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Abstract

Background: Many real networks can be understood as two complementary networks with two
kind of nodes. This is the case of metabolic networks where the first network has chemical
compounds as nodes and the second one has nodes as reactions. In general, the second network
may be related to the first one by a technique called line graph transformation (i.e., edges in an initial
network are transformed into nodes). Recently, the main topological properties of the metabolic
networks have been properly described by means of a hierarchical model. While the chemical
compound network has been classified as hierarchical network, a detailed study of the chemical
reaction network had not been carried out.

Results: We have applied the line graph transformation to a hierarchical network and the degree-
dependent clustering coefficient C(k) is calculated for the transformed network. C(k) indicates the
probability that two nearest neighbours of a vertex of degree k are connected to each other. While
C(k) follows the scaling law C(k) ~ k-!! for the initial hierarchical network, C(k) scales weakly as k008
for the transformed network. This theoretical prediction was compared with the experimental
data of chemical reactions from the KEGG database finding a good agreement.

Conclusions: The weak scaling found for the transformed network indicates that the reaction
network can be identified as a degree-independent clustering network. By using this result, the
hierarchical classification of the reaction network is discussed.

distribution of node degree follows a power-law as P(k) ~
k7 (i.e., frequency of the nodes that are connected to k

Background

Recent studies on network science demonstrate that cellu-

lar networks are described by universal features, which are
also present in non-biological complex systems, as for
example social networks or WWW. Most networks
encountered in real world have scale-free topology, in par-
ticular networks of fundamental elements of cells as pro-
teins and chemical substrates [1-4]. In these networks, the

other nodes). The degree of a node is the number of other
nodes to which it is connected.

One of the most successful models for explaining that
scale-free topology was proposed by Barabdsi-Albert [5],
which introduced a mean-field method to simulate the
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growth dynamics of individual nodes in a continuum the-
ory framework. However, although that model was a mile-
stone to understand the behavior of real complex
networks, it could not reproduce all the observed features
in real networks such as clustering dependence. The
observed properties of networks with N nodes are: scale-
free of degree distribution P(k) ~ k7, power-law scaling of
clustering coefficient C(k) ~ k! and a high value for the
average of the clustering coefficient <C > and its inde-
pendence with network size. In particular, the depend-
ence of C(k) ~ k! was one of the results obtained by [6].
In order to bring under a single framework all these
observed properties in real networks Ravasz et al. (the
RSMOB model in what follows) suggested successfully a
hierarchical and modular topology [7,8]. In [8], a network
with the above mentioned properties was called hierarchi-
cal network. We note that this deterministic model is an
extension of the original model shown in [9]. It is also
worth noticing that this modular topology was also sug-
gested in biological networks by [10,11]. Interestingly,
these properties of networks have been found in many
non- biological and biological networks. One of them,
which is the subject of our study, is the metabolic
network.

It is interesting to note that the metabolic network is an
example of bipartite networks [12]. In a bipartite network
there are two kinds of nodes and edges only connect
nodes of different kinds. In the metabolic network these
nodes are chemical compounds and reactions. The net-
work generated by the chemical compounds (reactions) is
called compound (reaction) projection. A line graph
transformation (i.e., each edge between two nodes
becomes a node of the transformed network) may relate
both projections.

However, although the line graph transformation works
fine on bipartite networks, the transformed network (in
the particular case of metabolic networks) may not be
totally the same as the reaction projection. This issue is
discussed in detail later. In addition, we will show by
comparing with the experimental data, that this fact does
not affect our qualitative results. Furthermore, a detailed
analysis of the line graph transformation focused on the
degree distribution P(k) and applied to some real net-
works can be found in [13]. In that work, similarities and
differences between the line graph transformation and the
metabolic network are also discussed. There it was found
that if the initial network follows a power-law P(k) ~ k7,
the transformed network preserves the scale-free topology
and in most cases the exponent is increased by one unit as
P(k) ~ kol

It is also worth noting that the line graph transformation
has recently been applied with success by Pereira-Leal et al.

http://www.biomedcentral.com/1471-2105/5/207

[15] on the protein interaction network with the aim to
detect functional modules. In that work, the edges (inter-
actions) between two proteins become the nodes of the
transformed network (interaction network). By means of
the line graph transformation, the interaction network has
a higher clustering coefficient than the protein network.
By using the TribeMCL algorithm [16] they are able to
detect clusters in the more highly clustered interaction
network. These clusters are transformed back to the initial
protein-protein network to identify which proteins can
form functional clusters. At this point, we note that the
aim of our study is not to detect functional modules from
the metabolic network. In our work the line graph trans-
formation is used successfully to evoke general topologi-
cal properties related to the clustering degree of the
reaction network.

