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Abstract
Background: To identify differentially expressed genes across experimental conditions in
oligonucleotide microarray experiments, existing statistical methods commonly use a summary of
probe-level expression data for each probe set and compare replicates of these values across
conditions using a form of the t-test or rank sum test. Here we propose the use of a statistical
method that takes advantage of the built-in redundancy architecture of high-density oligonucleotide
arrays.

Results: We employ parametric and nonparametric variants of two-way analysis of variance
(ANOVA) on probe-level data to account for probe-level variation, and use the false-discovery rate
(FDR) to account for simultaneous testing on thousands of genes (multiple testing problem). Using
publicly available data sets, we systematically compared the performance of parametric two-way
ANOVA and the nonparametric Mack-Skillings test to the t-test and Wilcoxon rank-sum test for
detecting differentially expressed genes at varying levels of fold change, concentration, and sample
size. Using receiver operating characteristic (ROC) curve comparisons, we observed that two-way
methods with FDR control on sample sizes with 2–3 replicates exhibits the same high sensitivity
and specificity as a t-test with FDR control on sample sizes with 6–9 replicates in detecting at least
two-fold change.

Conclusions: Our results suggest that the two-way ANOVA methods using probe-level data are
substantially more powerful tests for detecting differential gene expression than corresponding
methods for probe-set level data.
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Background
The use of DNA microarrays for monitoring the expres-
sion levels of thousands of genes simultaneously has gen-
erated a stream of methodological and computational
challenges. In particular, the reliable identification of dif-
ferentially expressed genes across different tissues, time
points or treatment conditions is the most common and
central task in the majority of such experiments [1]. This
task has been cast as a multiple hypothesis-testing prob-
lem of the simultaneous test for each gene j of the null
hypothesis of no change in expression level between two
or more experimental conditions. Tackling this problem
generally involves the following key steps: (1) computing
a test statistic for each gene j, Tj and determining the sig-
nificance of each test statistic using parametric assump-
tions or by appropriate estimation of a null distribution,
and (2) employing an appropriate multiple testing proce-
dure to determine which hypotheses to reject while con-
trolling an appropriate error rate [2,3].

A slew of statistical models has been developed to over-
come the limitations of the classical t-test, rank-sum
methods, and other one-way ANOVA methods currently
applied to detecting differential gene expression [4].
Under non-normal situations the classical parametric t-
test is too conservative, and like the Wilcoxon test, with its
lack of distributional assumptions, suffers from low
power [5]. Non-parametric variants of the t-test include
the use of permuted data sets to estimate the null distribu-
tion of t-statistics for each gene [6]. With a small number
of replicates, the former method suffers from coarse reso-
lution, resulting in too few or too many genes called dif-
ferentially expressed depending on the significance
threshold. A mixture-modeling approach to calculate the
distribution of t-statistic type scores has been proposed to
overcome that limitation [6]. This approach is similar in
spirit to the significance analysis of microarrays (SAM), an
increasingly popular method which also uses a t-statistic
type score [6]. SAM uses permutations of repeated meas-
urements and then pools estimated null statistics for each
gene to compute an overall error rate defined as the false
discovery rate (FDR) for genes identified as differentially
expressed [2,7].

The false discovery rate (FDR) is the rate at which features
called significant are truly null. Here, it is the expected
proportion of genes erroneously identified as differen-
tially expressed. The control of the FDR as a multiple test-
ing procedure was proposed by Benjamini and Hochberg
as a more powerful alternative to controlling the family-
wise error rate (FWER) when considering multiple null
hypotheses simultaneously [8]. Control of the FDR
implies control of the FWER when all the null hypotheses
are true [9]. Bonferroni type procedures which control
FWER are considered too stringent because they control

the probability of making any Type I error among the
hypotheses under consideration, thus rejecting too few
hypotheses when identifying differentially expressed
genes [3]. On the other hand, control of the FDR has been
increasingly favored for high-throughput screenings such
as microarray experiments, striking a balance between
FWER control and the per-comparison-error-rate (PCER)
control which often yields too many false positives.

