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Abstract

Background: The current progress in sequencing projects calls for rapid, reliable and accurate
function assignments of gene products. A variety of methods has been designed to annotate
sequences on a large scale. However, these methods can either only be applied for specific subsets,
or their results are not formalised, or they do not provide precise confidence estimates for their
predictions.

Results: We have developed a large-scale annotation system that tackles all of these shortcomings.
In our approach, annotation was provided through Gene Ontology terms by applying multiple
Support Vector Machines (SVM) for the classification of correct and false predictions. The general
performance of the system was benchmarked with a large dataset. An organism-wise cross-
validation was performed to define confidence estimates, resulting in an average precision of 80%
for 74% of all test sequences. The validation results show that the prediction performance was
organism-independent and could reproduce the annotation of other automated systems as well as
high-quality manual annotations. We applied our trained classification system to Xenopus laevis
sequences, yielding functional annotation for more than half of the known expressed genome.
Compared to the currently available annotation, we provided more than twice the number of
contigs with good quality annotation, and additionally we assigned a confidence value to each
predicted GO term.

Conclusions: We present a complete automated annotation system that overcomes many of the
usual problems by applying a controlled vocabulary of Gene Ontology and an established
classification method on large and well-described sequence data sets. In a case study, the function
for Xenopus laevis contig sequences was predicted and the results are publicly available at ftp://
genome.dkfz-heidelberg.de/pub/agd/gene association.agd Xenopus.
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Background

Ongoing genome sequencing and recent developments in
cDNA sequencing projects have led to an exponential rise
in the amount of sequence information. This has
increased the need for acquiring knowledge from
sequences as to their biological function. Annotating a
single sequence is the gateway to interpreting its biologi-
cal relevance. However, the usefulness of these annota-
tions is highly correlated with their quality. Accurate
annotation has traditionally been maintained manually
with the experience of individual experts and the experi-
mental characterisation of sequences. However, the
increasing gap between the amount of sequence data
available and the time needed for their experimental char-
acterisation demands computational function prediction
in complementing manual curation [1-4]. Commonly,
computational functional assignment is based on homo-
logues identified from database searches [5]. Such an
automated annotation process provides comparable
results due to a uniform analysis of all query sequences
across the same databases and the possibility of repeating
the annotation to updated sequence data [6]. However,
crucial aspects for consideration in automated annotation
are i) the problems associated with the databases them-
selves: sequence errors, erroneous annotation due to
spelling ambiguities, incomplete functional annotation,
inconsistent functional annotation across databases, con-
sistent but wrong annotation across databases, and ii) the
problems associated with the inference, i.e. false positives,
where an assignment is made on the basis of a wrongly
inferred homology [3,7,8]. A number of excellent annota-
tion systems have been developed to tackle these prob-
lems, e.g. RiceGAAS [9], GAIA [10], Genotator [11],
Magpie [12], GeneQuiz [6], GeneAtlas [13] and PEDANT
[14]. However, little has been done to quantify the anno-
tation accuracy by defined benchmarks and establish a
method to provide a confidence value for each
annotation.

The current annotation, written in a rich, non-formalised
language also complicates this automated process. We
addressed this problem by applying a controlled vocabu-
lary from Gene Ontology (GO) [15-17]. GO provides con-
sistent descriptions of gene products in a species-
independent manner. The GO terms are organised in
structured, controlled vocabularies (ontologies) to
describe gene products in terms of their associated biolog-
ical processes, cellular components and molecular func-
tions. An increasing number of GO-mapped sequence
databases make it possible to replace traditional database
searches with GO-related searches. These include data-
bases such as GenBank [18], SWISS-PROT [18], Swiss-
PROT/TrEMBL [19], the TIGR Gene Index [20] and several
other genome databases. Many annotation approaches
have now been developed based on Gene Ontology. The
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uncharacterised sequences are searched across GO-
mapped protein databases and assigned with GO terms of
the best hits [21,22]. Jensen and co-workers used neural
networks to predict specific subsets of GO terms [23]. Fur-
thermore, Schung et al predicted GO terms by intersecting
domain profiles [24]. The SwissPROT/TrEMBL entries
were associated with GO terms by an automated process
coupled with manual verification [19]. Text mining and
similarity searches were combined to annotate SWISS-
PROT and GenBank entries with GO terms [18]. However,
these approaches were either applied to specific GO sub-
sets or did not provide defined benchmarks and confi-
dence values for their predictions.

We have developed an automated system for large-scale
cDNA function assignment, designed and optimised to
achieve a high-level of prediction accuracy without any
manual refinement. Our system assigns molecular func-
tion GO terms to uncharacterised cDNA sequences and
defines a confidence value for each prediction. The cDNA
sequences were searched against GO-mapped protein
databases and the GO terms were extracted from the
homologues. In the training phase, these GO terms were
compared to the GO annotation of the query sequences
and labelled correspondingly. We applied Support Vector
Machines (SVMs) as the machine learning method to clas-
sify whether the extracted GO terms were appropriate to
the cDNA sequence or not. In order to classify the GO
terms we used a broad variety of elaborated features
(attributes) including sequence similarity measures, GO
term frequency, GO term relationships between homo-
logues, annotation quality of the homologues, and the
level of annotation within the GO hierarchy. To enhance
the reliability of the prediction, we used multiple SVMs
for classification and applied a committee approach to
combine the results with a voting scheme [25]. The
confidence values for the predicted GO terms were
assigned based on the number of votes i.e. number of
SVMs predicting particular GO term as correct. The per-
formance of the system was benchmarked with 36,771
GO-annotated cDNA sequences derived from 13 organ-
isms. It achieved 80% precision for 74% of the test
sequences. We applied our annotation system to predict
the function for Xenopus laevis, a widely studied model
organism in developmental biology. Because many
researchers are now focussing on the functional genomics
of this organism, a demand exists for a quality annotation
[26]. Therefore we applied our system to improve the
quality and coverage of the existing annotation. We pre-
dicted the function for 17,804 Xenopus laevis contig
sequences (from TIGR Gene Indices) yielding annotation
with good confidence values for more than half of these
sequences.
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Results

General workflow of training and classification

The classifier (SVM) needs to specify attribute values (fea-
tures) for a broad list of samples and a class label for each
of these samples. Through the training samples it learns
the feature patterns and tries to group them according to
their class labels. After training, the algorithm assigns class
labels to new samples according to the class that they best
match.