The observed topological properties related to the cluster-
ing degree of the metabolic network (in particular, the
chemical compound network) have been properly
described by means of the RSMOB model. In the present
work, our aim is to study the clustering coefficients C(k)
and <C > of the reaction network by using two
approaches: Firstly, we derive mathematical equations of
those coefficients in the transformed network. Secondly,
we apply the line graph transformation to a hierarchical
network. The results from both methods are compared
with experimental data of reactions from KEGG database
[14] showing a good agreement. Though we started this
work motivated by theoretical interest in the line graph
transformation, the results provide explanation for the
difference of C(k) between the compound network and
the reaction network.

In our work, the hierarchical network is generated by the
RSMOB model, where the nodes correspond to chemical
compounds and the edges correspond to reactions. While
the RSMOB model reproduces successfully the hierarchi-
cal properties of the compound network, here we show
that this hierarchical model also stores adequate informa-
tion to reproduce the experimental data of the reaction
network. Our study indicates that it is enough to apply the
line graph transformation to the hierarchical network to
extract that information. While C(k) follows the power-
law k11 for the initial hierarchical network (compound
network), C(k) scales weakly as k008 for the transformed
network (reaction network). Consequently, we conclude
that the reaction network may not be classified as a hier-
archical network, as it is defined in [8].

Remark

In [8], a network with scale-free topology, scaling law of
C(k) ~ k1, and high degree of clustering was called hierar-
chical network. Consequently, the RSMOB model shown in
[7,8] was developed to bring these properties under a
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single roof. Furthermore, in [7,8,17] some networks (in
particular metabolic network) were classified as hierarchi-
cal network according to the above definition. To be pre-
cise, it was argued that the signature of the intrinsic
hierarchy (or hierarhical modularity) is the scaling law of
C(k). Moreover, in a more recent work [18], it was claimed
that traditional random and scale-free models do not have
a hierarchical topology because C(k) is independent of k
(i.e., flat plot of C(k)). In addition, analyses of C(k) were
recently carried out in [19] to uncover the structural
organization and hierarchy of non-biological weighted
networks. At this point, we must note that we have fol-
lowed the research done by Barabdsi et al, [7,8,18] and
consequently, we have used its definition of hierarchical
network in the present work.

However, it is also worth noticing that another way to
quantify the hierarchical topology of a network is recently
introduced by [20,21]. It is based on the concept of a hier-
archical path: a path between nodes i and j is called hierar-
chical if (1) the node degrees grow monotonously ("up
path"), and it is followed by a path where the node degrees
decrease monotonously ("down path") or (2) the node
degrees along this path changes monotonously from one
node to the other. The fraction of shortest paths in a net-
work, which are also hierarchical paths is called H. If H is
very close to 1, the network shows a hierarchical organiza-
tion. This definition seems interesting, and consequently,
as a future work it would be worth to examine some bio-
logical networks (in particular, metabolic networks) by
using this approach. One remark about this concept is
that it focuses on hierarchy and may not contain enough
information about modularity or clustering. For a brief
discussion of these issues, we refer to some very useful
notes written by Dorogovtsev et al. [21] (see also [22] for
further information about related topics in networks).

Results and discussion

Clustering coefficients C(k) and <C >

Recent analyses have demonstrated that the metabolic
network has a hierarchical organization, with properties
as: scale-free degree distribution P(k) ~ k7, power-law
dependence of clustering coefficient C(k) ~ k! and inde-
pendence with network size of the average clustering coef-
ficient <C >, where N is the total number of nodes in a
network [7]. The clustering coefficient can be defined for
each node i as:

21’11‘

Ci(ki)sz

O]

where n; denotes the number of edges connecting the k;
nearest neighbors of node i to each other, C;is equal to 1
for a node at the center of a fully interlinked cluster, and

http://www.biomedcentral.com/1471-2105/5/207

itis O for a node that is a part of a loosely connected clus-
ter [7]. An example can be seen in Fig. 1A.

