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Abstract

Background: Normalization is an important step for microarray data analysis to minimize
biological and technical variations. Choosing a suitable approach can be critical. The default method
in GeneChip expression microarray uses a constant factor, the scaling factor (SF), for every gene
on an array. The SF is obtained from a trimmed average signal of the array after excluding the 2%
of the probe sets with the highest and the lowest values.

Results: Among the 76 U34A GeneChip experiments, the total signals on each array showed
25.8% variations in terms of the coefficient of variation, although all microarrays were hybridized
with the same amount of biotin-labeled cRNA. The 2% of the probe sets with the highest signals
that were normally excluded from SF calculation accounted for 34% to 54% of the total signals
(40.7% + 4.4%, mean % sd). In comparison with normalization factors obtained from the median
signal or from the mean of the log transformed signal, SF showed the greatest variation. The
normalization factors obtained from log transformed signals showed least variation.

Conclusions: Eliminating 40% of the signal data during SF calculation failed to show any benefit.
Normalization factors obtained with log transformed signals performed the best. Thus, it is
suggested to use the mean of the logarithm transformed data for normalization, rather than the
arithmetic mean of signals in GeneChip gene expression microarrays.

Background

The high-density oligonucleotide microarray, also known
as GeneChip® made by Affymetrix Inc (Santa Clara, CA),
has been widely used in both academic institutions and
industrial companies, and is considered as the "standard"
of gene expression microarrays among several platforms.
A single GeneChip® can hold more than 50,000 probe sets
for every gene in human genome. A probe set is a collec-

tion of probe pairs that interrogates the same sequence, or
set of sequences, and typically contains 11 probe pairs of
25-mer oligonucleotides [1-3]. Each pair contains the
complementary sequence to the gene of interest, the so-
called perfect match (PM), and a specificity control, called
the Mismatch (MM) [3]. Gene expression level is obtained
from the calculation of hybridization intensity to the
probe pairs and is referred to as the "signal" [4-10]. The
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normalization method used in GeneChip software is
called scaling and is defined as an adjustment of the aver-
age signal value of all arrays to a common value, the target
signal value in order to make the data from multiple
arrays comparable [4,11].

The purpose of data normalization is to minimize the
effects of experimental and/or technical variations so that
meaningful biological comparisons can be made and true
biological changes can be found among multiple experi-
ments. Several approaches have been proposed and
shown to be effective and beneficial. They were mostly
from studies on two-color spotted microarrays [12-19].
Some authors proposed normalization of the hybridiza-
tion intensities, while others preferred to normalize the
intensity ratios. Some used global, linear methods, while
others used local, non-linear methods. Some suggested
using the spike-in controls, or house-keeping genes, or
invariant genes, while others preferred all the genes on the
array. For GeneChip data, some have proposed different
models to normalize signal values or normalize probe
pair values [10,20-24]. Despite the presence of other alter-
natives, many biologists still use the default scaling
method and consider that such method is satisfactory and
is useful to identify biological alterations [23,25,26]. With
the increasing awareness and usage of GeneChip technol-
ogy and willingness to continue to use GeneChip software
among many biologists, it is worth improving the per-
formance or correcting the problems of the software. In
this report, the author has demonstrated that in the scal-
ing algorithm excluding 2% of the probe sets with the
highest and the lowest values did not have much benefit.
However, the logarithmic transformation of signal values
prior to scaling proved to be the optimum normalization
strategy and is strongly recommended.

