
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Probabilistic estimation of microarray data reliability and 
underlying gene expression
Sven Bilke*1, Thomas Breslin1 and Mikael Sigvardsson2

Address: 1Complex Systems Division, Department of Theoretical Physics, University of Lund, Sölvegatan 14A, SE-223 62 Lund, Sweden and 2The 
Laboratory for Cell Differentiation Studies, Department for Stem Cell Biology, BMC B12, SE-22185 Lund, Sweden

Email: Sven Bilke* - sven@thep.lu.se; Thomas Breslin - thomas@thep.lu.se; Mikael Sigvardsson - Mikael.Sigvardsson@stemcell.lu.se

* Corresponding author    

Abstract
Background: The availability of high throughput methods for measurement of mRNA
concentrations makes the reliability of conclusions drawn from the data and global quality control
of samples and hybridization important issues. We address these issues by an information theoretic
approach, applied to discretized expression values in replicated gene expression data.

Results: Our approach yields a quantitative measure of two important parameter classes: First,
the probability P(σ|S) that a gene is in the biological state σ in a certain variety, given its observed
expression S in the samples of that variety. Second, sample specific error probabilities which serve
as consistency indicators of the measured samples of each variety. The method and its limitations
are tested on gene expression data for developing murine B-cells and a t-test is used as reference.
On a set of known genes it performs better than the t-test despite the crude discretization into
only two expression levels. The consistency indicators, i.e. the error probabilities, correlate well
with variations in the biological material and thus prove efficient.

Conclusions: The proposed method is effective in determining differential gene expression and
sample reliability in replicated microarray data. Already at two discrete expression levels in each
sample, it gives a good explanation of the data and is comparable to standard techniques.

Background
A broad variety of algorithms has been developed and
used to extract biologically relevant information from
gene expression data. Among others commonly used are
visual inspection [1], hierarchical and k-means clustering
[2], self organizing maps [3,4] and singular value decom-
position [5,6]. These methods aim mainly at identifying
predominant patterns and thus groups of "cooperating"
genes based on the assumption that related genes have
similar expression patterns.

Compared to the amount of work devoted to efficient
methods to extract information from the data, somewhat

less attention has been paid to the question of the reliabil-
ity of the generated results. The ANOVA analysis [7]
allows estimation, and thus elimination, of some system-
atic error sources. Bootstrapping cluster analysis estimates
the stability of cluster assignments [8] based on artificial
data-sets generated with ANOVA coefficients. Some
authors also considered the question of how well a certain
oligo [10] is suited to measure the mRNA expression level
of the related gene.

Some work has gone towards the ambitious task of learn-
ing topological properties or qualitative features of the
genetic regulatory network from expression profiles, see
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e.g. [11]. A major limiting factor in these attempts is the
comparative sparseness of available data. It is therefore
reasonable to consider reduced models, for example a
Boolean representation of the gene activity. It is known
that many biological properties, for instance stability and
hysteresis, can be modeled by the dynamics of such
reduced models [12–14].

In this work we investigate the possibility of reducing
complexity of gene expression data by discretizing the
expression levels. The approach we present enables a new
way of extracting biologically relevant information from
the data in the following way: A biological variety, i.e. a
biological system defined by the investigator, is repre-
sented by several samples which are subjected to gene
expression analysis. If gene expression levels are discre-
tized into n values, and the variety is represented by m
samples, the number of observable expression states for a
gene are limited to nm. These observed states S are mod-
eled as being derived from a smaller number of underly-
ing, biological states σ, through a measurement process.
Rather than making static assignments S → σ we calculate
conditional probabilities P(σ|S). The number of possible
expression profiles for a gene over a set of varieties is lim-
ited and the probability of each expression profile is easily
calculated. Since the model we use considers both the
underlying biology and the measurement process it also
generates a measure of sample coherence in each biologi-
cal variety.

We demonstrate the feasibility of this approach for a
binary discretization of gene expression. For the discretiza-
tion step we use the absent/present classification provided
by the Affymetrix software [9]. The outcome of our
method on a data set covering gene expression in develop-
ing murine B-cells is compared to the results of a standard
analysis. We show that even with the crude discretization
into only two expression levels the method is competitive
to statistical methods based on continuous expression
levels.