We selected GO-annotated cDNA sequences for training
the SVM classifier. The nucleotide sequences were
searched against GO-mapped protein databases and GO-
annotations were extracted from the significant hits. Then,
each GO term obtained was utilized as a sample for the
feature table. The sample GO terms were then labelled as
either correct ("+1") or false ("-1") by comparing them to
the original annotation. Note that we applied the relation-
ships of the GO terms based on their graph structure:
"Correct" was assigned not only if they were exact matches
but also if the GO terms were related as either "parent" or
"child" (Figure 1). Next, the samples were attached with
their features or attributes, calculated from the BLAST [27]
results. With this data, the classifier was trained to distin-
guish between the attribute patterns that contributed to
class +1 (correct prediction of a GO term) and class-1
(false prediction). To predict the function of unknown
sequences, the same procedure was applied as for the
training sequences in order to obtain their GO terms and
corresponding attribute values. According to these
attribute values, the classifier assigned a class for every GO
term of the BLAST hits (Figure 2).
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Datasets for training and testing SYM

For training and testing the SVM, we selected 39,740 GO-
annotated cDNA sequences from the following organ-
isms: Saccharomyces cerevisiae (yeast), Drosophila mela-
nogaster (fly), Mus musculus (mouse), Arabidopsis thaliana
(Arabidopsis), Caenorhabditis elegans (worm), Rattus nor-
vegicus (rat), Danio rerio (fish), Leishmania major (Leishma-
nia), Bacillus anthracis Ame (Bacillus), Coxiella burnetii RSA
493 (Coxiella), Shewanella oneidensis MR-1 (Shewanella),
Vibrio cholerae (Vibrio) and Plasmodium falciparum (Plasmo-
dium) (Table 1). From these, 55.3% of the cDNA
sequences were contributed by Arabidopsis, mouse and fly
(22.1%, 18%, and 15.2% respectively). Prokaryotic bacte-
ria (Bacillus, Coxiella, Shewanella and Vibrio) contributed
20.6% and the remaining 24.1% of the sequences came
from rat, fish, worm, Plasmodium, Leishmania and yeast.
Yeast and fly are purely manually annotated datasets.
Where as Bacillus, Coxiella, Vibrio, Shewanella, Leishmania
and Plasmodium are mostly manually, and the rest mostly
automatically annotated datasets. Manual annotation
tends to be conservative and sparse, since the GO terms
are assigned only if the annotator is highly confident.
Therefore, a GO term may be missed due to a poor defini-
tion of a false negative. To reduce this critical problems,
yeast and fly annotations are accompanied by an
"unknown molecular function" term for sequences with
questionable further functions. To reduce false negatives,
we discarded all sequences with these tags for training and
testing (yeast: 2999 discarded out of 6355, fly: 8495 out
of 14335).
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A schematic representation of possible GO term relationships: A: GO, is a "parent” of GO, in a single path relationship. B:
GO, is a "parent" of GO, in a multiple path relationship. C: GO, is a "child" of GO, in a single path relationship. D: GO, is a
"child" of GO, in a multiple path relationship. E: GO, and GO, are "siblings" in a single path relationship. F: GO, and GO, are
"siblings" in a multiple path relationship. MF denotes the molecular function node (root).
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General prediction scheme: The training sequences (S1) with known function (GO,, GO,, GO,) were searched across the pro-
tein databases, yielding hits with molecular function GO terms (GO, GO,, GO;, GO,, GO;, GO,) and their features (see
methods), sketched as dots in a two-dimensional feature space. If GO terms of the hits compared to GO terms of the query,
they were classified as +1 (correct, green), and -1 otherwise (red). The classifier (SYM) separated the classes by an optimal
separating hyperplane (OSH). Unknown sequences (S2) were searched in the same manner and the GO terms (GO,, GO,
GO,) were extracted. Their features were calculated and mapped into the feature space. The corresponding labels were

assigned (correct/false).
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Table I: Training and test dataset: Datasets used for training and testing the support vector machines. The columns are: I. The number
of cDNA sequences for training. 2. The number of cDNA sequences with BLAST hits having GO molecular function terms. 3. The
average number of GO molecular function terms per cDNA sequence of the BLAST-hits. 4. The classification of GO terms coming from
the hits, positive if the GO terms were similar to original annotation, negative otherwise.

Organisms Number of cDNAs  c¢cDNA with MF GO  Number of GO/cDNA Class distribution
% Positive % Negative
Rat 1039 1036 36.90 25.7 74.3
Fish 1061 1044 32.10 39.2 60.8
Fly 5840 5574 25.47 234 76.6
Worm 4272 3458 27.13 395 60.5
Plasmodium 274 271 23.67 28.0 72.0
Leishmania 82 82 20.51 35.1 64.9
Yeast 3356 2972 18.60 237 76.3
Bacillus 2729 2577 13.63 354 64.6
Coxiella 931 900 12.33 37.0 63.0
Shewanella 2413 2303 10.78 33.0 67.0
Vibrio 1832 1804 12.54 319 68.1
Arabidopsis 8807 8120 26.66 30.2 69.8
The cDNA sequences were searched across the protein ~ SVM testing

databases covering a wide range of organisms from
prokaryotes to eukaryotes and SWISSPROT. For 36,771
sequences we got hits with GO terms, contributing to
856,632 sample GO terms and yielding an average of
23.29 GO terms per query sequence (Table 1). These
856,632 samples were used to train our classifier. Gener-
ally, the number of GO terms per sequence was less for
prokaryotes than for eukaryotes. Rat had the maximum
number of GO terms per sequence (36.9), followed by
fish (32.1) and worm (27.13). In contrast, Shewanella,
Coxiella and Vibrio sequences had the lowest number of
GO terms per sequence (10.78, 12.33 and 12.54,
respectively).

SVM training and testing

SVM training

We set up multiple classifiers by splitting the whole data-
set (856,632 samples) into 99 equal subsets. Note that,
amongst these 99 subsets, 96 contained data from a single
organism and the remaining 3 from two organisms each.
Subsequently, we built 99 classifiers with these subsets.
Since the training sets were created organism-wise, the
classifiers were trained from different ranges of data,
based on purely manual annotation (yeast, fly), mostly
automated annotation or a mixture of both. For training
each of these classifiers, we performed a model selection
(parameter optimisation by cross-validation; see
Methods), which yielded varying accuracy values ranging
from 78.81% to 96.03%, with an average accuracy of
85.11%.