Results

The statistical algorithm in current GeneChip software
(MAS 5 and GCOS 1) for gene expression microarray data
has eliminated the negative gene expression values, a
problem present in earlier versions of the software [5,7]. It
uses a robust averaging method based on the Tukey
biweight function to calculate the gene expression level
from the logarithm transformed hybridization data [3-
5,11]. The reported data of a probe set is the antilog of the
Tukey biweight mean multiplied by a SF and/or a normal-
ization factor (NF,y;). When both the SF and NF,, are
equal to 1, there is no normalization or manipulation of
original data. Both NF, and SF are computed in virtually
the same way. NF, is calculated in comparison analysis
to compare the array average of one experiment with that
of a baseline experiment, while SF is obtained from the
signal average of one experiment comparing with a com-
mon value, the target signal in absolute analysis [3-
5,11,22]. The average value used in GeneChip is a
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trimmed average. It is not calculated from all probe sets,
but from 96% of the probe sets after the 2% of the probe
sets with the highest and the 2% of the lowest signals were
removed.

In this report, a total of 76 experiments with rat U34A
GeneChip were analyzed. As shown in Table 1, the total
hybridization signals varied although all arrays were
hybridized with the same amount of biotin-labeled cRNA
and scanned with the same scanner of identical settings.
The array of the highest hybridization intensities had 2.8
times more signals than that of the lowest. The average
array signals had 25.8% variation in terms of coefficient of
variation. The mean signals were significantly greater than
the median signals on each array, indicating a non-nor-
mal distribution. The density plot showed a long-tailed
and skewed distribution (not shown) and the average of
such data is known to be sensitive to the larger values in
the data set.

The rat U34A GeneChip contained 8799 probe sets; hence
2% was about 176 probe sets. The sum of the 2% of the
probe sets with the lowest signals accounts for less than
0.1% of the total signals (0.05% + 0.01%, mean + SD, n =
76) and its impact on SF calculation can be ignored. How-
ever, the sum of the 2% of the probe sets with the highest
signals, the TrimTotal as used in this report, was responsi-
ble for about 40% of the total signals (from 34% to 54%,
Table 1). The remaining 96% of the probe sets used for SF
calculation, produced only about 60% of the signals.
Excluding 4% of the probe sets did not reduce the varia-
tion, but rather slightly increased the variation, which in
turn resulted in a wider range of SFs (Table 1). It was also
found that the TrimTotal was highly correlated with total
signal (R = 0.928), but less with medians (R = 0.536) and
the mean of log signals (R = 0.643). The trimmed percent-
age (Tp) was found to be negatively associated with the
median (R = 0.558, b = -1.116) and the mean of log sig-
nals (R = 0.495, b =-0.968), but not with the total signal
of all probe sets.

Among other approaches to global linear normalization,
one can also use the median signal or the mean of loga-
rithm transformed signals to calculate the NF. NFLogMean
showed a higher correlation with NFMedian than with SF.
There were larger differences between NFLogMean and SF
than those between NFLogMean and NFMedian (Fig. 1).
To test if the larger difference was a result of removing 4%
of the probe sets from the calculation, another NF, the
NFTrimLogMean was obtained using the same data as for
SF, but with a log transformation. There is a very signifi-
cant correlation between NFTrimLogMean and NFLog-
Mean (R = 0.9998). The 4% of the probe sets that was
removed from NFTrimLogMean calculation reduced the
total data by only 4% after log transformation.
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Table I: Summary of signal data in 76 rat genome U34A GeneChip microarrays.

Lowest Highest Mean SD CV (%)
Total signal 832,561.4 3,161,392.7 2,039,655.7 526,295.0 25.80%
Sum of signals used for SF 524 513.7 1,986,236.9 1,212,296.5 336,138.0 27.73%
Trimmed total 308,047.7 1,240,257.3 827,359.1 215,325.1 26.03%
Mean signal 94.6 3593 231.0 59.8 25.80%
Median of signals 17.8 54.8 35.7 8.7 24.41%
Mean of log signals 4.3 5.8 5.1 0.4 7.17%
Trimmed percentage 344 54.1 40.7 4.4 10.70%