Geometrically, n; gives the number of triangles that go
through node i. The factor k;(k; - 1)/2 gives the total
number of triangles that could go through node i (i.e.,
total number of triangles obtained when all the neighbors
of node i are connected to each other). In the case of Fig.
1A, there is one triangle that contains node 1 (dash-dotted
lines), and a total of 6 triangles could be generated as the
maximum. Hence, the clustering coefficient of node 1 is
C,=1/6.

On the other hand, the average clustering coefficient <C >
characterizes the overall tendency of nodes to form clus-
ters as a function of the total size of the network N. The
mathematical expression is:

1
<C>:E;Ci(ki)' (2)

The structure of the network is given by the function C(k),
which is defined as the average clustering coefficient over
nodes with the same node degree k. This function is writ-
ten as:

C(k)=Nik Y Ci(k) 3)
itk;=k

where N, is the number of nodes with degree k, and the
sum runs over the N, nodes with degree k. A scaling law k-
! for this magnitude is an indication of the hierarchical
topology of a network.

Once the theoretical definitions have been introduced,
our aim is to analyse how the coefficients <C > and C(k)
are modified under the line graph transformation.

Line graph transformation to metabolic networks: spurious
nodes

Given an undirected graph G, defined by a set of nodes
V(G) and a set of edges E(G), we associate another graph
L(G), called the line graph of G, in which V(L(G)) = E(G),
and two nodes are adjacent if and only if they have a com-
mon endpoint in G (i.e., E(L(G)) = {{(u, v), (v, w)}|(u, v)
€ E(G), (v, w) € E(G)}). This construction of graph L(G)
from the initial graph G is called line graph transforma-
tion [23].

It is worth noting that in a previous work [13] the degree
distribution P(k) was studied by applying line graph trans-
formation to synthetic and real networks. There it is
assumed an initial graph G with scale-free topology as
P(k) = k7. As the degree of each transformed node (i.e., an
edge in G) will be roughly around #, the distribution of
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(A) Example of clustering in an undirected network. Continuous and dash-dotted lines mean interaction between nodes. In
addition, the dash-dotted line defines the only triangle where the node | (red) is one of the vertices. The node | has 4 neigh-
bors (k; = 4), and among these neighbors only one pair is connected (n, = I). The total number of possible triangles that could
go through node i is 6. Thus, the clustering coefficient has the value C, = I/6. High density of triangles means high clustering
coefficient. (B) We show an example of the line graph transformation. The initial graph G corresponds to one subgraph which
belongs to the Lysine Biosynthesis metabolic pathway. This graph is constructed by taking nodes as chemical compounds and
edges as reactions. By applying the line graph transformation we find graph L(G), which is the reaction graph embedded in the
graph G. The nodes of the graph L(G) are the reactions of the graph G [13].

the line graph L(G) should be k- k7 = k! with degree
around k. Therefore, it is concluded that if we have a graph
G with a probability distribution following a power-law as
k7, then L(G) will follow a power-law as k7#1. The real net-
works under study were protein-protein interaction,
WWW, and metabolic networks. In Fig. 1B, we can see an
example of the line graph transformation applied to a
subgraph of the metabolic network.

However, it is important to point out one issue. In meta-
bolic networks, there are cases where spurious nodes
appear (see Fig. 2). For example, we consider two reac-
tions sharing the same substrate (or product) and at least
one of the chemical reaction has more than one product
(or substrate). If we apply a line graph transformation to
this network, we would obtain more than two nodes in
the transformed network, where only two nodes (reflect-
ing two reactions present in the real process) should
appear. These spurious nodes appear only when one (or

some) reaction(s) in the network has more than one prod-
uct (or substrate). Therefore, these cases should be com-
puted and transformed by generating only as many nodes
in the transformed network as reactions in the real meta-
bolic process. This procedure is called physical line graph
transformation. In the present work, we have applied this
procedure to generate the reaction network by using
experimental data from the KEGG database. Experimental
data are shown later in Figs. 7B and 8 (blue diamonds).
More detailed information about this issue can be found
in [13].