To test the classifiers performance, we prepared 13 test sets
(each set corresponding to a single organism) using the
same 856,632 sample GO terms. The prediction quality of
all 99 classifiers were assessed by an organism-wise cross-
validation approach, i.e. for each organism (test set), we
used all the classifiers for prediction except those that cor-
responded to the same organism. With this approach, we
were able to simulate the annotation of a new organism.
The number of classifiers used for predictions varied
highly across organisms (maximum: Plasmodium and
Leishmania, 98 classifiers; minimum: Arabidopsis, 74 classi-
fiers). The quality of the predictions was estimated by
comparing the predicted terms with the original annota-
tion and the results were expressed in terms of precision
and accuracy values (see Methods). The average-accuracy
refers to the average of the accuracy values attained by all
classifiers used for the prediction. The maximum average-
accuracy was achieved for fly (81.51%), followed by yeast
(80.50%), and the minimum for mouse (76.0%).

Additionally, we compared the classification efficiency of
the classifier derived from automatic annotation (mouse,
worm and Arabidopsis) with the manually annotated test
sequences (yeast and fly). The prediction of the yeast and
fly sequences with the 20 classifiers from the mouse
sequences produced an average-accuracy of 79% and 80%
respectively. Similar results were acquired with the 25
classifiers from Arabidopsis (79% and 80%). Likewise, the
worm classifiers (11 classifiers) yielded the average-accu-
racy of 82% for yeast and 83% for fly. These values were
comparable with the average-accuracy of 81% achieved by
both, using yeast as test sequences against fly classifiers
(16 classifier) and vice-versa (fly test sequences against
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Accuracy and precision against the number of votes: The
accuracy and precision values of the test data is plotted
against the number of votes. An increasing number of votes
increased the precision monotonically. Higher stringency
yielded a sparse lowering of the accuracy due to the rate of
false negatives. The relation between the precision and the
number of votes was used for assigning confidence values for
new predictions.

yeast classifiers). Likewise, we classified the mouse test
sequences against yeast classifiers (5 classifier) and fly
classifiers yielding 69% and 71% average-accuracy

respectively.

Combining multiple classification results by the committee
approach

Though we already achieved a good accuracy with some of
the classifiers, our intention was to improve the precision
and, furthermore, to obtain confidence values for the pre-
dicted GO terms. To this end, we combined the predic-
tions of multiple classifiers by the committee approach. If
a classifier predicted a particular GO term as correct, it
contributed a vote. Votes were collected from all classifiers
and summed up to yield a final score value. If no vote sup-
ported a GO term as correct, it was assigned with the label
"false". Otherwise, the number of votes provided a meas-
ure of the reliability. Figure 3 shows precision and accu-
racy versus the number of votes. If we made predictions
with a minimum of one vote, we were able to achieve 43%
precision and 59% accuracy. When the stringency was
raised to 25 votes, a minimum of 25 votes was required to
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ROC plots for the classifiers performance: ROC plots for the
results of all organisms tested and the average of all test
sequences. The classification performance for different
classes of organisms like multi-cellular eukaryotes, single-cell
eukaroyotes and the prokaryotes were compared.

classify a GO term as correct, yielding an accuracy of 84%
and precision of 75%. At a cut-off value of 74 votes, we
attained 91% precision and 71% accuracy. A cut-off value
of 94 votes gave 100% precision and 67% accuracy. Our
accuracy reached a plateau at 20 votes. However, it
decreased slightly for stringencies of more than 30 votes.
Note, that this was due to the increasing number of false
negatives. The relation between the precision and the
number of votes (Figure 3) was used as a means of cali-
brating to assign the confidence values for new

predictions.

For each threshold value of the votes, we calculated the
sensitivity and the false positive rate to obtain a Receiver
Operating Characteristic plot (ROC; Figure 4). The graph
shows that the classification performance was comparable
for different classes of organisms like prokaryotes, single
cell eukaryotes and multi-cellular eukaryotes, which
reflect the organism-independent performance of our
method. Note that for fish, worm, Plasmodium and Leish-
mania the classification performance was particularly
good due to the low number but well characterised test

sequences.
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Precision against the sequence coverage: Average precision
against sequence coverage for all |3-test organisms (circles).
The red line denotes a fitting curve.

We compared the prediction performance for GO terms
annotated with the evidence code IEA (automated anno-
tation) and non-IEA (manually verified annotation). All
sequences from Bacillus, Coxiella, Vibrio, Shewanella, yeast,
Leishmania, and Plasmodium were non-IEA annotated and
99.5% of the fly GO terms were non-IEA annotated. In
contrast, all sequences from fish and worm were IEA
annotated. The remaining test organisms were mostly IEA
annotated (rat: 88%, Arabidopsis: 79.4%, and mouse:
69.5%). The classification performances revealed by the
ROC plots were comparable between IEA and non-IEA
annotated test organisms (Figure 4). Therefore, the classi-
fier could reproduce the annotation of other automated
systems as well as high-quality manual annotation. We
were interested in the coverage of sequences with respect
to the average precision of the annotations (shown in Fig-
ure 5). Considering 1 vote as the cut-off value, we
obtained 52% average precision for 98% coverage. We
obtained 80% average precision for 74% coverage (cut-
off: 34 votes), and 90% average precision for 42% cover-
age (cut-off: 65 votes). These coverage values varied when
regarding the test organisms individually. The coverage
for different test organisms at 80% average precision were:
fish 97%, Coxiella 89%, worm 88%, Vibrio 86%, rat 85%,
Bacillus 83%, Plasmodium 81%, mouse 78%, Leishmania
76%, Shewanella 74%, Arabidopsis 69%, fly 66% and yeast
57%.

Xenopus annotation
We extracted all Xenopus laevis contig sequences from the
TIGR Xenopus laevis Gene Index (XGI) [28] and got a total
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of 35,251 contig sequences, excluding singletons. We
applied our method to predict functional GO terms for
these contig sequences. We predicted the function for
17,804 sequences with an average of 12.16 GO terms per
sequence. In total, 23.4% of all the GO terms were pre-
dicted with less than 50% confidence value, 51.5% of
them were between 50% to 80% confidence and the
remaining 25% with a predicted confidence value of
above 80%. At 80% stringency (predicted if the GO term
possessed a confidence value of 80% or more), we made
predictions for 9,510 contig sequences including 55,994
GO terms, yielding on average 5.88 GO terms per
sequence.

