are given for various branch lengths for sequences evolved
under neutral drift parameters.
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non calculation, alignment gaps are considered distinct

from "no data" gaps (artifacts of indeterminate sequenc-

ing or sequence fragment overlaps; such data absences

are excluded from calculation).

Sequences
Nucleotide sequences were downloaded from GenBank

at the NIH. Sequences were included only if they were

isolated in the field and were not obviously pseudogenes

(sequences containing premature stop codons were re-

moved from consideration). We analyzed 310 sequences

of human-infective influenza A (H3 serotype), 6,151

HIV-1 gp120 sequences, and 400 HIV-1 RT sequences.

All sequences were pre-aligned with PILEUP [56] and/or

DIALIGN2 [57] then hand-corrected.

Abbreviations
HIV, human immunodeficiency virus; HA, hemaggluti-

nin; Ab, antibody; gp120, glycoprotein 120; RT, reverse

transcriptase; R:S, replacement to silent mutation ratio;

CD4BS, CD4 binding site epitope; CD4i, CD4-induced

epitope; MHC, major histocompatibility complex; AZT,

3'-azido-3'-deoxythymidine.
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