Equations of C(k) and <C > under the line graph
transformation

We assume a graph G as it is depicted in Fig. 3A. In this
graph, edge a connects two nodes with degree k' and k".
We apply the line graph transformation to this graph G
and the result of this transformation is the line graph of G,
L(G) shown in Fig. 3B. We see that, under the line graph
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We show two reactions (R/, R2) sharing a common chemical compound, and both reactions contain more than one product

(or substrate). The substrate graph G (chemical compounds) is shown dark blue circles. The reaction graph L

req (reactions) is

shown with light red circles. If we apply a line graph transformation to this network, we would obtain more than two nodes in
the transformed network. However, only two nodes (reactions) are present in the real process. These cases are computed
and transformed by generating only as many nodes in the transformed network as reactions in the real metabolic process. We

call this procedure physical line graph transformation.

transformation, the nodes of L(G) are the edges of G, with
two nodes of L(G) adjacent whenever the corresponding
edges of G are.

The clustering coefficient for the node a in the trans-
formed network can be written by using Eq. (1) as:

Ak —1)- (K =2)/2+ (kK" —1)- (K" —2)/2]

C,(k) =
ak) (K =1+E 1)K -1+k" -1-1)

’ 4)

where k = k' + k" - 2, because the edge a vanishes in the
graph L(G). This equation ignores cases where edges in the
graph G, b and b' for example, have a common node as
endpoint (i.e., existence of triangles or loops in Fig. 3C).
However, we can quantify these cases by using a new
parameter I. As we can see in Fig. 3C-D, edges with one
common node as endpoint in the graph G means one
additional edge in the graph L(G). This additional edge in
L(G) connects two neighbors of node a. By following def-
inition of Eq. (1), it means that n, increases its value by

one unit. We can consider these cases by increasing one
unit the parameter ! for each common node as endpoint
of two edges in the graph G (for example, I = 1 means one
common node). We write Eq. (4) after introducing the
parameter [ as:

Ak -1)-(K'—=2)/2+ (k" -1)-(K"—2)/2+]] 5)
(K -1+E" -k -1+k"-1-1)

where if ] = 0 means that there are not loops and we recover
Eq. (4). Though it is more realistic to consider the param-
eter ] as a function of k' and k", we have considered [ as an
independent parameter. However, this simplification
does not affect the qualitative features of our results. It
should be noted that I always contributes to increasing the
value of C,(k) and C,(k) < 1 always holds from the defini-
tion. In order to study the limits of Eq. (5) we consider the
following two cases:

Ca(l) =
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line graph .
transformation

e

line graph ,
transformation

e

(A) Graph G with two hubs with degree k' and k" connected by edge a. (B) The corresponding line graph L(G) after the line
graph transformation is done. (C) Graph G where edges b and b' have a common node as endpoint. (D) Line graph of (C). It is
worth noticing that (D) has only one more edge than (B). Hence, (D) has one more triangle that go through node a than (B).

® a) k' = k": We analyse the case where both degrees have
the same value. We also consider the cases when I = 0 and
I # 0 in order to study the effect of triangles. We show the
results in Fig. 4. For large k', Eq. (5) goes asymptotically to
1/2 for =0 and [ # 0. We also see that for k' > 25, all lines
arevery close to 1/2. Forlow k' and I = 0, C,(k) takes values
from 0.33 (k' = 3) to 0.48 (k' = 20). Hence, we see in Fig.
4 that higher values of I (more triangles) increase the val-
ues of C,(k).

® b) k" = constant, k' >>k": We plot in Fig. 5 three cases. k"
is fixed with constant values as k" = 5 (black), k" = 10
(red), k" = 20 (blue) and k' is a free parameter. We see that
C,(k) approaches to 1 when k' takes large values. For low
k', the case k" = 5 shows a minimum with a few values of
k' below 1/2. As we can see with dotted and dash-dotted
lines in Fig. 5, the presence of triangles (I 0) increases the
value of C,(k). Finally, for k" = 10 and k" = 20, we see that
only a few values of C,(k) are slightly below 1/2 for low k'.
This analysis is complemented by calculating the mini-
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Values of C (k) from Eq. (5) calculated by taking k' = k". Number of common nodes as endpoint of two edges (triangles) are
indicated by the parameter |. The degree of transformed nodes is k = k' + k" - 2 because the edge a vanishes in the graph L(G).

mum value of C,(k) analytically as:

— =

m = 0. The value
ok

of k', where the function C,(k) takes the minimum value,
is given by:

o TR 243142 =7 = 5l + 9(1")? + 21(k") - 5(7)> + ()
-1+k"

where positive solution of the square root is written. By

substituting this equation into Eq. (5), it is possible to cal-

culate the minimum value of C,(k) for each configuration

ofland k".