To compare the functional abundance of the expressed
genome across the organisms, we mapped the predicted
GO terms (with at least one vote) to the high-level, i.e.
more generalised or high-level terms of the molecular
function ontology ("GO slim" for molecular function)
[29]. These molecular function GO slim nodes were taken
from the second level of the molecular function ontology.
The distribution of higher-level GO terms were compared
between Xenopus, fly, yeast and mouse (Figure 6). Note
that some of the deeper-level terms had multiple paths.
They were mapped to two or more higher-level nodes, so
that the total sum of the higher-level nodes exceeded
100%.

Comparison to the TIGR Xenopus annotation

TIGR provides a GO mapping for Xenopus contigs (TIGR
Xenopus laevis gene indices). We compared our annotation
with the TIGR GO annotation for molecular function.
From 35,251 contig sequences, TIGR annotated 5,444
contigs with a total of 16,432 molecular function GO
terms. In contrast, our approach was able to predict func-
tion terms for 17,804 contigs, i.e. more than three times
that of TIGR sequences. Our procedure did not annotate
295 contigs from the TIGR annotated contigs. For the
remaining 5,149 contigs, 85% of all TIGR terms were
found to be exact with those using our method; 3.2% of
the TIGR terms were at a higher-level of the GO tree than
our annotation, so in this case we provided annotation at
a deeper level; in 0.9% of the cases our annotation was at
a higher-level; 8.3% of the cases were completely differ-
ent; and 0.6% of the TIGR terms were obsolete. We com-
pared the quality of TIGR and that of our annotations by
a raising stringency and found that when we applied a
confidence threshold of 80% for our annotation, we lost
46.6% of the sequences. This included 1,492 sequences
holding equivalent TIGR annotation or 27.4% of the total
TIGR annotation. With this stringency, our system anno-
tated 9,510 contig sequences, i.e. twice the TIGR annota-
tion at this quality.
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Comparison of GO slims between Xenopus, fly, yeast and mouse: Distributions of higher-level GO terms (,,GO slim", see text)
for Xenopus, fly, yeast and mouse. The sum of all high-level terms may exceed the total number of the annotated terms, since
some terms may have more than one high-level "parent" terms due to multiple paths.

We were interested in novel annotated sequences with the
highest confidence values and found we could predict GO
terms for 557 contigs with a confidence value of 100% (all
votes matched). Interestingly, 192 of these lacked any GO
annotation by TIGR. Out of these, 184 had got a descrip-
tive TIGR annotation and the rest had not got any. Table
2 shows the novel annotation for these eight sequences.
Our novel predictions are as follows: 1) TC212171 and
TC196381 are predicted to display endopeptidase activity
and more specifically serine-type peptidase activity (98%
and 97% confidence respectively). 2) TC209487 and
TC190605 are predicted to be aminopeptidases, however
for the latter the more specific prediction of prolyl ami-
nopeptidase activity is assigned with 86% confidence. 3)
TC199713 is predicted as glutathione peroxidase at 100%
confidence and TC194305 is annotated as protein kinase
with the same confidence. 4) Both TC187949 and
TC210151 are transmembrane receptors but the latter one is

classified as frizzled receptor with 82% confidence. In most
of these examples the functional assignment and
associated confidence were recorded in multiple levels of
granularity.

Discussion

In this paper, we presented an automatic annotation sys-
tem that is able to cope with the expanding amount of
biological sequence data. Our approach efficiently com-
bines the ongoing efforts of Gene Ontology and the avail-
ability of GO-mapped sequences with a profound
machine learning system. The GO-mapped databases pro-
vide annotation described in a controlled vocabulary and
also a measure of reliability, as these GO entries are
labelled with their type of origin. Furthermore, GO terms
are structured hierarchically, which allow us a twofold use
of the information: i) the level within the tree is taken as
a classification criterion to distinguish low from high-
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Table 2: The novel predictions with high confidence values (100%). The columns correspond to TC (TIGR-id) number, GO term level
in GO-structure, the confidence values and the GO number and GO terms.

TC Numbers GO level Confidence value GO ID GO terms
TC212171 4 100% GO:0008233 peptidase activity
5 100% GO:0004175 endopeptidase activity
5 98% GO:0008236 serine-type peptidase activity
3 98% GO:0016787 hydrolase activity
TC196381 5 100% GO:0004175 endopeptidase activity
4 98% GO:0008233 peptidase activity
3 98% GO:0016787 hydrolase activity
5 97% GO0:0008236 serine-type peptidase activity
TC209487 2 100% GO0:0003824 enzyme activity
3 100% GO:0016787 hydrolase activity
5 90% GO:0004177 aminopeptidase activity
4 85% GO:0017171 serine hydrolase activity
TCI187949 4 100% GO:0004888 transmembrane receptor activity
3 97% GO:0004872 receptor activity
TC194305 2 100% GO:0003824 enzyme activity
3 99% GO:0016740 transferase activity
3 99% GO:0016301 kinase activity
6 97% GO:0004672 protein kinase activity
TC210151 3 100% GO:0004872 receptor activity
4 97% GO:0004888 transmembrane receptor activity
6 82% GO:0004928 frizzled receptor activity
TCI199713 6 100% GO:0004602 glutathione peroxidase activity
3 98% GO:0016491 oxidoreductase activity
5 85% GO:0004601 peroxidase activity
TC190605 2 100% GO:0003824 enzyme activity
3 100% GO:0016787 hydrolase activity
4 87% GO:0017171 serine hydrolase activity
6 86% GO:0016804 prolyl aminopeptidase activity

level annotations during the learning procedure, and, ii)
the hierarchical structure allows us to extend hits by
slightly moving up and down within a restricted local area
of the tree. This may overcome fluctuations of the annota-
tion levels coming from varying annotation experts.