The persisting high cost of microarrays, in particular of
commercial high-density oligonucleotide arrays (HDAs)
such as the Affymetrix GeneChip, and the scarcity of sam-
ples in many experiments, continue to severely limit the
number of replicates used per condition, and thus restrict
the potential gain in statistical power of the statistical
methods described above with increasing sample size. In
addition, the statistical methods described above are gen-
erally applied to experiments using both cDNA microar-
rays and HDAs. The differences in design between the two
microarray platforms have warranted different algorithms
for aspects of array analysis such as gene expression level
calculation, image analysis, and normalization [10].

In this light, instead of developing a new statistical
method that can be generally applied to experiments
using both cDNA microarrays and HDAs as those
described above, we can leverage the unique design of
HDAs for better differential gene expression identifica-
tion. On HDAs supplied by Affymetrix, 11–20 25-base
oligonucleotide probes that are exact complements to dif-
ferent fragments of the same gene target form a probe set.
Unlike cDNA microarrays, where a single intensity ratio is
collected for each gene, 11–20 probe-level measurements
per probe set are collected simultaneously for any single
array hybridization. However, these redundant measure-
ments are typically summarized as one value in the form
of an average difference (AD) or model-based expression
index (MBEI) for the purpose of statistical analysis [11].
Using probe-level measurements in identifying differen-
tially expressed genes and blocking on the probe in an
analysis of variance (ANOVA), combined with FDR
adjustment for the multiple testing problem, are the key
differences between our proposed approach and previ-
ously described related methods.

Although carrying out statistics at the probe-level immedi-
ately increases the sample size by at least an order of mag-
nitude, it is warranted due to the large and systematic
differences that are known to exist among probes that sur-
vey the same gene [11]. Due to these probe-specific biases,
variation induced by probes is larger than that induced by
array replicates [12]. The use of the probe as a blocking
factor in testing for differential gene expression in a two-
way ANOVA on probe-level data is thus expected to be
more sensitive than previously described methods.
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Chu et al. also took an ANOVA approach at the probe
level, however the experimental design of their study was
different from ours, which led to a more complicated
model than what we propose here [13]. Chu et al. com-
pared their method to SAM on the same data set, but iden-
tified a very different set of differentially expressed genes
(Table 3 in [13]). As pointed out by other researchers, this
method cannot be easily benchmarked only based on
data sets of unknown positives and negatives [14]. Lemon
et al. recently proposed a probe-level Logit-t method that
was shown to be superior to other popular probe set
methods [14]. Independent from these two studies, we
reached the same conclusion that using probe-level data
could significantly improve the quality of resultant gene
list. In addition, we demonstrate the use of a rank-based
Mack-Skillings test, which does not depend on any distri-
bution models required by the two parametric studies
mentioned above. Furthermore, by using an FDR-based
criterion, our method not only ranks genes but also sug-
gests statistically rigorous thresholds for gene selection.

In this study, we compared both the sensitivity and specif-
icity of parametric two-way ANOVA and the nonparamet-
ric Mack-Skillings test on probe-level data against the
commonly-used t-test and Wilcoxon test on probe-set
level data. For all tests, we employed FDR-controlling pro-
cedures described above to account for the multiple test-
ing problem. Two public data sets are used for
benchmarking purposes: the Lemon set, where thousands
of genes are expected to be differentially expressed and the
Affymetrix Latin-square data set where only 14 spiked
genes out of over 9000 genes on the array are expected to
show real change [15-17]. We systematically tested the
effects of key factors such as expression level (concentra-
tion) of the RNA transcripts, number of replicates,
amount of change to be detected, in addition to the statis-
tical methods. In almost all cases, the proposed probe-
level methods outperformed previous methods based on
probe-set level calculations. We also found that the two-
way methods are most sensitive to transcript concentra-
tion between 4 pM and 128 pM and fold change greater
than two. By comparing receiver operating characteristic
(ROC) curves, we demonstrated that by taking advantage
of the HDA design, the two-way methods applied on only
2–3 replicates can exhibit the same high sensitivity and
specificity as a SAM-like t-test with FDR-control using 6–9
replicates for detecting at least two-fold change. Therefore,
by taking advantage of the HDA design, the present limi-
tations of one-way ANOVA-type methods can be over-
come. Matlab scripts for our methods are available on
http://carrier.gnf.org/publications/ProbeStatistics.