(6)

From these two cases, we can conclude that for hubs (i.e.,
those nodes with high degree (k' and k" >> 1)) and for
highly clustered networks (many triangles I >> 1), the val-

ues of C,(k) in the transformed network are between

1
around [ —, 1].
2

To calculate the distribution of C(k) in the transformed
space (CT(k)) we introduce the concept of assortativity. By
assortative (disassortative) mixing in networks we under-
stand the preference for nodes with high degree to con-
nect to other high (low) degree nodes [24]. By following
Newman [24], we define the probability distribution to
choose a randomly edge with two nodes at either end with
degrees k' and k" as ¢;,;,.. We also assume that the nodes of
the initial network are following a power-law distribution
k7 and have no assortative mixing. Under these assump-
tions, the probability distribution ey, of edges that link
together nodes with degree k' + k" can be written as:
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Values of C (k) from Eq. (5) calculated by taking k" with constant values as k" = 5 (black line), k" = 10 (red), k" = 20 (blue) and
k' as a free parameter. Dotted and dash-dotted lines show the presence of triangles (I # 0). Triangles increase the value of

C, (k).

k/—)/+1
ek/ k// = ; .
—y+1 r—y+1
2K Xyt

We make a convolution between Eq. (4) and Eq. (7), by
summing for all the possible degrees of the two nodes at
either end of edges (k', k"), which can generate trans-
formed nodes with degree k = k' + k" - 2. Thus, we obtain:

kl!—]/+1

)

DT Cul)

=Y+l r—y+1
2 k=K'+k"-2 k k

According to the structure of CT(k) and the behavior of
C,(k) exposed above, CT(k) will grow smoothly for large %,
i.e., scaling weakly with the node degree k. We have calcu-

cl(k)=

(8)

lated numerically this expression and the results are dis-
cussed later in Fig. 7.

We have also calculated the analytical expression for <C >,
and we have found that <C > has a size-independent
behavior before and after the line graph transformation is
done. We can write the number of nodes with degree k as:

_ N kY
2k

and we assume that C(k) = A-k -, where A is a constant.
This constant changes when we consider hierarchical
networks with different number of nodes in the initial
cluster [7]. But it seems natural because in that case the

Ny, 9)
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Table I: Results of <C > evaluated by using Eq. (10) and the needed parameters in that calculation for 3 different setups: y= 1 + 7,

where y' = ln—m (P(k) ~ k), a (C(k) ~ k), A (C(k) = A‘k%). Eq. (10) is a general expression of <C >.
In(m—-1)
m initial nodes ¥ a A <C>
3 2.58 1.1 2.34 0.20
4 2.26 1.1 3.68 0.36
5 2.16 I.1 5.18 0.54

Table 2: Results of <C > evaluated by using Eq. (1 1) for 3 different setups. The exponent of the power-law distribution of hubs is given

Il m
by }/’ l ( 1) . The parameter o has same meaning as in Table |. We also notice that in Eq. (11), A’ is adjusted so that <C >=|
holds for j = I. Eq. (11) is the particular expression of <C > applied to the RSMOB model.
m initial nodes Ve a <C> (Eq. (1)
3 1.58 I.1 0.78
4 1.26 I.1 0.81
5 1.16 I.1 0.83

degree distribution P(k) ~ k7 of the network also changes.
For <C > before the transformation we can write:

e =(a+y)
S,k
-y
r=1k

<C>= N;‘{c = N ZNkC(k) A (10)

Note that the summation in the denominator begins with
k = 1 because we renormalize over all the probability
distribution.

