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Abstract
Background: For many applications one wishes to decide whether a certain set of numbers
originates from an equiprobability distribution or whether they are unequally distributed.
Distributions of relative frequencies may deviate significantly from the corresponding probability
distributions due to finite sample effects. Hence, it is not trivial to discriminate between an
equiprobability distribution and non-equally distributed probabilities when knowing only
frequencies.

Results: Based on analytical results we provide a software tool which allows to decide whether
data correspond to an equiprobability distribution. The tool is available at http://bioinf.charite.de/
equifreq/.

Conclusions: Its application is demonstrated for the distribution of point mutations in coding
genes.

Background
Assume a set of certain events occur with frequencies Mi, i

= 1... N, with , e.g., Mi = {4, 5, 2, 3, 2,

9,3,3,5,12,4, 6,4,... }. We ask the question whether the
events obey an equiprobability distribution pi ≡ 1/N.
According to the general definition of probabilities

for an equiprobability distribution and for large sample
size M it is expected to find each of the events approxi-
mately Mi ≡ M/N times. For finite sample size, however,
the frequencies Mi may deviate considerably from this
value (Fig. 1).

The deviation from the equidistribution becomes particu-
larly obvious if we order the events according to their
rank, i.e., the most frequently occurring event appears left
at the abscissa, then the next frequent, etc. (Fig. 2).

If we conclude naîvely from the observed frequencies to
the probabilities, i.e., if we assume pi/pj = Mi/Mj, in the
extreme case M100 = 3 we end up with a relative error of
70%. In other words, from the frequencies measured in an
experiment as shown in Figs. 1 and 2, it might be errone-
ously concluded that the events are strongly non-equally
distributed.

Using the methods of statistics we can generate (predict)
the rank ordered frequency distribution for given N and M
under the precondition that the events are equidistributed
[1]. The predicted frequency distribution can then be
compared with the distribution as measured in an
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experiment with the same values of M and N. From the
comparison it can be judged whether the events in the
experiment obey an equidistribution.

Following this procedure we describe a tool which helps
to decide whether a given set of frequencies complies with
an equidistribution. For demonstration the tool is applied
to the distribution of point mutations in human genes.

Implementation
The numerical tool is available via the web address http:/
/bioinf.charite.de/equifreq/. The underlying kernel pro-
gram which computes the most probable frequency distri-
bution is implemented in C++ and the user interface is
written in PHP. The program source is available at this
address.

Results and Discussion
Mathematical method
We want to sketch briefly the derivation of the basic for-
mula: Assume we distribute M balls over N urns according
to an equidistribution. The probability p(ki, i) to find ki
urns filled each with exactly i balls is given by

where  denotes the integer of x.

Note that the probability to find a number of ki urns
which contain exactly i balls is different form the probabil-

ity to find the number of urns which contain at least i balls
which is a simple textbook problem, whereas the
derivation of Eq. (2) requires quite involved algebra. The
relation between both probabilities is provided by the
exclusion-inclusion principle [2,3]. For our purpose we

need the number  of urns filled with i balls which are
found on average, i.e., we need the first moments of the
probabilities Eq. (2). These values can be found in closed
form applying the method of generating functions for the

descending factorial moments. The averages  have
been derived in a different context earlier, the details of
the derivation can be found in [4,1]:

As an interesting detail of the solution, the average
number of filled urns is given by the total number of urns

minus the number of empty ones, N* = N - , i.e. [1],

Obviously, for small M (numbers of balls) there is a sig-
nificant number of urns which, on average, stay empty.
Translating back to the language of biology we come to a
surprising result: given a population of N = 1000 species.
If we investigate a number of M = 5000 individuals, from
Eq. (4) we obtain N* ≈ 993.3, i.e., about 7 species are

Histogram of frequencies of M = 1000 events according to an equiprobability distribution pi = 1/N = 1/100Figure 1
Histogram of frequencies of M = 1000 events according to an 
equiprobability distribution pi = 1/N = 1/100. The dashed line 
displays the expectation value.
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Same data as in Figure 1 but in rank orderFigure 2
Same data as in Figure 1 but in rank order. From the figure it 
might be erroneously concluded that the events do not obey 
an equidistribution. The distribution is deformed, however, 
exclusively due to finite sample effects.
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never found, although from naîve reasoning one expects
each species occurring about 5 times.

The moments  given in Eq. (3) allow to reconstruct
the rank ordered frequency distribution since they
describe how many, on average, events do not occur (zero
times), how many occur once, twice, etc. Hence, the
desired rank ordered frequency distribution reads finally

We apply Eq. (5) to predict the frequency distribution
which arises from an equidistribution for different sample
sizes M and compare with direct numerical simulations, s.
Figs. 3, 4. The predictions due to Eq. (5) agrees well with
the numerical experiment.

Exploration of experimental data
The theoretical distribution of frequencies due to Eq. (5)
can be compared with experimentally obtained frequen-
cies. From the distance between both (rank ordered)
frequency distributions we can conclude whether the
experimental data obey an equidistribution. To this end
we have elaborated a web based tool http://bioinf.char
ite.de/equifreq/. The user interface offers four alternative
input masks which differ in the way the input file is
generated:

(1) The measured frequencies of each species Mi are given
directly.