Methods
The Model
A major step in the analysis of gene expression data is to
separate the biological content of the data from measure-
ment and sample specific errors. In other words given an
observation, i.e. the expression values of a gene in several
samples representing the same biological variety, one
wants to conclude on the biological state σ, which gener-
ated the observation. This can be expressed as a condi-
tional probability,

P(σ|S)  (1)

, that a gene is in a certain biological state σ given the cor-
responding observed state S. In the application on which
we demonstrate the method we consider three different
biological varieties: pro, pre, and mature B-cells. The sam-
ples in each variety are different cell lines arrested at the
corresponding stage of development.

In this work we take an information theoretic point of
view to estimate this probability: The information of
interest, the state σ, is "transmitted" in a noisy measure-
ment process and potentially distorted (Figure 1). Using
Bayes' theorem, the desired conditional probability Eq.
(1) can be expressed as:

On the right hand side of this equation, P(S|σ) is the
probability to observe state S if the underlying biological
state is σ. In a sense, P(S|σ) describes the noise character-
istic of the measurement process. In the following we will
show how this conditional probability, and the other
probabilities on the r.h.s. of Eq. (2) can be estimated.

Given a set of m samples representing the same biological
variety, differences in the expression level of a gene
between the samples can arise from two independent
sources:

1. Random variation within the variety. This may be caused
by temporal differences in response to the stimuli, slightly
different environmental conditions, genotypic differences
between samples, etc.

2. Sample specific errors. These are mainly caused by the
measurement process, e.g. differences in the treatment of
the mRNA, scratched arrays, and so on. However, outlier
samples, cultured under considerably different condi-
tions, also contribute to sample specific errors.

A separation of these two contributions is possible only
with an appropriate model for the variation of gene
expression between the samples. In the choice of model,
one has considerable freedom within the bounds set by
biological plausibility. A limiting factor on the biological
model comes from the type and amount of available data.
The data used in this work contains only four samples for
each variety. For the model we propose this is the mini-
mum number of samples required to estimate the model
parameters.

In the discretization of gene expression levels, we use only
two discrete values, 0 and 1, for the expression of a gene
in a sample. This means that the number of observable
states, S, in a variety consisting of m samples is 2m. With

P S
P S P
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σ
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no measurement errors we could immediately conclude
on the underlying biological state σ: the two cases, where
all observations agree S = (1,...,1) and S = (0,...,0) can be
mapped to the biological states σ1 and σ0 respectively,
which describe "pure" states without variation. The
remaining N - 2 observable states S, where the individual
measurements disagree, correspond to biological states σ
with random variation. For the application in our biolog-
ical study with supposedly identical biological systems
contributing to the observable states S, the exact pattern
leading to contradicting observations does not carry any
information, as long as we assume that there are no sam-
ple specific errors. Therefore, we subsummize all N - 2
possible observations as one biological state σr with a ran-
dom variation.

The biological rationale for this model is given by the fol-
lowing example: If one considers a biological variety such
as cells in the retina of the eye, then a certain number of
crucial genes ought to be expressed in all samples. Such
genes might include rhodopsin, a molecule that responds
to light. In contrast, genes such as the hemoglobin family,
which are typical of erythrocytes, ought not to be
expressed in the retina. A third class of genes could be con-
sidered as independent of the system in the sense that
their expression is not directly related to the biological

system. Such genes may vary in expression both due to
environmental and genetic differences between the
samples.

The model discussed so far is depicted graphically in the
left part of Figure 1, where a possible distribution of the
relative frequencies of the three biological states is
depicted, for the case of m - 4 samples. The distribution
can be described by three numbers: the probabilities P(σ1)
and P(σ0), which contribute to the frequencies of the
states S = (1,1,1,1) and S = (0,0,0,0), and P(σr) which con-
tributes to both the frequency of mixed states and the two
states above. Describing the mixed states with only one
parameter P(σr) implies that the biological variation is
modeled evenly and identically distributed independently
for each sample. In a second step, the measurement
process with possible sample specific errors is modeled as
statistically independent between samples. For each sam-

ple i, we define two parameters,  and ,

denoted sample specific error probabilities.