Furthermore, we can obtain <C > by using the RSMOB
model (explained in next section in detail). This model
starts by generating a fully connected cluster of m nodes,
such that the connectivity of each nodeisk =m - 1. In the
following iteration, m - 1 replicas of the initial cluster are
generated, and linked to the central node of the original
cluster in such a way that the central node of the original
cluster gains (m - 1) - (m - 1) edges, and its total connectiv-
ity beingk = m - 1 + (m - 1)2. By iterating these procedure,
it is easy to see that hubs (i.e., central nodes of each rep-

lica) will have connectivities k= >/ (m~1)", withj = 1,

., log, N being the iteration number. Therefore, assuming

that the degree distribution P(k) and the clustering
coefficient C(k) are power-laws with exponents ¥ and «
respectively, the expression for <C > for the hubs reads as:

SN L m-1yy 7
zlogm (z (m—l)i)_y’

where A' is a constant adjusted so that <C >=1 holds for j
= 1. The upper limit of the summation log, N is obtained

<C>=A

1

by means of the expression m/ = N, which gives the total
Inm

In(m—-1)

denotes the exponent of the power-law distribution of
hubs in the RSMOB model. We must note that in a hierar-
chical network, the number of nodes with different degree
k is scarce, therefore the probability distribution of node
degree is properly defined as P(k) = (1/N,,,) (N,/Ak), where
N,, is the number of nodes with degree k, N, is the total
number of nodes, and Ak means that nodes with degree k
are binned into intervals. In addition, we note that for the
hierarchical model, Ak changes linearly with k. Hence, the
exponent of the power-law is given by y = 1 + ¥, with

number of nodes in the network and 7y’ =

, Inm
In(m—-1)
tial module.

where m is the number of nodes in the ini-

By using Egs. (10) and (11), we will see later (Tables 1 and
2) that <C > converges to a constant. In order to calculate
<C > after the line graph transformation is applied (<C”
>), we make the substitution C(k) — CT(k) in Eq. (10). As
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Hierarchical network generated by using the RSMOB model [8]. Starting from a fully connected cluster of 5 nodes, 4 identical
replicas are created, obtaining a network of N = 25 nodes in the first iteration n = | (52= 25 nodes). We have linked to each
other the central hubs of the replicas by following [7]. This process can repeated indefinitely. We note that the initial number

of nodes can be different than 5.

from Eq. (8) we have seen that CT(k) is almost constant,
we can conclude that <CT > also has a constant behavior
and it is almost independent with network size. While the
scaling law of C(k) ~ k! was proved mathematically in [6],
here we have obtained the analytical expressions of C(k),
<C>and <CT>.

Line graph transformation to a hierarchical network:
numerical results

The RSMOB model [8] is able to reproduce the main top-
ological features of the metabolic network. We follow the
method described in [8] and generate a hierarchical

network. Then, we apply the line graph transformation to
that network.

Fig. 6 illustrates the hierarchical network generated by the
RSMOB model. The network is made of densely linked 5-
node modules (it is worth noticing that the number of
nodes in the initial module can be different than 5) that
are assembled into larger 25-node modules (iteration n =
1, 52= 25 nodes). In the next step four replicas are created
and the peripheral nodes are connected again to produce
125-node modules (iteration n = 2, 53 = 125 nodes). This
process can be repeated indefinitely [8].
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(A) We plot the results of the hierarchical model for C7(k) for different configurations. 3 initial nodes and up to 7 iterations
(circles), 4 initial nodes and up to 5 iterations (triangles), 5 initial nodes and up to 4 iterations (squares). Prom top to bottom
(3 initial nodes (black), 4 initial nodes (red), 5 initial nodes (green)), we show with lines the results of C7(k) obtained by means
of Eq. (8). (B) The lines have the same meaning as before and the diamonds correspond to the experimental data for reactions
from the KEGG database [14]. Experimental data involves 163 organisms. Circles (red): Experimental data binned into seven
intervals according to degree (I <k <8 <, ..., 128 <k <256, 256 <k < 512). Figures in log-linear scale.
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Full circles (red) and dot-dashed line (red): C(k) evaluated with the hierarchical network. Empty triangles (red) and dashed line
(red): C(k) after the line graph transformation is done over the hierarchical network (C7(k)). Diamonds (blue): C7(k) of reac-
tions data from the KEGG database [14]. Empty circles (blue) and continuous line: C(k) of compounds data from KEGG. Hier-
archical model with 4 initial nodes and 5 iterations. Figure in log-log scale.