Results
We compared the performance of the commonly used
one-way ANOVA methods described above, against the

two-way ANOVA methods using two publicly available
microarray data sets. The first set of microarray experi-
ments involves groups of human fibroblast cells in three
conditions – serum starved, serum stimulated, and a
50:50 mixture of starved/stimulated – with six replicate
Affymetrix HuGeneFL arrays in each group [16]. For this
set, a total of 7011 probe sets were examined per array
after the preprocessing steps. The second data set is the
Affymetrix Latin Square Data for Expression Algorithm
Assessment [17]. In 11 experiments (denote these as
experiments A-K), 14 groups of human gene transcripts in
14 different known concentrations were spiked into a
background RNA mixture and hybridized to 3 replicate
microarrays. In two additional experiments (denote these
as experiments L and M), the same Latin Square design is
followed but 12 instead of 3 replicates were used per con-
dition. In the following study, we tracked only 12 of 14
genes due to errors in the original data set for two of the
probe sets. Transcript concentrations for each spiked gene
ranged from 0 to 1024 pM over the various experiments
[15]. For this data, the Affymetrix HG_U95A array is used
and a total of 9024 probe sets in each array were analyzed
as described in the following sections after the preprocess-
ing step.

Sensitivity
We first assessed the relative sensitivity of the statistical
tests by comparing the number of genes identified as dif-
ferentially expressed when controlling the FDR using
either an LSU procedure or a resampling-based approach.
We compared the serum starved and serum stimulated
data sets between which, the expression levels of a large
number of genes were expected to vary significantly [16].
We randomly sampled three replicates per condition to
make the results comparable to later analyses for which
only three replicates are available. The process was
repeated 100 times and results were averaged.

We found that the parametric two-way ANOVA combined
with an LSU FDR-controlling procedure identified the
largest number of genes at varying levels of q. The nonpar-
ametric two-way method, the Mack-Skillings test, com-
bined with the LSU-procedure also identified a
significantly greater number of genes compared with the
t-test and the Wilcoxon test (Fig. 1). The Wilcoxon-test
lacked the sensitivity to identify any genes differentially
expressed at a reasonable FDR, while the t-test performed
in the intermediate range.

The use of a resampling-based FDR-controlling procedure
decreased the number of genes called differentially
expressed by nearly half when using the two-way ANOVA
and Mack-Skillings tests while not significantly altering
the number called when using the t-test. Despite this
decrease, the two-way ANOVA methods remained more
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sensitive at typical levels of control such as q = 0.05 (Fig.
2). This decrease can be attributed to the extreme sensitiv-
ity of the two-way methods and the large number of genes
with differential gene expression limiting the success of
resampling-based methods for estimating a good null
distribution.

To assess whether we are detecting biologically meaning-
ful change, we also applied the statistical tests on random
pairs of combinations of data values within the same
treatment condition, i.e. comparing serum starved sam-
ples or serum stimulated samples among themselves,
respectively. The dashed lines in Fig. 1 and Fig. 2 show
that as expected all methods do not identify any genes as

differentially expressed within a reasonable level of FDR
control. The result ensures that the extra sensitivity of the
proposed two-way methods was not gained at the expense
of sacrificing robustness. The specificity of the methods
will be further studied later.

To study the necessity of explicitly modeling the probe-
treatment interaction in our ANOVA model, F-tests were
applied to all genes. 5151 out of 7009 genes (73%) tested
had P-values less than 0.05, even after a Bonferroni adjust-
ment. A possible explanation is that the interaction term
captures the changes in probe cross-hybridization proper-
ties caused by the large differences in the mRNA content
between the two sample groups.