"Total signal" is the sum of all the signals on each array. "Sum of signals used for SF" is the sum of signals excluding the trimmed data and used to
calculate SF. "Trimmed total" is the sum of the 2% probe sets with the highest signals on the array. "Mean of log signals" is the mean of log,
transformed signals. "Trimmed percentage” = (Trimmed total/Total signal) X 100%. See also in Methods. The "lowest" and "highest" showed the
lowest and highest number in the category among the 76 chips, respectively. The mean, standard deviation (SD) and coefficient of variation (CV)
were also calculated.
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(A) Comparison among different normalization factors. NFLogMean (x-axis) is plotted against SF (red open triangle) and NFMe-
dian (black closed circle). The correlation between NFLogMean and NFMedian is higher (R = 0.971) than that between NFLog-
Mean and SF (R = 0.918). (B) The NF score, NFscore, for SF (red open triangle), NFMedian (blue open diamond) and NFLogMean
(black closed circle) is expressed as a function of respective 'true NF. NFTrimLogMean is not shown here to simplify the graph
since it is similar to NFLogMean. See also in Methods.

Since it is impossible to obtain the true normalization fac-  NF to obtain its NFscore. The average NFscore (+ SD) is
tor, an average of the four global linear NFs mentioned  7.01% (+ 6.24%), 4.51% (+ 3.48%), 2.25%(+ 2.33%) and
above was used instead to estimate the 'true' NF. To com-  1.95% (+ 1.61%), and the sum of NFscore is 5.33, 3.43,

pare them with the true NF, a score (NFscore) is intro-  1.71 and 1.48 for SF, NFMedian, NFTrimLogMean and
duced. Each NF is calculated against the respective 'true’  NFLogMean, respectively (Fig. 1). The sum of NFscore indi-

Page 3 of 6

(page number not for citation purposes)



BMC Bioinformatics 2004, 5:103

cated an accumulated variation from the true NF, and the
larger the number, the larger the accumulated variation.
An attempt to add a 5th NF obtained from the arithmetic
mean of all probe sets of the array was also made to calcu-
late and compare NFscore with each NFs, and the results
showed the same conclusion (data not shown). It is fair to
conclude that NFLogMean produced the least variation.

Discussion

Logarithmic transformation is a well-accepted approach
for stabilizing variance and has become a common choice
for data transformation and normalization for spotted
microarrays [12,16]. Much improvement has been made
in GeneChip microarray technology and accompanying
software during the past few years. The current version of
GeneChip software has improved its performance and is
better than the earlier versions that used the Average Dif-
ference to express levels of gene expression [3,4]. How-
ever, the normalization algorithm was inherited and
remains the only and default option for gene expression
data processing in both MAS 5 and the newly released
GeneChip Operating Software (GCOS) software. They
continue to use the arithmetic mean of signals to obtain
the SF in absolute analysis (single array) and the NF in
comparison analysis (two arrays) [3-5,7,11,22]. It is
clearly shown here that the trimmed average and the
resulting SF had a larger variance than the median-based
NF, or the NF based on the mean of log transformed sig-
nals. Similar results were observed in other GeneChip
expression arrays, such as mouse U74A and human
U133A (data not shown). Elimination of the highest and
the lowest 2% of the probe set signals did not stabilize the
trimmed means. When intra-array variance was reduced
by 40%, this approach cannot be considered to be opti-
mal. The logarithmic transformation of signals stabilized
the variation well and made the normalization process
much less dependent upon the mean and less affected by
the outliers.

Although simple and popular, the global linear normali-
zation has its drawbacks, especially when the relationship
among multiple experiments or genes is not linear. To
address such problems, several methods have been pro-
posed to conduct local and non-linear normalization,
[12,14-17,20,22,27]. Data normalization is a very critical
and important step for microarray data mining process.
The use of different approaches to normalization may
have a profound impact on the selection of differentially
expressed genes and conclusions about the underlying
biological processes especially when subtle biological
changes are investigated [12,16,28].