(2) The number of species N and the total number of indi-
viduals M are specified. Each individual is assigned a spe-
cies by chance.

(3) As for (2) the rank ordered frequencies are computed
but with the generalization that each species is assigned
an individual probability. The theoretical basis for this
computation is not given here but will be published else-
where [5].

(4) The last input mask is intended for the investigation of
the spatial distribution of point mutation in genes which
is presently the most specialized application of the
described program.

The program computes the expected frequency distribu-
tion due to Eq. (5) with the assumption that the species
obey an equiprobability distribution. Three output files
are generated: freq, ktheo and kexp. The file freq contains

the rank ordered frequencies as generated from the input
data set (cases (1) and (4)) or randomly due to an
equiprobability distribution (case (2)) or a general distri-

bution (case (3)). ktheo contains the moments  for
each rank i, i.e. the expected number of individuals occur-
ring i times, due to Eq. (3) for given numbers N of species
and M of individuals. For cases (1) and (4) the values of
M and N are extracted from the input data, for (2) and (3)
they are provided by the user. (Note that these expectation
values are real numbers in general.) The third column of

line i contains the value . The last file, kexp

contains the same data as ktheo, but based on the input
data (cases (1) and (4)) or on the randomly generated
data (cases (2) and (3)), respectively. Besides the pure out-
put files the program generates a number of visualizations
(see section Example: Distribution of point mutation in
genes). In order to compare the experimental data with the
mathematical prediction both, the experimental data and
the theoretical data, are plotted in the same chart. Congru-
ence of both curves indicates that the experimental data
obey an equidistribution (case (2)) or the specified distri-
bution (case (3)), respectively.

It may occur that the curve of the rank ordered experimen-
tal data decays significantly slower than the correspond-
ing theoretical curve due to Eq. (5). Since there is no
distribution more homogeneous than the equidistribu-
tion this situation may occur either as a rare fluctuation
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Rank ordered frequency distribution for N = 100 equally dis-tributed events for different sample size MFigure 3
Rank ordered frequency distribution for N = 100 equally dis-
tributed events for different sample size M. The solid line 
shows the distribution as predicted by Eq. (5), the dashed 
line shows the distribution of independently drawn equidis-
tributed random numbers from the interval [1, N].
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(recall that the theoretical curve was generated according
to the averaged occupation numbers, Eq. (3)). In such
cases there is no probability distribution {pi} which repro-
duces the experiment on average. This case can be artifi-
cially evoked when the species in the input file occur with
almost identical frequencies.

The difference between the experimental rank ordered fre-
quency distribution and the corresponding theoretical
distribution (Eq. (5)) evaluates the degree of coincidence
of the input data with an equidistribution (case (1)) or
with a specified distribution (case (3)). We define the
score by

The significance of a particular difference score can be
assessed by relating it to the distribution of difference
scores. This distribution depends on M and N.

Example: Distribution of point mutations in genes
The increasing number of known point mutations and
polymorphisms in many genes coding for
pathogenetically important proteins offers the
opportunity to apply statistical tests to correlate their type
and location to evolutionary, biological and clinical
features.

In each replication generation there occur mutations of
the genome but frequently they remain unnoticed since
they do not cause diseases. These so-called polymor-
phisms or variants may occur either in regions of the

genome which are coding for amino acid sequences or in
non-coding segments. Those changes of the DNA
sequence that alter the amino acid sequence are fre-
quently associated with diseases because the respective
proteins cannot operate properly. Screenings for muta-
tions using DNA of patients have been performed for
many human diseases and the identified mutations are
accessible in mutation databases [6].

The detection of so-called mutation hot spots, i.e.
sequence regions with many mutation positions, is
important for the identification of the functional and
genetical properties of the genetic code [7]. These hot
spots must be distinguished from statistical fluctuations
that occur even when the probabilities for mutations are
identical for each residue position. Moreover, the spatial
distribution of point mutations in genes is of importance
for the localization of coding and non-coding parts in the
genome.

We wish to apply the described method to the investiga-
tion of the amino acid sequence of the cystic fibrosis
transmembrane conductance regulator. The unperturbed
gene (wild type) is given as a sequence of 1480 letters:
MQRSPLEKASVVSKLFFSWTRPILRKGYRQRLELSDIY-
QIPSVDSADNLSEKLER..., each standing for one amino
acid [8]. In experiments there has been observed a large
number of mutations, i.e., deviations from this sequence.
Such mutations are available from data bases, e.g. [6].

Same as Fig. 3 but for larger sample size MFigure 4
Same as Fig. 3 but for larger sample size M.
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The codes on top of the underbraces stand for the found
mutations, e.g., P5L means that at position 5 it has been
found that the amino acid proline (P) was replaced by leu-
cine (L).