To introduce the full formalism of our current model we
start by considering a simple example, again for m - 4 sam-
ples. An observed state S, S ≡ (S1, S2, S3, S4) = (1,0,1,0),

Schematic diagram illustrating the transition from underlying to observed distributions of states, in the case of m = 4 samplesFigure 1
Schematic diagram illustrating the transition from underlying to observed distributions of states, in the case of m = 4 samples. 
The underlying distribution on the left hand side can be described by the probabilities for each underlying state, P(σ1), P(σ0), 

and P(σr) (see text). This distribution is then distorted by sample specific errors,  and , resulting in an experimen-
tally observed distribution, depicted on the right hand side.
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may be generated by the gene being in state σ1 with the
probability:

or it may be generated by the gene being in state σ0 with
the probability:

or it may be generated by the gene being in state σr with
the probability:

With the briefer notation,

, where δ refers to the Kronecker delta (i.e. δj,k = 1 if j = k
and 0 otherwise), we may express the distribution of
observed states, in the general case of binary discretization
with m samples, as:

Altogether the model uses 3 + 2 * m variables. These

parameters P(σ1), P(σ0), P(σr) and  are

estimated from the observed distribution of states (right
side of Figure 1) by Levenberg-Marquardt [15] chi-square
minimization of the unweighted error to the theoretical
distribution Eq. (3). Using Eq. (2), and the parameters
estimated as above, our belief that a gene belongs to the
underlying states σ0, σ1, σr, given the 24 = 16 observable
states S, can now be expressed as:

Once the probability that a gene is in a certain biological
state Σi ∈ σ1, σ0, σr has been calculated for all varieties i =
1...v, one can calculate the probability that a gene exhibits
a certain expression profile over a set of different varieties
by taking the product

In this way, the probabilistic state analysis also generates
a clustering: For a given expression profile over the varie-

ties, e.g. , we may extract those genes for

which this expression profile is the most probable. In fact
this is a "soft" clustering, in that an expression profile can
belong to several clusters simultaneously with different
probabilities. Moreover the genes clustered to a biologi-
cally interesting expression profile can be ranked by the
probability of Eq. (4).

Experimental data preparation
All cells were grown in RPMI medium supplemented with
7.5% fetal calf serum, 10 mM HEPES, 2 mM pyruvate, 50
mM 2-mercaptoethanol and 50 mg gentamicin per ml
(complete RPMI media) (all purchased from Life Technol-
ogies AB, T = E4by, Sweden) at 37 = B0C and 5% CO2.
RNA was prepared using Trizol (GIBCO) and 7.5 = B5g of
total RNA was annealed to a T7-oligo T primer by denatur-
ation at 70 = B0C for 10 minutes followed by 10 minutes
of incubation of the samples on ice. First strand synthesis
was performed for 2 hours at 42 = B0C using 20 U of
Superscript Reverse Transcriptase (GIBCO) in buffers and
nucleotide mixes according to the manufacturers instruc-
tions. This was followed by a second strand synthesis for
2 hours at 16 = B0C, using RNAseH, E coli DNA polymer-
ase I and E coli DNA ligase (all from GIBCO), according
to the manufacturers instructions. The obtained double
stranded cDNA was then blunted by the addition of 20 U
of T4 DNA polymerase and incubation for 5 minutes at 16
= B0C. The material was then purified by Phenol:Cloro-
form:Isoamyl alcohol extraction followed by precipita-
tion with NH4Ac and Ethanol. The cDNA was then used
in an in vitro transcription reaction for 6 h at 37 = B0C
using a T7 IVT kit and biotin labeled ribonucloetides. The
obtained cRNA was purified from unincorporated
nucleotides on a RNAeasy column (Qiagen). The eluted
cRNA was then fragmented by incubation of the products
for two hours in fragmentation buffer (40 mM Tris-ace-
tate, pH 8.1, 100 mM KOAc, 150 mM MgOAc). 20 = B5g
of the final fragmented cRNA was then hybridized to
affymetrix chip U74Av2 (Affymetrix) in 200 = B5l hybrid-
ization buffer (100 mM MES-buffer, pH 6.6, 1 M NaCl, 20
mM EDTA, 0.01 Herring sperm DNA (100 = B5 g/ml) and
Acetylated BSA (500 = B5 g/ml) in an Affymetrix Gene
Chip Hybridization oven 320. The chip was then devel-
oped by the addition of FITC-streptavidin followed by
washing using an Affymetrix Gene Chip Fluidics Station
400. Scanning was performed using a Hewlett Packard
Gene Array Scanner.
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Results
To evaluate the method we used both real and synthetic
data. The experimental data was generated with Affyme-
trix microarrays for the study of differentiating murine B-
cells at different stages in the differentiation process. In
this publication the data is only used to demonstrate the
feasibility of the proposed method. The biological impli-
cations of this study are published elsewhere [20].