Conclusions
Normalization of microarray data allows direct compari-
son of gene expression levels among experiments. A glo-
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bal linear normalization, called scaling has been widely
used in GeneChip microarray technology for gene expres-
sion analysis. The scaling factor (SF) is calculated from a
trimmed average of gene expression level after excluding
the 2% of the data points of the highest values and the
lowest values. It is shown here that the 2% of the probe
sets of the highest signals contained from 34% to 54% of
the total signals. Elimination of the outliers did not
reduce, but increased the variation among multiple arrays.
Instead, normalization factors obtained from the mean of
the log transformed signals had the best performance.
Thus, the current scaling method, although widely used, is
not optimal and needs further improvement. The mean of
logarithm transformed signals is highly recommended to
use for normalization factor calculation.

Methods

GeneChip experiments and data

Total RNA was isolated from rat tissues or cells in Trizol
reagent and purified with Qiagen Rneasy kit. cDNA was
synthesized in presence of oligo(dT)24-T4 (Genset Corp,
La Jolla, CA) and biotinlated UTP and CTP were used to
generate biotin labeled cRNA according to the recom-
mended protocols [29]. Rat genome microarray, U34A
GeneChip (Affymetrix Inc., Santa Clara, CA) was used and
hybridized with 15 pg of gel-verified fragmented cRNA.
Hybridization intensity was scanned in GeneArray 2500
scanner (Agilent, Palo Alto, CA) with Microarray Suite
(MAS) 5.0 software [4]. Data from a total of 76 independ-
ent GeneChip experiments were used in this study.

Normalization factor (NF)

Gene expression data exported from MAS 5.0 were sub-
mitted to a Perl script to calculate different normalization
factors. In the scaling approach, a trimmed average signal
is calculated after excluding 2% probe sets with the high-
est signals and 2% with the lowest signal values. The scal-
ing factor (SF) is obtained using equation (1) in
comparison with a chosen fixed number, called the target
signal (TS) and is verified with the results from MAS 5.0
of the same settings [3,4,11].

SFj =TS / STrimMeunj (1)

Other normalization factors for
obtained by the following:

comparison were

NFMedian; =TS [ S;eq;  (2)

NFLogMean; =2 "/,

nf; =log, TS—[( log, S;) /] (3)
i=1
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where i = 1..., n represents the probe sets, j = 1..., ] repre-
sented the array experiments, Si is the signal of the anti-
log of a robust average (Tukey biweight) of log(PM-MM)
reported from MAS 5.0 [5], S,,.q; is the median signal on
the array j, Syyipuean; i the trimmed average on array j after
excluding 2% of the probe sets with the highest and the
lowest signals [3,4,11,22]. NFMedian;is obtained by using
the median signal on array j, and NFLogMean; is obtained
by using the mean of log transformed signals. TS was set
to 150, 38 and 38 for SF, NFMedian and NFLogMean,

respectively in order to have similar NFs.

In comparison with different NFs, a score, NFscore is intro-
duced. NFscore; = (NF; - TrueNF;)/TrueNF;, and TrueNF; =
(SF; + NFMedian; + NFLogMean; + NFTrimLogMean;)/4,
where NFTrimLogMean;, was calculated from equation (3)

excluding the 2% of the probe sets with the highest and
lowest signals, TrueNF; was used as a 'true’ NF. Sum of

n
NFscore = 2| NFscore; |
j=1
Other analysis

Unless otherwise specified, logarithm transformation is
carried out with the logarithm base 2. Trimmed total sig-
nal TrimTotal is the sum of the signals from the 2% of the
probe sets with the highest signal values. Total signal Total
is the sum of the signals of all probe sets in the array, and
trimmed percentage Tp; = (TrimTotal; / Total;) x 100%.

Abbreviations
GeneChip® is the registered trademark owned by Affyme-
trix Inc.

PM: perfect Match; MM: mismatch; SF: scaling factor; NF:
normalization factor; TS: target signal Short phrase: Nor-
malization of GeneChip microarray data
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