Number of probe sets called significant versus LSU-adjusted FDR for all methodsFigure 1
Number of probe sets called significant versus LSU-adjusted FDR for all methods. Dashed lines indicate the control versus con-
trol comparisons.
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Hoffmann et al. studied the consistency between various
one-way methods and found the differentially expressed
genes identified by SAM is approximately a subset of
genes identified by nonparametric methods, which is in
turn a subset of t-test results [18]. To check the agreement
among the various methods described above, we also
compared the proportion of genes that can be detected
simultaneously in the Lemon data set when comparing
combinations of statistical methods and FDR controlling
procedures. When controlling the LSU FDR at level q =
0.05, 3576 genes are called differentially expressed using
parametric two-way ANOVA; 2773, Mack-Skillings test;
1238, t-test; and none, Wilcoxon-test. In Table 1, we show

the proportion of identical genes called significant by
pairs of methods. Percentages are relative to the methods
defined in the column headings. These results demon-
strate general agreement in calls of differential gene
expression among the different methods, with slightly
higher correspondence between the two-way methods.

A representative run of the probe-level Logit-t method
[14] on the Lemon data set identified 1032 genes as differ-
entially expressed when controlling the LSU-FDR at level
q = 0.05 as above – less than half the number identified
by the two-way methods. The Logit-t method

Number of probe sets called significant versus resampling-based FDR for all methodsFigure 2
Number of probe sets called significant versus resampling-based FDR for all methods. Dashed lines indicate the control versus 
control comparisons.
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demonstrated a level of sensitivity similar to t-test (Fig. 8)
[see Additional File 1].

Effect of concentration and fold change
Figs. 1 and 2 highlighted the greater sensitivity of two-way
methods using the Lemon data set in which the expres-
sion of a large number of genes were expected to change
between the starved and stimulated conditions. However,
the identities of these true positives and the magnitudes of
relative and absolute change are unknown. Using the set
of 11 experiments with 3 replicates each from the Affyme-
trix Latin Square Data Set; we examined the effects of
known concentration and fold-change on the sensitivity
of the tests coupled with the LSU FDR-controlling proce-
dure. We did 55 pairwise comparisons of the 11 experi-
ments giving a wide range of fold change and maximum
spike-in concentration combinations (Fig. 3). As
expected, increasing fold change combined with increas-
ing maximum spike-in concentration allows for better
detection using all methods.

With as little as three replicates, we see in Fig. 3 that the
parametric two-way ANOVA and the Mack-Skillings test
are very sensitive to two-fold changes when testing within
a maximum concentration range of 4 to 128 pM (Fig. 3a).
With a four-fold change, the two-way methods are able to
successfully detect nearly all spiked gene transcripts in all
pairs of experiments at FDR level q = 0.05 with the excep-
tion of one changing from 0.25 to 1 pM (Fig. 3b). Only
with an eight-fold change and maximum concentration
between 32 and 128 pM do we begin to detect the spiked
genes when using the t-test and controlling the FDR at q =
0.05 (Fig. 3c). These differences may explain the higher
sensitivity of the two way methods shown in Figs. 1 and 2.

The decrease in sensitivity at higher concentrations over
the lower fold changes for all methods prompted an
investigation of the associated expression values used. A
log-log plot of the average difference values against the
known concentrations of the spiked transcripts (Fig. 4)
suggests a nonlinear relationship between measured
intensities and the spiked concentrations at the higher
concentrations supporting the lack of sensitivity of all
tests in that range. The nonlinear relationship at the low

concentration range is mainly caused by hybridization
noise. Despite low signal-noise ratio in this range, the
two-way methods can consistently detect two-fold
changes for a gene concentration as low as 4 pM whereas
the SAM-like one-way methods were generally unsuccess-
ful for the range of concentrations at this fold change for
the data set (Fig. 3).