Our annotation system exploits the different combina-
tions of attributes and yields functional transitivity: SVM
learning and prediction are organism-independent and
comparable to manual annotation, which may be sup-
ported by the nature of the attributes we utilise. Subsets
and overlaps are counted in a balanced fashion to avoid
biases due to the complexity of an organism and a poten-
tially correlated complexity of its sequences. The commit-
tee approach allows us to improve the prediction quality
as well as to assign confidence values for the new predic-
tions in a straightforward manner. Our classifiers
performance is hardly limited by the varying quality of the
training data, whether manual or automatic annotated.
The prediction results of manually annotated test sets with
the classifiers based on automated annotation as well as
classifiers based on manual annotation were comparable.
Regarding the outcome of the overall classifiers, we

achieve consistency with existing annotation from auto-
matic annotations. This is the less complex part of our
work and shows a comparable efficiency of our system.
Additionally, our system reproduces annotation of purely
manually annotated datasets (fly, yeast, etc). However,
the performance results for these datasets are low in terms
ofrecall, i.e. 47.4% recall with 80% precision compared to
60.6% recall with the same precision of the complete test
set. Note that manual annotation tends to be conservative
and sparse, yielding stringent true positive definitions,
whereas automatically annotated sequences may accumu-
late information to a greater extent.

We were interested in annotating Xenopus since it is a
familiar model organism. However, the sequences were
not very well annotated. Our system was applied to anno-
tate the Xenopus contig sequences from TIGR. Through our
approach, we annotated 50.5% of all contig sequences
available at present, and associated a confidence value for
each prediction, yielding roughly three times more
sequences as compared to the currently available GO
annotation. However, the coverage of annotation to new
organism like Xenopus is crucial. We were able to attain
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predictions for 50.5% of all Xenopus contig sequences (no
singletons). This compares to the applied databases that
contained 53% satisfactory annotation for their sequences
(not regarding sequences with unknown function terms),
and better than the organism specific databases (36%).
Obviously, improving the quality and quantity of annota-
tion within the available databases goes along with the
coverage exploit of machine learning algorithms for new
organisms. In future we want to extend our method with
the information from other sources such as domain data-
bases and protein family databases.

Conclusions

We developed an automated annotation system to assign
functional GO terms to an unknown sequence. We used
the well-established technique of Support Vector
Machines (SVM) for the classification of correct and incor-
rect GO terms. Our approach benefited from the broad
variety of potential attributes used for the functional tran-
sitivity and a vast amount of data used for training and
validating. The committee scheme exploited in our system
provided a means to assign confidence values in a
straightforward manner. Our system performance was
robust, organism-independent and reproduced the high-
quality manual annotation. When applying it to Xenopus
laevis contig sequences, we obtained a remarkably
enhanced annotation coverage compared to the existing
annotation.

Methods

Quality criteria for assessing the performance of the
classifier

We used the following statistical terms [30,31].

Accuracy was the rate of correct predictions compared to
all predictions,

Accuracy: = (TP + TN) / (TP + FP + TN + EN), (1)

where TP denotes true positives, FP false positives, TN true
negatives and FN false negatives. Precision was the portion
of true positives with respect to all positives,

Precision: = TP / (TP + FP).  (2)

Also used were sensitivity := TP | (TP + FN), specificity := TN
/ (FP + TN), and false positive rate := 1 - specificity. We
defined the term "coverage-of-sequences" as the portion of
query sequences for which the classifier delivers a predic-
tion; "Precision-per-sequence" the (average) portion of cor-
rect GO terms for a single query sequence, with respect to
all GO terms assigned to it. Note that these terms were
defined within our model, i.e. a good "accuracy" meant
good consistency with respect to our training and test sets.

http://www.biomedcentral.com/1471-2105/5/116

Defining the GO term relationships

We focused on the molecular function terms from GO,
because the information extracted from the gene products
is usually more predictive for determining molecular
functions than for biological processes or cellular compo-
nents. The functional terms and their hierarchy were
obtained from the web pages of the Gene Ontology Con-
sortium [29] (version of June 2003). In our study, rela-
tionships "is-a" and "part-of" were not distinguished.
Note, that the "part-of" relationship is rare in the molecu-
lar function ontology (26 out of 6521 child-parent rela-
tionships). The annotation level varies across databases
depending on the curator's individual knowledge about
the gene product. To consider varying levels of annotation
in the databases for similar gene products, we traced the
relationships to match GO terms of different granularity
for the same function. To find a relationship between two
terms, the whole path of a GO term was traced back to the
root (the root is the "molecular function" node,
GO:0003674). We defined the distance between two GO
terms as the distance of the shortest path. GO terms are
organised in directed acyclic graphs, i.e. a child (more spe-
cialised term) may have multiple parents (less specialised
terms). Therefore, we defined single path and multiple
path relationships. In the case of single path relationships,
GO terms had only one possible path to the root. The
relationship of the term GO, with respect to GO, was clas-
sified as "parent”, "child", "sibling" or "different" (Figure
1) according to the following rules:

GO, is a "parent" of GO if their respective paths P, and P,
intersect in such a manner that

P,cP, (3)
P; denotes the set of nodes from GO; to the root

GO, is a "child" of GO, if their paths P, and P, intersect
such that

P,oP, (4)

GO, is a "sibling" of GO, if a common parent exists with a
distance of one to GO, and GO, (Figure 1E). To avoid
ambiguities for less differentiated terms, the sibling rela-
tionship was set only, if GO, and GO, were at least 5
nodes away from the root.

The relationship "different" was set if none of the previ-
ously stated criteria was fulfilled.

We could apply the single path relationship for most of
the GO terms (3665 out of 5391). However, for the
remaining 1726 terms more than one path to the root
were found. For these cases we defined multiple path rela-
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tionships and each path was considered individually. The
single path relationship was applied to each possible pair
of these paths (path for GO, and GO,, respectively) and is
henceforth referred to as "path-pairs". This method could
yield a list of several relations. To select the appropriate
relation from this list, we considered the parent relation-
ship to be most relevant, followed by the child
relationship, and the sibling was considered least relevant.
We implemented the following order:

1. The parent relationship was set if at least one of the
path-pairs gave a (single path) parent relationship;

2. The child relationship was set if at least one of the path-
pairs gave a child relationship. To avoid a bias due to an
overwhelming number of path-pairs that did not match,
we set a threshold: we considered this relationship only, if
the number of path-pairs with no child relationship was
equal or less than four times the number of path-pairs
with child relationship;

3. The sibling relationship was set if at least one of the
path-pairs gave a sibling relationship. We again set a
threshold: we considered this relationship only, if the
number of path-pairs with no sibling relationship was
equal or less than twice the number of pairs with sibling
relationship;

4. If none of these criteria could be applied, the relation-
ship "different" was set.

Note that we also implemented the hierarchy of these
relations by tuning the stringencies for the fractions of
path-pairs that must match (parent: no threshold, child:
1/4, sibling: 1/2).