To evaluate C(k), we have constructed three hierarchical
networks with 3, 4, and 5 initial number of nodes. These
networks were generated up to 7 (6561), 5 (4096), and 4
(3125) iterations (nodes), repectively. Once we have
constructed these three networks, we apply the line graph
transformation to them, and we calculate the CT(k) clus-
tering coefficient for the transformed networks. In Fig. 7A
we show the results of the clustering coefficient of the
transformed network. Circles, triangles and squares indi-
cate the values of CT(k) for the transformed network with
3, 4, and 5 initial nodes, respectively. In Fig. 7A we also
plot with continuous lines the values of C(k) obtained
from Eq. (8). From top to bottom the lines correspond to
the networks of 3, 4 and 5 initial nodes, respectively. In
Fig. 7A, we see that the lines show an acceptable agree-
ment with the overall tendency of data generated by the

transformed network. In Fig. 7B, we see that the results
from theoretical calculation of CT(k) via Eq. (8) (lines) are
in good agreement with the experimental data (dia-
monds) from the KEGG database [14]. Moreover, in order
to have enough statistics to compare with the analytical
expression for the CT(k), we have binned into seven inter-
vals the experimental data according to degree k (1 <k < 8
<,..., 128 <k £ 256, 256 <k < 512), and averaged over the
CT(k)'s obtained in that range (red circles). It shows a bet-
ter agreement between KEGG results and the analytical
curves. The only disagreement comes at k = 2. This is easy
to understand because in the hierarchical model depicted
in Fig. 6, we can only find C(k = 2) = 1 for 3 initial nodes
by construction of the network. However, in real
networks, we could find nodes which have only two
neighbors and, in some cases, these neighbors could be
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connected. In these cases the clustering coefficient takes
value one.

In Fig. 8, we show the results for CT(k) after the line graph
transformation is applied to the hierarchical network gen-
erated by 4 initial nodes and up to 5 iterations. The results
are shown with empty triangles (red) and fitted to the
dashed line. We see that C(k) ~ k11 changed into CT(k) ~
k008, We also see that the line graph transformation
increases the average of the clustering value of the trans-
formed network. These theoretical results were compared
with the experimental data from KEGG [14], finding a
good agreement, and supporting the result of a degree-
independent clustering coefficient CT(k) for the reaction
network.

For <C > we have evaluated Eq. (10) for 3 different config-
urations. We have considered 3 initial nodes, 4 and 5 ini-
tial nodes nodes up to 7, 5 and 4 iterations, respectively.
As it is explained in [7], <C > approaches asymptotically
to a constant value, being independent of the size of the
network. The asymptotic value depends on the initial
number of nodes. We calculated the values of y corre-
sponding to the degree distribution P(k) ~ k7 for each net-
work, and the related constant A, which appears in Eq.
(10). We show in Table 1 the values of these parameters
and the results of <C > obtained by Eq. (10). These values,
as it can be seen in Fig. 9A, are below the asymptotic val-
ues of ~ 0.66 (circles) and ~ 0.74 (triangles) obtained by
using the RSMOB model. However, we have found an
explanation for this result. In Fig. 8, the full circles at the
top of the dash-dotted line correspond to non-hubs
nodes. We have checked that these nodes do not follow a
power-law, hence the value of C(k) is being overestimated
by the scaling dependence k! and it provides a larger value
of <C >. In [7], the values of <C > from hierarchical model
were compared with the experimental values of 43
organisms. The values of <C > for each organism were
around 0.15 - 0.25. By using the KEGG database we have
evaluated the experimental value <C > for 163 organisms
and we obtained an average value of 0.08.

We show in Fig. 9A the values of <C > calculated for net-
works generated by 3 initial nodes (circles) and 4 initial
nodes (triangles) by using the RSMOB model. We see that
<C > approaches asymptotically to constant values
around ~ 0.66 (circles) and ~ 0.74 (triangles), being inde-
pendent of the size of the network. Once the line graph
transformation is applied, we see that the corresponding
values of <CT > also approach asymptotically to constant
values. Hence, <CT > also is size-independent for large N
(empty circles and triangles). In addition, we have aver-
aged the experimental value of the clustering coefficient
for reactions of 163 organisms found in KEGG database
and we have obtained the value of <CT >= 0.74. We see

http://www.biomedcentral.com/1471-2105/5/207

that the experimental value <CT > for reactions is in good
agreement with the asymptotic values obtained by the
transformed network (empty triangles and circles).