Specificity and Sample Size Effect
The clearly higher sensitivity of the two-way methods in
discriminating a wider range of fold change at various
transcript concentrations with as little as three replicates
(Fig. 3) prompted the simultaneous evaluation of sensi-
tivity and specificity using receiver-operator characteristic
(ROC) curves. We compared the ability of the various
methods to discern a known two-fold change over the
range of concentrations in experiments L and M of the
Latin Square Data set using only three replicates. We
obtained results for sample size n = 3 by computing the
adjusted FDR from the average p-value for each probe set
over 100 comparisons of random pairs of samples of size
n taken from each condition. For these data, Fig. 5 shows
that the two-way ANOVA methods combined with the
LSU FDR-controlling procedure clearly outperform the
one-way statistical tests and does not trade off sensitivity
for specificity. For the parametric two-way ANOVA, the
ROC curve indicates a 91% sensitivity with a 99.84% spe-
cificity. In other words, we expect to find 11/12 spiked
genes with only 14 false positives in this data set. The
Mack-Skillings test follows with 75% sensitivity at the
same specificity range, whereas the t-test and the Wil-
coxon test clearly lack power under those conditions.
These results suggest that with the same number of repli-
cates, the improved sensitivity of two-way methods (Figs.
1, 2, 3) is due to the accurate detection of lower fold
changes at a wider range of concentrations.

After observing the relative lack of power of the one-way
methods compared with the two-way methods with only
three replicates per sample, we systematically assessed the
extent of the sample size effect on the relative power of
these tests in detecting the same two-fold change. Using
the same pair of Latin Square Data experiments with 12
replicates each, we compared the performance of the four

Table 1: Percentage of identical genes called significant by pairs of procedures

Mack-Skillings; LSU t-test; LSU Wilcoxon; LSU

two-way;LSU 96 93 --
Mack-Skillings; LSU 88 --

t-test; LSU --

Percentages are relative to the method defined in the column heading. -- No genes passed the criteria of FDR control at q = 0.05.
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methods using additional sample sizes of n = 2, 6, 9, 12.
The adjusted FDR values for n = 2, 6, 9 were computed in
a similar way as for n = 3. As shown by the ROC curves in
Fig. 6(a), the two-way methods exhibit relatively high sen-
sitivity and specificity when applied to data from as little
as two replicate experiments. Visual comparison suggests
that as many as 9 replicates may be needed using the t-test
to attain the same high power exhibited by the two-way
ANOVA using as little as three replicates (Fig. 5, Fig. 6).
This is not a surprising result because the two-way ANOVA
methods take advantage of probe information which

effectively increase the sample size by an order of
magnitude.

We show the effect of sample size on the resulting FDRs
given by each test on some representative probe sets rep-
resenting spiked genes in Fig. 7. Similar plots for all spiked
probe sets are available as Supplementary Material http://
carrier.gnf.org/publications/ProbeStatistics. Note the
expected decrease in FDR with increasing sample size
using all methods, and the slight difference between Fig.
7(a) and Fig. 7(b) due to the effect of the maximum and

log-log plots of FDR versus the maximum spike-in concentration at varying levels of fold change (FC)Figure 3
log-log plots of FDR versus the maximum spike-in concentration at varying levels of fold change (FC). The dashed line in each 
plot is the log FDR value corresponding to q = 0.05. Plots for higher fold changes are available at our web site. (a) FC = 2. (b) 
FC = 4. (c) FC = 8. (d) FC = 16. Due to the precision of the Matlab routines used for this study, log FDR values below -16 were 
cut off at -16.
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minimum concentration on the absolute magnitude of
the two-fold change to be detected.

Discussion
In the previous sections, we compared the application of
two-way ANOVA methods on probe-level data to
standard statistical methods on probe-set level data in
identifying differential gene expression in microarray
experiments. We aimed to show the importance of lever-
aging HDA design in the choice of statistical test and not
discarding information by working with a probe-set sum-
mary or average of probe-level data.