Data basis used for this study

Since the function transitivity at the protein level is more
reliable, we used GO-mapped protein databases for
searching homologues. Gene association files were
obtained via the Gene Ontology Consortium. By combin-
ing the gene association files with corresponding
sequence databases we created the unified protein data-
bases. The following organisms were used: yeast, fly,
mouse, Arabidopsis, worm, rat, fish, Leishmania, Bacillus,
Coxiella, Shewanella, Vibrio, Plasmodium, Oryza sativa,
Trypanosoma brucei, and Homo sapiens. Apart from this, the
SWISS-PROT database was also included [32]. For SVM
training and testing we selected 39,740 cDNA sequences
from 13 organisms. These cDNA sequences were collected
from the following organisms: yeast, fly, mouse, Arabidop-
sis, worm, r1at, fish, Leishmania, Bacillus, Coxiella,
Shewanella, Vibrio and Plasmodium (see Table 1). Out of all
the known cDNA sequences we extracted 39,740 with GO
molecular function terms, discarding incompletely anno-
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tated ones, i.e. sequences assigned with the GO term
"molecular function unknown" (GO:0005554).

Computing the attributes

Each ¢cDNA sequence was searched across the protein
databases, using BLASTX within the HUSAR system [33].
A query sequence was not searched within the database of
their own organism. In case of SWISSPROT, hits corre-
sponding to the query (cDNA) organism were filtered out.
The BLAST files were parsed using the BLAST parser mod-
ules from W3H [34] and a low-stringent e-value cut-off of
0.01 was applied to yield a high number of possible hits.
Multiple high scoring segment pairs were combined as
described elsewhere [35] and used for computing the
alignment features. GO terms for each database hit were
extracted by considering only GO terms corresponding to
the molecular function and by discarding GO terms that
were prefixed with NOT (annotators state that a particular
gene product is NOT associated with a particular GO
term), or corresponding to "molecular function
unknown" (GO:0005554). These steps reduced our data-
set to 36,771 sequences, contributing to 856,632 samples.
Each GO term that occurred in the hits represented a sam-
ple entry in the feature table. Below it will be referred to as
"sample GO term". If a GO term occurred several times in
the hits, it was considered only once. We defined 31
attributes for each GO term, representing 5 major classes
of information (A)- E)):

A) GO level and path: The GO structure was exploited to
derive the first two attributes,

A.1.GO level: the distance of the sample GO term to the
root (molecular function node);

A.2. GO path: the number of paths from the sample GO
term to the root.

B) Alignment quality criteria: These attributes are based
on the BLAST alignments. For attributes B.1 - B.4, the best
value for the corresponding attribute was taken, if a GO
term occurred in more than one hit,

B.1. Expectation value: the expectation value ("E-value")
from BLASTX;

B.2. Bit score: the bit score value provided by BLASTX;

We wanted to award alignment length and quality by
combining features. This was done with respect to the
length of the query and the hits to offset biases due to dif-
ferent complexities of the query and subject organisms.
Attributes B.3, B.4, C.3 and D.3 were obtained from initial
trials with a small dataset (6270 cDNA sequences, data
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not shown) and applying parameter optimisation to dis-
tinguish the samples.

B.3. Query coverage score (QCg): Combined measure of
alignment size and quality concerning the query
sequence,

QCs:= (AL/ Q) x (I+5), (5)

where A denotes the alignment length, Q; the length of
the query sequence, I the number of identities in the
alignment, and S the number of positively contributing
residues in the alignment;

B.4. Subject coverage score (SCg): as in B.3, however only
with respect to the corresponding subject sequence (data-
base hit),

SCsi=(AL/S) x (I+8), (6)
where S; denotes the length of the subject sequence;

Additionally, we decomposed these attributes into the fol-
lowing further six attributes (B.5 - B.10). For these
attributes, we considered the hit with the best coverage
score if a GO term occurred in more than one hit (query
coverage score for attributes B.5, B.7, B.9, and subject cov-
erage score for B.6, B.8, B.10).

B.5. Query percentage (QP.): Percentage of coverage of the
alignment region in the query sequence (with respect to

QCy), i.e.
QP¢:= (A / Q) x 100;  (7)

B.6. Subject percentage (SP) Percentage of coverage of the
alignment region in the corresponding subject sequence
(with respect to SC), i.e.

SPq:=(AL/S,) x 100; (8)

B.7. Query identity (QI): Percentage of identical residues in
the BLASTX alignment (with respect to QCs);

B.8. Subject identity (SI): Percentage of identical residues in
the BLASTX alignment (with respect to SCy);

B.9. Query similarity (QS): Percentage of similar or posi-
tively contributing residues in the alignment (with respect

to QCy);

B.10.Subject similarity (SS): Percentage of similar or posi-
tively contributing residues in the alignment (with respect
to SCy).
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C) GO frequency related attributes: We extracted informa-
tion about the frequency of GO terms in the hits by the
following attributes:

C.1.GO frequency (Fg): the number of hits that contained
the sample GO term.

C.2.Number of hits (Ty): the total number of hits for the
query.

C.3. Frequency score (Fg): the number of hits that contained
the sample GO term. Unlike C.1, we limited this score to
emphasize differences in queries with few hits:

F, if T, <5
F. = F . 9
s £ else ( )
Ty,

C.4.Species frequency: The number of organisms contribut-
ing to a sample GO term for a single query sequence;

C.5.Total GO (T): total number of GO terms from all hits.

C.6. Unique GO (Ug): as C.5, except, that GO terms occur-
ring more than once (in the hits) were counted only once.

D) GO frequency by considering relationships: For these
attributes we applied the structure of the Gene Ontology
graph. Not only perfectly matching terms were consid-
ered, but also their defined parents, children or siblings:

D.1.Relative frequency for all (RA): the relationships for the
sample GO term with all GO terms that occurred in the
hits were calculated. The sum of non-"different" relation-
ships i.e. parent, child, or sibling was used for this
attribute;

D.2.Relative frequency for unique (RY): similar to attribute
D.1, with the exception that GO terms occurring more
than once were counted only once.