We subdivided the sequence into 74 parts of equal length
20 and counted the number of point mutations in each
part. This way we obtain the measured frequencies Mi =
{2,2,4,5,4, 5, 2, 2, 2, 3, 2,1,0,0,1,4,... } which serve as
input data. (The subdivision into parts may be repeated
with a different starting point which yields similar
results.) Certainly, measured frequencies as small as given
above do not allow for the application of the χ2-test. The
measured frequencies are shown in Fig. 5. Obviously,
based on this data it is not possible to decide a priori
whether the frequencies are equidistributed.

After processing the data as described above we obtain the
rank ordered measured distribution (bars in Fig. 6). The
full line shows the expected (theoretical) frequency distri-
bution due to Eq. (5) which has been generated with the
hypothesis that the positions of the point mutations are
equidistributed. Both curves deviate significantly from
each other, therefore, we conclude that the mutations are
not equidistributed. This conclusion agrees with the
hypothesis in ref. [9].

Since the investigation of point mutation is an interesting
field of application of the program we developed a sepa-
rate input mask for this purpose (case (4) of the list in the
previous section). The input syntax for this mode is
described in detail in the online help file of the program.

Recently, it has been shown for point mutations in the
human androgen receptor (AR) that the severity of the

disease correlates with the local sequence conservation
[11]. Germline mutations in the gene of the androgen
receptor lead to the androgen insensitivity syndrome
(AIS). In addition it was found that somatic point muta-
tions associated with prostate cancer are more frequently
found at locations with higher sequence variation com-
pared to germline mutations leading to complete AIS. The
related prediction method SIFT [10] has been proposed
recently. Both methods, SIFT and the method used in [11]
are based on the alignment of a large number of related
proteins. Inspired by their observation we asked the ques-
tion whether mutations in the androgen receptor are dis-
tributed randomly over the sequence depending on the
association with AIS or prostate cancer. The disease-asso-
ciated mutations in the AR were obtained from the AR
gene mutation database [12]. Multiple mutations at iden-
tical positions were counted only once. Those mutations
resulting in single amino acid substitutions were included
in the analysis. The test was performed for 61 mutations
associated with prostate cancer and 86 mutations found
in patients with complete AIS. To perform the analysis we
divided the sequence of 919 amino acids into 46 intervals
of length 20 and counted the number of mutations in
each interval. As expected, the results for the two datasets
were different: Cancer associated mutations are more dis-
seminated than congenital mutations found in patients
with AIS. For mutations associated with prostate cancer
the bar chart of the rank ordered frequencies nearly fol-
lows the theoretical curve for equal probabilities (Figs. 7,
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8) whereas for AIS associated mutations the bar chart
deviates markedly from the theoretical curve. Based on
this finding we hypothesize that mutagenesis in the germ-
line is followed by a selection process so that only a por-
tion of the mutations are found in patients while others
lead to early embryonal or fetal death. Conversely, muta-
tions associated with prostate cancer may persist and are
recorded.

Conclusions
For small sample sizes the relative frequencies Mi/M of
occurrence of individuals of a certain species i deviate sig-
nificantly from the probabilities of occurrence pi. With the
assumption that the N species occur with equal
probability pi = 1/N the expectation values  of the
numbers of events which are contained j times (j = 0,...,
M) in a sample of M individuals can be determined based
on combinatorial algebra. These expectation values allow
for a prediction of the rank ordered frequency
distribution.

For many practical problems the amount of available data
is insufficient to employ standard tests, such as χ2, to dis-
criminate whether or not a certain set of events complies
with an equiprobability distribution. For such situations
which occur frequently in the biological sciences we have
developed an online tool which is available at http://bio
inf.charite.de/equifreq/. As demonstrated for the case of
point mutations in the sequence of amino acids of the

cystic fibrosis transmembrane conductance regulator and
the androgen receptor, even for sample set sizes which are
certainly not sufficient to decide this question directly
from the observed frequencies (see Figs. 3, 4) this tool
helps to make a reliable statement.

The proposed method may be generalized to arbitrary
probability distributions provided there exists a
hypothesis on the functional form of the distribution
[13]. For mathematical reasons, however, (see [5]) it is
more difficult to derive an equivalent to Eq. (5) formula
for non-equiprobability distributions, which is subject of
current research.

Avalability and requirements
• Project name: equifreq

• Project home page: http://bioinf.charite.de/equifreq/

• Operating systems: platform independent

• Programming language: C++

• Other requirements: none

• License: GNU GPL

• Any restrictions to use by non-academics: none

Authors' contributions
TP worked out the statistical and combinatorial back-
ground, wrote the kernel C++-program and drafted the

Distribution of missense mutations in the androgen receptor for germline mutations leading to AISFigure 7
Distribution of missense mutations in the androgen receptor 
for germline mutations leading to AIS. The heights of the bars 
reflect the rank ordered frequencies of mutations in 
sequence intervals of length 20. The thick line displays the 
expected frequencies which would be obtained if point muta-
tions were randomly distributed.
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Distribution of missense mutations in the androgen receptor for somatic mutations associated with prostate cancerFigure 8
Distribution of missense mutations in the androgen receptor 
for somatic mutations associated with prostate cancer. 
Explanation see caption of Fig. 7.
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