Using two-way ANOVA methods, we systematically
accounted for probe-specific biases in hybridization or
measurement efficiency, and thus achieved higher sensi-
tivity and specificity compared with the t-test in the range
of conditions investigated with varying levels of sample
size, fold change, and maximum spike-in concentration.
In the Lemon serum-starved and serum-stimulated data
set, the two-way methods coupled with LSU-FDR control
identified more than twice as many genes as differentially
expressed compared with the t-test. With the Latin Square
data set, we confirmed the specificity of the two-way
methods by analyzing the ROC curves and observed that
with as few as three replicates, the two-way ANOVA has a
91% sensitivity with a 99.84% specificity.

Comparison of the estimated expression values against the known spiked transcript concentrationsFigure 4
Comparison of the estimated expression values against the known spiked transcript concentrations.
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Parametric methods are commonly criticized for their lack
of sensitivity and specificity when detecting differential
gene expression. However, we discovered that the use of
an LSU FDR-controlling procedure with the parametric
two-way ANOVA method yielded the most promising
results in terms of higher sensitivity and specificity for
detecting differentially expressed genes. The outstanding
performance of the parametric two-way ANOVA with the
LSU FDR-controlling procedures relative to the other
combinations of nonparametric tests and the resampling-
based FDR in our study suggests that in the case of gene
expression analysis with HDAs, there is a substantial gain
in power by working with probe-level data, and that
proper treatment of this data by appropriate normaliza-
tion procedures and the application of appropriate trans-

formations (logarithm, square root) can allow us to
maintain assumptions critical to the method chosen.

Even without parametric assumptions, the advantage of
treating the probe as a blocking factor was clearly demon-
strated by the results using the Mack-Skillings test. Thus, if
more conservative estimates from a two-way ANOVA
analysis are desired, we can choose to use the results from
the nonparametric Mack-Skillings test and still have a sub-
stantial gain in power over the t-test. The same Affymetrix
Latin Square data set has been recently studied by Lemon
et al. using a probe-level Logit-t method and a low false
positive rate of 0.03% was achieved at the sensitivity of
87% [14]. The parametric two-way ANOVA achieved
essentially the same performance and the nonparametric

ROC curve comparing the power of each method when sample size, n = 3Figure 5
ROC curve comparing the power of each method when sample size, n = 3.
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Mack-Skillings method showed an even better false
positive rate of 0.01% with the same sensitivity http://car
rier.gnf.org/publications/ProbeStatistics.

The power of a statistical test is a function of its sensitivity
and this further depends on (1) the magnitude of the real
difference to be measured, (2) the noise level or standard
deviation of sample measurements, (3) the significance
level at which the tests are done, and (4) the sample sizes
[19]. Limitations inherent to the technology platform and
suboptimal data preprocessing procedures can reduce the
magnitudes of the real differences being measured. As we
observed, there is a nonlinear relationship between
expression values and the actual spike-in concentrations
at the lower and higher ends of the concentration spec-

trum for the Latin Square data set due to detection and
measurement saturation issues [20]. With the use of
probe-level data in a two-way ANOVA, we take advantage
of informative probe-level differences between treatments
and eliminate noise due to probe efficiency differences. In
this way, the two-way ANOVA methods are better able to
discern treatment differences. Control of the third factor
depends on the number of false leads that one is willing
to incur and this in turn varies with the goals of the exper-
iments. Finally, the control of the fourth factor is limited
by resource constraints, and in microarray experiments,
this continues to be a key issue due to the costs of micro-
arrays (two to three per condition in most labs) and avail-
ability of samples to be analyzed.

ROC curves highlighting the effect of sample size on the power of each methodFigure 6
ROC curves highlighting the effect of sample size on the power of each method. (a) n = 2. (b) n = 6. (c) n = 9. (d) n = 12.
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It is well-known that increasing sample size increases sen-
sitivity for all statistical tests, and given enough samples,
one can discern biologically meaningful changes well
below the differences currently measured. That we can
detect differentially expressed genes using two-way
ANOVA methods with only two or three replicates and get
comparable results with the use of the t-test on at least 6–
9 replicates is evidence of the higher power of these meth-
ods on probe-level data all other factors being equal.