D.3.Relative frequency for all (limited) (RAIm): same as
attribute D.1, however this score was limited to empha-
size differences of queries with few hits:

RY  if R <10
RAlim = A
IOR— else
Tg

(10)

D.4.Relative frequency for unique (limited) (RUlim): same as
attribute D.2, however this score was limited to empha-
size differences of queries with few hits:

Page 12 of 14

(page number not for citation purposes)



BMC Bioinformatics 2004, 5:116

RY if RY <10

u . 11
IOR— else ( )
Ug

RUlirn =

E) Annotation quality related attributes: Quality attributes
were selected from the evidence codes provided by the
gene association tables of the GO-mapped sequence data-
bases. We selected 9 commonly used evidence codes (TAS,
NAS, ISS, IPI, IMP, IGI, IEP, IEA, IDA), resulting in
attributes E.1 to E.9. The entries of these attributes for
each sample GO term were calculated by summing the
occurrences of the corresponding evidence codes of all
hits.

Training and testing the classifier

Before training, normalisation was performed. We nor-
malised the attributes by taking the logarithm (log) and
log of log if necessary. We used log values for 16 attributes
(B.3-B.10, C.3, C.4, D.1, D.2, D.4 and E.1) and log of log
for 8 attributes (B.2, C.1, E.2, E.4-E.8). Furthermore, we
converted the attribute values into mean 0 and standard
deviation 1 by applying the Z-transformation. The feature
table contained 856,632 samples and 31 attributes. We
split the dataset into 99 training subsets. Each subset com-
prised of approximately 1% of the samples i.e. 8,566 GO
terms. This resulted in 96 organism specific subsets and 3
hybrid subsets. We applied the support vector machines
in the implementation of LIBSVM [36], which supports a
weighted SVM for unbalanced data. We used a higher pen-
alty (5 instead of 1) for false positives (FP) for the model
selection and also the training process to support a high
specificity of the resulting classifiers. Also note, that our
training set contained a high portion of negative samples
(see Table 1) due to our relaxed E-value threshold. We
utilised the radial basis function kernel and set the param-
eter epsilon (tolerance of termination criterion) to 0.01.
The parameter C (regularisation term, cost for false classi-
fication) and gamma (kernel width) of the SVM were opti-
mised using a grid search. The grid search determined the
combination of C (log2-range: 13 to 15, step 1) and
gamma (log2-range: 10 to 15, step 1) with the lowest clas-
sification error according to a five-fold cross validation
such that each of the 99 data subsets was subdivided into
a training set (90%) and a validation set (10%). The vali-
dation sets were used to estimate the parameters C and
gamma for each of the 99 classifiers individually. Finally,
the parameters from the classifier selection were applied
to train each of the classifiers with 90% of each data set,
respectively. The testing was based on the same 13 organ-
isms and 856,632 GO terms corresponding to 36,771
sequences as described above. We performed the testing
by an organism-wise cross-validation so that one organ-
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ism was used as test set and the remaining ones as the
training set.

Data availability
The annotation for Xenopus laevis contig sequences is

downloadable at ftp://genome.dkfz-heidelberg.de/pub/
agd/gene_association.agd Xenopus. We followed the

standard GO annotation style (using Gene ontology
guideline). The evidence code is always IEA. The confi-
dence value is included for each GO term.

Authors' contributions

The main work was carried out by AV. RK and KG con-
ceived the idea of the study. AV and RK drafted the
manuscript. FS developed and JM applied the machine
learning strategy. KG implemented the databases in SRS.
RE and SS supervised the work. All authors participated in
reading, approving and revising the manuscript.

Acknowledgments

We thank the Gene Ontology Consortium and all groups that established
GO association databases for making their data available through the web.
This work was funded by the German Cancer Research Center (DKFZ),
the Deutsche Krebshilfe and the Nationales Genom-Forschungs-Netz
(NGFN). We also thank Suresh Kumar Swaminathan and Coral del Val for
their suggestions during the preparation of the manuscript, and Andrea
Mclntosh-suhr and Christopher Previti for proofreading.

References

I.  Lewis S, Ashburner M, Reese MG: Annotating eukaryote
genomes. Curr Opin Struct Biol 2000, 10:349-354.

2.  Searls DB: Using bioinformatics in gene and drug discovery.
Drug Discov Today 2000, 5:135-143.

3. Bork P, Koonin EV: Predicting function from protein sequence:
Where are the bottlenecks? Nat Genet 1998, 18:313-318.

4. Smith TF: Functional genomics - bioinformatics is ready for
the challenge. Trends Genet 1998, 14:291-293.

5. Bork P, Gibson TJ: Applying motif and profile searches. Methods
Enzymol 1996, 266:162-184.

6.  Andrade MA, Brown NP, Leroy C, Hoersch S, de Daruvar A, Reich
C, Franchini A, Tamames }, Valencia A, Ouzounis C, Sander C: Auto-
mated genome sequence analysis and annotation. Bioinformat-
ics 1999, 15:391-412.

7. Bork P, Bairoch A: Go hunting in sequence databases but watch
out for the traps. Trends Genet 1996, 12:425-427.

8.  Galperin MY, Koonin EV: Sources of systematic errors in func-
tional annotation of genomes: domain rearrangements, non-
orthologous gene displacement, and operon distribution. In
Silico Biol 1998, 1:0007 [http://www.bioinfo.de/isb/1998/01/0007/].

9.  Sakata K, Nagamura Y, Numa H, Antonio BA, Nagasaki H, ldonuma
A, Watanabe W, Shimizu Y, Horiuchi I, Matsumoto T, Sasaki T, Higo
K: RiceGAAS: an automated annotation system and data-
base for rice genome sequence. Nucleic Acids Res 2002,
30:98-102.

10. Bailey LC, Fischer S Jr, Schug ], Crabtree J, Gibson M, Overton GC:
GAIA: framework annotation of genomic sequence. Genome
Res 1998, 8:234-250.

I'l. Harris NL: Genotator: a workbench for sequence annotation.
Genome Res 1997, 7:754-762.

12.  Gaasterland T, Sensen CW: MAGPIE: automated genome
interpretation. Trends Genet 1996, 12:76-78.

13.  Kitson DH, Badretdinov A, Zhu ZY, Velikanov M, Edwards D), Olsze-
wski K, Szalma S, Yan L: Functional annotation of proteomic
sequences based on consensus of sequence and structural
analysis. Brief Bioinform 2002, 3:32-44.