Furthermore, we have also calculated <C > by using Eq.
(11). This equation should reproduce the results of <C >
calculated by using the RSMOB model (dark circles and
triangles in Fig. 9A). In Fig. 9B, we see that the results are
qualitatively similar to those shown in Fig. 9A (dark cir-
cles and triangles).

We remark that the theoretical analysis of <C > and <C” >
done here has also been useful to prove that they are inde-
pendent of network size.

Finally, in Fig. 10 we plot the hierarchical network (left)
and the transformed network (right) by using the graph
drawing tool Pajek [25]. We see the high degree of com-
pactness of the transformed network. It could be related to
the concept of robustness of a network. It means that by
removing one node randomly from the reaction network
depicted in the Fig. 10, the normal behavior of the cell
might be preserved by finding an alternative path (reac-
tion) to complete the task. This fact could be a
consequence of the high degree of clustering and connec-
tivity between the nodes in the transformed network.

Conclusions

We have studied here the clustering coefficients C(k) and
<C > of the reaction network by applying the line graph
transformation to a hierarchical network. This hierarchi-
cal network was generated by using the RSMOB model,
which reproduces properly the topological features of the
metabolic network, in particular the compound network.
Our results indicate that by applying the line graph trans-
formation to the hierarchical network, it is possible to
extract topological properties of the reaction network,
which is embedded in the metabolic network. The
RSMOB model stores the adequate information of the
reaction network and the line graph transformation is one
useful technique to evoke it.

While C(k) scales as k11 for the initial hierarchical net-
work (compound network), we find C(k) ~ k908 for the
transformed network (reaction network). This theoretical
prediction was compared with the experimental data from
the KEGG database, finding a good agreement. Our results
indicate that the reaction network is a degree-independent
clustering network. Furthermore, the weak scaling of C(k)
for the reaction network suggests us that this network may
not have hierarchical organization. However, further
analyses of this network, and in general of all biological
networks, by following the concept of hierarchical path
are encouraged [20,21].
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Figure 9

Dark (black): <C > is calculated by using the hierarchical network. Light (green): <CT> (<C > after the line graph transformation
is applied to the hierarchical network). Circles (3 initial nodes), Triangles (4 initial nodes). Star (red): Experimental <CT > for
reactions from the KEGG database [14]. (B) <C > is calculated by using Eq. (I 1). The results show a good agreement and simi-
lar tendency to those shown in Fig. 9(a) (dark circles and triangles). Figures in log-linear scale.
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Figure 10

(A) Hierarchical network generated by using the model of ref. [8] with 4-node modules and up to 2 iterations. (B) Network
after the line graph transformation. We see a huge interlinked cluster in the center of figure, which generates the degree-inde-
pendent clustering coefficient CT(k) (it scales weakly as CT(k) ~ k0-08),
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Table 3: Definitions of functions and their values before and after the line graph transformation is applied to the hierarchical network.
N,: number of nodes of degree k. The T symbol means that these dependences were analyzed in the present work, while the * symbol

means that it was studied in our previous work [13].

Func. Definition Dependence before Dependence dfter (Eq. (11)
P(k) N /N k¥ [t

Ci(k) 2n/[k(k;- 1)] k-t ko-08t

<C> |: Zici (k) ]/N size-independentt size-independentt

On the other hand, we have also conducted an analytical
derivation for the clustering coefficients C(k) and <C >.
Expressions for these coefficients were calculated before
and after the line graph transformation is applied to the
hierarchical network. The agreement obtained by using
these expressions was found acceptable, and
consequently, they could be useful for further analyses in
different networks (biological and non-biological).

The line graph transformation has recently been applied
on metabolic networks [13] to study the scale-free topol-
ogy of the reaction network, and on the protein-protein
interaction network to detect functional clusters [15]. The
work done here is another important application of this
interesting technique.
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