Synthetic data and the effect of correlation
For synthetic data, generated with the model parameters

P(σ0) = 0.45, P(σ1) = 0.35, P(σr) = 0.2 and  = 

= 0.02 for all samples i, parameter estimates are, as
expected, given with low errors. The parameter values
were chosen as typical values from the estimates on real
data, see next section, and the result was verified for sam-
ple sizes m = 4, m = 5, and m = 6 (data not shown).

An assumption of simple model used to derive Eq. (3) is
that randomly varying genes vary independently in the sam-
ples of a variety. Hence we investigated how severely this
assumption influences the estimation of the model
parameters.

To assess the influence of correlations between randomly
varying genes we generated a data set consisting of four
bits, i.e. samples, with the same parameters as above. In
the random patterns a correlation was introduced
between the third and fourth bit by changing the value of
of the fourth to that of the third with a certain probability.
We define this probability as the correlation factor. The
correlation was introduced before distorting the patterns
with error probabilities. We then plotted the mean error
in the estimation of parameters over 500 runs of synthet-
ically generated data for correlation factors in the range
{0, 0.02,...,0.98}.

Figure 2 shows the error in the estimation of the parame-
ters describing the underlying distribution. We notice that
even for fully correlated patterns the estimation error is
less than 20% of the correct values. The estimation of the
probability for biologically varying genes is somewhat
worse, for fully correlated patterns the error is almost
50%. For real data one can, however, expect a much
smaller correlation. The average error in the estimates of
the error probabilities, as seen in Figure 3, shows the
expected behavior: The average error grows with the corre-
lation for the uncorrelated samples, while the estimate for
the correlated observations is almost unaffected. Intui-
tively, the model compensates for the correlation by
increasing P(σ1) and P(σ0) as well as the error probabili-
ties and lowering P(σr). For correlation factors above 0.50,
due to the compensation effect, the model deteriorates in
explaining the data. This can be seen in the sum P(σ0) +

P(σr) + P(σ1) which initially drops from almost 1 to 0.99
as the correlation factor rises from 0 to 0.50 and then from
0.99 to 0.96 for correlation factors in the range 0.50 to
0.98 (data not shown). We hence conclude that it is rea-
sonable not to impose the condition P(σ0) + P(σ1) + P(σr)
= 1 in the model, as this sum indicates if samples are
strongly correlated in genes whose expression vary around
the threshold of discretization.

In summary, for not too large correlations in the biologi-
cal variance the algorithm gives a good quantitative esti-
mate of the model parameters. In the case of large
correlations the qualitative picture given by the estimated
parameters is still reliable.

Real data
Differentiating B-cells are characterized by phenotypic
markers into different stages of development. Here we
chose to study the expressional differences between three
such stages; pro, pre and mature B-cells. For each of these
three varieties we used four different cell lines arrested at
the corresponding stage of development. Measurements
we performed with Affymetrix array containing probesets
for 12488 genes and ESTs on each sample. The discretiza-
tion of expression levels was given by the Affymetrix
GeneChip absent present calls [9].

Our algorithm was used to estimate the parameters P(σ1),
P(σ0) and P(σr), describing the biological distribution
and the error probabilities (see Table 1). Theoretically,
one expects the three biological probabilities to sum up to
one. In our model, Eq. (3), we do not explicitly impose
this condition. Nevertheless, the sum of the independ-
ently estimated parameters is close to one. This indicates
that our model is a reasonable approximation of the bio-
logical system and the measurement process.

The error probabilities from Eq. (3) can be used as a con-
sistency index for the samples in a given variety. In the last
variety (mature B-cells) the maximum error probability is
notably higher. This effect is likely to be explained by the
different anatomical origins of the cell lines representing
this group. No such differences exist in the other groups
since they all originate in the bone marrow which is the
only anatomical site for B cell development in the adult
animal [16]. In contrast, the mature B cell can reside in
several other sites such as spleen, lymph-nodes and intes-
tine which may affect the gene expression profile in these
cells [17,18]. With only four samples, it is not unlikely
that these effects show up in the error probabilities and
not only in the random variation parameter P(σr).