Page 13 of 14

(page number not for citation purposes)


ftp://genome.dkfz-heidelberg.de/pub/agd/gene_association.agd_Xenopus
ftp://genome.dkfz-heidelberg.de/pub/agd/gene_association.agd_Xenopus
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0959-440X(00)00095-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0959-440X(00)00095-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10851187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S1359-6446(99)01457-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10729819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/ng0498-313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/ng0498-313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9537411
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0168-9525(98)01508-X
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0168-9525(98)01508-X
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9676532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0076-6879(96)66013-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8743684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/15.5.391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/15.5.391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10366660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/0168-9525(96)60040-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/0168-9525(96)60040-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8909140
http://www.bioinfo.de/isb/1998/01/0007/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=99141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=99141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/30.1.98
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9253604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/0168-9525(96)81406-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/0168-9525(96)81406-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8851977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1471-2105-3-32
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1471-2105-3-32
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1471-2105-3-32
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12002222

BMC Bioinformatics 2004, 5:116

20.
21.

22.

23.

24.

25.

26.
27.

28.

29.
30.

31
32.
33.

34.
35.
36.

Frishman D, Albermann K, Hani ], Heumann K, Metanomski A, Zoll-
ner A, Mewes HW: Functional and structural genomics using
PEDANT. Bioinformatics 2001, 17:44-57.

The Gene Ontology Consortium: Gene Ontology: tool for the
unification of biology. Nat Genet 2000, 25:25-29.

The Gene Ontology Consortium: Creating the gene ontology
resource: design and implementation. Genome Res 2001,
11:1425-1433.

Hill DP, Blake JA, Richardson JE, Ringwald M: Extension and Inte-
gration of the Gene Ontology (GO): Combining GO vocabu-
laries with external vocabularies. Genome Res 2002,
12:1982-1991.

Xie H, Wasserman A, Levine Z, Novik A, Grebinskiy V, Shoshan A,
Mintz L: Large-Scale Protein Annotation through Gene
Ontology. Genome Res 2002, 12:785-794.

Camon E, Magrane M, Barrell D, Binns D, Fleischmann W, Kersey P,
Mulder N, Oinn T, Maslen ], Cox A, Apweiler R: The Gene Ontol-
ogy Annotation (GOA) project: implementation of GO in
SWISS-PROT, TrEMBL, and InterPro. Genome Res 2003,
13:662-672.

TIGR Gene Indices [http://www.tigr.org/tdb/tgi.shtml]

Zehetner G: OntoBLAST function: from sequence similarities
directly to potential functional annotations by ontology
terms. Nucleic Acids Res 2003, 3 1:3799-3803.

Hennig S, Groth D, Lehrach H: Automated Gene Ontology
annotation for anonymous sequence data. Nucleic Acids Res
2003, 31:3712-3715.

Jensen LJ, Gupta R, Staerfeldt HH, Brunak S: Prediction of human
protein function according to Gene Ontology categories. Bio-
informatics 2003, 19:635-642.

Schug J, Diskin S, Mazzarelli ], Brunk BP, Stoeckert CJ Jr: Predicting
Gene Ontology Functions from ProDom and CDD Protein
Domains. Genome Res 2002, 12:648-655.

Bauer E, Kohavi R: An Empirical Comparison of Voting Classi-
fication Algorithms: Bagging, Boosting, and Variants. Machine
Learning 1999, 36:105-139.

Peiffer DA, Cho KWY, Shin Y: Xenopus DNA Microarrays. Current
Genomics 2003, 4:665-672.

Altschul SF, Madden TL, Schiffer AA, Zhang ], Zhang Z, Miller W, Lip-
man DJ: Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res 1997,
25:3389-3402.

TIGR Xenopus laevis Gene Index [http://www.tigr.org/tdb/tgi/
xgi/]. Release 7.0; January 8, 2004

Gene Ontology Consortium [http://www.geneontology.org]
Hand D, Mannila H, Smyth P: Principles of Data Mining,. MIT
Press, Cambridge, London; 2001.

Hastie T, Tibshirani R, Friedman |: The Elements of Statistical
Learning,. Springer, New York, Berlin, Heidelberg; 2001.
Swiss-Prot [http://www.ebi.ac.uk/ebi docs/swissprot_db/swiss
home.html]

Senger M, Flores T, Glatting K, Ernst P, Hotz-Wagenblatt A, Suhai S:
W2H: WWW interface to the GCG sequence analysis
package. Bioinformatics 1998, 14:452-457.

Ernst P, Glatting KH, Suhai S: A task framework for the web
interface W2H. Bioinformatics 2003, 19:278-282.

Del Val C, Glatting KH, Suhai S: cDNA2Genome: A tool for map-
ping and annotating cDNAs. BMC Bioinformatics 2003, 4(1):39.
LIBSVM; version 2.4 [http://www.csie.ntu.edu.tw/~cjlin/libsvm/
index.html]

http://www.biomedcentral.com/1471-2105/5/116

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 14 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/17.1.44
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/17.1.44
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11222261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/75556
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/75556
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.180801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.180801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11483584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=187579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=187579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=187579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12466303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.580102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=186564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=186564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11997345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.86902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=430163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=430163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=430163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12654719
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.461403
http://www.tigr.org/tdb/tgi.shtml
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=168962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=168962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=168962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/gkg555
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=168988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=168988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/gkg582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/btg036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/btg036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12651722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=187511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=187511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=187511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11932249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1101/gr.222902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1023/A:1007515423169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1023/A:1007515423169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=146917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=146917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/nar/25.17.3389
http://www.tigr.org/tdb/tgi/xgi/
http://www.tigr.org/tdb/tgi/xgi/
http://www.geneontology.org
http://www.ebi.ac.uk/ebi_docs/swissprot_db/swisshome.html
http://www.ebi.ac.uk/ebi_docs/swissprot_db/swisshome.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9682058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9682058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9682058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/14.5.452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/19.2.278
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/19.2.278
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12964951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12964951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1471-2105-4-39
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=239864
http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	General workflow of training and classification
	Datasets for training and testing SVM
	Table 1

	SVM training and testing
	SVM training
	SVM testing

	Combining multiple classification results by the committee approach
	Xenopus annotation
	Comparison to the TIGR Xenopus annotation
	Table 2


	Discussion
	Conclusions
	Methods
	Quality criteria for assessing the performance of the classifier
	Defining the GO term relationships
	Data basis used for this study
	Computing the attributes
	Training and testing the classifier
	Data availability

	Authors' contributions
	Acknowledgments
	References