In this study, we have shown that coupled with an easily
implemented linear step-up (LSU) FDR-controlling pro-
cedure, parametric and nonparametric two-way ANOVA
methods using probe-level data are substantially more
powerful tests than standard methods applied to probe-
set level data for detecting differential gene expression.
Their advantage in power is especially pronounced when
working with samples with as few as two or three repli-
cates – the most common sample sizes for microarray
experiments [1]. Although we only examined two sets of
conditions in our data sets, the two-way ANOVA is a gen-
eral design which easily handles other array experiment
setups with two or more levels of treatments or time series
points. As a well-known and extensively used statistical
method in many fields, the two-way ANOVA has inspired
a body of literature for dealing with many special cases,
such as unequal group sizes due to missing data from rep-
licates, which frequently occur in microarray experiments
[21,22]. Clearly, the ease of implementation of the two-
way ANOVA-type methods coupled with LSU-FDR con-

trol, and the results shown herein, strongly suggest its use
and further development for identifying differentially
expressed genes.

Methods
For the following study, we use methods focusing on the
two-sample case. We briefly describe the four well-known
statistical tests and the two forms of FDR control
employed in our study. Since the parametric statistical
tests require the key assumption of equal group variances,
logarithms of probe-level intensities and summarized
expression values were taken to provide a better approxi-
mation [23].

Statistical tests
Parametric t-test
The t-statistic and its variants are powerful measures for
detecting differential expression because they permit
selection of genes with maximal difference in mean level
of expression between two groups and minimal variation
of expression within each group [4]. Here we employ the
classical t-test which is a statistically equivalent test to the
parametric one-way ANOVA in the two-sample case [22].
As done in Reiner et al., we obtain the p-values directly
using the t-distribution with appropriate degrees of free-
dom depending on the sample sizes [9].

Wilcoxon rank sum test
For each gene, the distribution-free rank sum test trans-
forms the sorted gene expression values across experi-

Effect of sample size on the log FDR value for representative probe setsFigure 7
Effect of sample size on the log FDR value for representative probe sets. (a) 1024_at (b) 36085_at. Due to the precision of the 
Matlab routines used for this study, log FDR values below -16 were cut off at -16.
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ments into ranks and then tests the null hypothesis of
equality of the means of the ranked values between
experimental conditions [6]. For small sample sizes, exact
p-values can be obtained from pre-calculated statistical
tables. A normal approximation of standardized test sta-
tistics is typically used to obtain p-values for larger sample
sizes. In this case, it was used for samples of size 9 and
greater.

Two-way ANOVA
The use of ANOVA in testing for the equality of group
means relies on the computation of the ratio of the mean
square variation among group means to the mean square
variation within groups. A large ratio indicates a signifi-
cant difference between group means. The one-way
ANOVA model, a generalization of the t-test reliably
detects differences between group means only when other
factors, which can cause large variation within groups, are
controlled.

In the case of HDAs, probe-level intensities are a source of
large and systematic variation. Thus, instead of using the
summarized expression indices for each probe set for
hypothesis testing and ignoring individual probe effects,
we use intensity values for each probe in a probe set and
control for probe-specific biases by considering probe
type as a blocking factor in a two-way ANOVA. For each
probe set, replicate measurements of log-transformed
probe-level intensities for each probe are segregated into
blocks across the treatment conditions. Two types of
hypothesis tests can be performed in this case: (1) the test
of the equality of probe or block means to assess the sig-
nificance of explicitly modeling probe-level effects, and
(2) the test of equality of treatment means having
accounted for variation caused by individual probes. The
ANOVA model is:

Yijk = µ + Pi + Tj + PTij + εk(ij),

where Yijk is the logarithm of the probe-level intensity
measurement, µ is the overall mean, Pi is the effect of the
probe i, Tj is the effect of treatment j, PTij is the effect of the
interaction between the probe i and treatment j, and εk(ij)
is the error. The probe-treatment interaction term is neces-
sary based on our results on the Lemon data set (see
Results for details).