Comparison to conventional t-test on known genes
To determine how well biologically relevant information
can be extracted from the discretized data, we compare it

Pi
1 0→ Pi

0 1→
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with another statistical method based on continuous
expression values. We use our method to identify differ-
ences in gene expression between two varieties in the fol-
lowing way. A gene that goes up between variety i and

variety j is characterized by the states  or  or

. Hence the belief that a gene goes up is given by

the probability:

suppressing the conditional probabilities, P(·|S), for
brevity. Similarly, the belief that a gene goes down is given
by the probability:

Taking 1 - P(up) thus yields the Bayesian p-value of a gene
going up. To answer the same question when working on
continuous expression data one possibility is to employ a
one sided two sample t-test in the Welch approximation
of unknown variances in the varieties. This enables test-
ing, for each gene, whether the mean of expression is

higher or lower in one variety than in another. For com-
parison of these two approaches we selected a set of genes
based on their well documented expression pattern and
biological functions in the developing B lymphocyte
[16,19]. Several of these are functionally linked since they
participate directly in somatic DNA rearrangement events
occurring specifically at the pre-B cell stage or participate
in the regulation of genes involved in this process and
thus display restricted expression patterns (pre-B specific).
A second set of genes were selected based on their
expression in cells that are either committed to the B line-
age (B-lineage specific genes, in pre-B and B-cells) or non
committed to this developmental pathway (Not in B-lin-
eage, expressed in pro-B cells) [21].

The result of this comparison is presented in Table 2. For
14 out of the 22 genes the two methods completely agree.
Out of these 14 only one (Mb1) does not match the
expected target profile. For the other 8 genes, where the
two methods yield different results, the probabilistic state
analysis gives the expected answer in 5 cases, which
should be compared to the two cases, where the t-test
gives the right answer. In one case (rag-1), neither of the
two methods gives the expected result.

The average error in the estimation of the parameters P(σ1), P(σ0), P(σr) are given as a function of correlation factor between the third and fourth bitFigure 2
The average error in the estimation of the parameters P(σ1), P(σ0), P(σr) are given as a function of correlation factor between 
the third and fourth bit. For correlation factors above 0.2 the error in P(σr) rises considerably.
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For the subset of genes considered here, our method has
an advantage of 5 : 2 in giving the correct (i.e. expected)
expression pattern. However, the number of samples is
not big enough to draw firm conclusions from this result.

Conclusions
The method we have presented serves several purposes:

1. It gives a measure of the biological variation of the
genes' expression in different varieties.

2. It estimates each hybridizations' global error probabili-
ties. These parameters are very useful as they serve as qual-
ity/consistency indicators of the samples of each variety.

The average error in the estimation of the error probabilities Figure 3

The average error in the estimation of the error probabilities . For correlation factors above 0.2  and  

are notably raised. Patterns were these bits deviate from the other two are then not considered as random but rather caused 
by an error. This effect could only be avoided by introducing extra parameters for correlation between bits.

Table 1: Typical paramter values. Summary of the estimated parameter values for the B-cell data. Pe refers to the set of error 

probabilities, i.e., .

P(σ1) P(σ0) P(σr) Max Pe Min Pe Median Pe

Pro B-cells 0.405 0.460 0.135 0.035 0.0002 0.020
Pre B-cells 0.395 0.450 0.155 0.047 0.003 0.028
Full B-cells 0.343 0.471 0.186 0.073 0.0007 0.022
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3. Given the parameters above, it estimates the probability
of a gene belonging to each of the three groups σ0, σr and
σ1. These probabilities in turn indicate weather the gene is
likely to be below, fluctuating around or above the thresh-
old of discretization.

4. Clustering of genes to expression profiles over a set of
different varieties is achieved with Eq. (4). The
probability, i.e. belief, that a gene belongs to a certain
cluster is exactly quantified.

This novel approach is proven valuable for quantifying
both data reliability and underlying gene expression in
microarray experiments. Our method has been success-
fully applied in two different projects [22,20].
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