In the first test we can measure the ratio of the mean
square variation among blocks to the mean square varia-
tion within groups, where each group is a treatment/block
combination. The significance of these probe-level differ-
ences have been documented and were again confirmed
by the extremely low p-values associated with block effects
in our study [11]. However, it is not of particular interest
that measured intensities for probe A differ significantly

from those of probe B in a probe set when testing for dif-
ferential gene expression [12]. Here we only measure the
amount of such fluctuations and remove it from the esti-
mate of within group variability. In the second test, the
test of interest for identification of differential gene
expression, we measure the ratio of the mean square vari-
ation among treatments to the mean square variation
within treatment/block groups. The p-values correspond-
ing to the ratios for the second test are determined using
an F-distribution whose numerator has degrees of free-
dom equal to k-1 where k is the number of treatments, and
whose denominator has pk(r-1) degrees of freedom,
where p is the number of probes in the probe set and r is
the number of replicates. In this study, we maintain the
assumption of equal group sizes because there are corre-
sponding probes for each probe set across experimental
samples profiled using the same array type, and in the
data sets used, there are equal numbers of replicates
[22,23]

Mack-Skillings test
This distribution-free alternative to the classic two-way
ANOVA model above transforms the probe-level intensi-
ties into ranks for each probe across the samples (repli-
cates and conditions). It is a generalization of the
nonparametric Friedman test when there are replicates.
This test of no change across experimental conditions uses
the Mack-Skillings statistic to measure the squared devia-
tion of the sum of the ranks across the probes in a probe
set for each treatment condition, from the expected sum
based on no treatment differences. As with the Wilcoxon
test, the exact p-values for small sample sizes can be found
in statistical tables or computed numerically. Large-sam-
ple approximation allows the estimation of p-values using
a chi-square distribution with k-1 degrees of freedom,
where k is the number of experimental conditions [21].

FDR control
Linear step-up (LSU) procedure
The linear-step up (LSU) procedure originally described
by Benjamini and Hochberg (1995) controls the FDR rate
at level q by rejecting all hypotheses H(i), i = 1,...,k where

 are the ordered p-
values. Here, we compute the multiplicity adjusted p-val-
ues:

and thus associate an FDR for each hypothesis test [9].
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Resampling-based procedure
Resampling-based methods seek to gain more power by
utilizing the empirical dependency structure of the data to
construct more powerful FDR-controlling procedures
[3,9]. Here we generate an m × n matrix of resample-based
p-values [pik] for m probe sets using n permutations of
treatment labels (n = 100 in this study). We naively esti-
mate a resampling-based FDR for each probe set by order-
ing the observed p-values Pj and starting with the largest p-
value P(m) we compute:

V is the average number of assumed null p-values from all
permutations as extreme as the observed value under con-
sideration, whereas R is the number of observed p-values
as extreme as the same value under consideration. The
ratio of these values gives an estimate of the FDR associ-
ated with the rejection of the hypothesis under
consideration.

The statistical tests described above were performed using
Matlab. Built-in Matlab functions were used to compute
the test statistics and associated p-values, and FDR adjust-
ments were implemented as described above.

Data preprocessing
Microarray intensity normalization and gene expression
calculations were performed using dChip [11]. Probe val-
ues were first normalized and their background intensities
subtracted. Probe set expression values were computed
using the PM-only model for expression using standard
outlier detection. An additional normalization step was
used to adjust the probe set expression values of each
array to a median expression level of 200. Aside from the
previously published advantages for using only PM
probes intensity calculations using only PM probes tend
to result in higher values and few if any negative values,
alleviating complications when log transforming the data
[11,10]. In addition to the preprocessing using dChip, we
also filtered the probe sets so that at least one sample
group has an average expression level of 20. This is done
in order to prevent comparing expression levels of genes
that are either insignificantly expressed in both treatment
conditions or are expressed at the noise level.
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