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Abstract
Background: The chemical property and biological function of a protein is a direct consequence
of its primary structure. Several algorithms have been developed which determine alignment and
similarity of primary protein sequences. However, character based similarity cannot provide insight
into the structural aspects of a protein. We present a method based on spectral similarity to
compare subsequences of amino acids that behave similarly but are not aligned well by considering
amino acids as mere characters. This approach finds a similarity score between sequences based
on any given attribute, like hydrophobicity of amino acids, on the basis of spectral information after
partial conversion to the frequency domain.

Results: Distance matrices of various branches of the human kinome, that is the full complement
of human kinases, were developed that matched the phylogenetic tree of the human kinome
establishing the efficacy of the global alignment of the algorithm. PKCd and PKCe kinases share
close biological properties and structural similarities but do not give high scores with character
based alignments. Detailed comparison established close similarities between subsequences that do
not have any significant character identity. We compared their known 3D structures to establish
that the algorithm is able to pick subsequences that are not considered similar by character based
matching algorithms but share structural similarities. Similarly many subsequences with low
character identity were picked between xyna-theau and xyna-clotm F/10 xylanases. Comparison of
3D structures of the subsequences confirmed the claim of similarity in structure.

Conclusion: An algorithm is developed which is inspired by successful application of spectral
similarity applied to music sequences. The method captures subsequences that do not align by
traditional character based alignment tools but give rise to similar secondary and tertiary
structures. The Spectral Similarity Score (SSS) is an extension to the conventional similarity
methods and results indicate that it holds a strong potential for analysis of various biological
sequences and structural variations in proteins.
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Background
Comparison and alignment of primary structures has
become the prime tool for protein sequence analysis [1].
Comparative analysis of primary structures of amino acids
can reveal useful information regarding the structure and
function of proteins. Many algorithms therefore have
been developed and databases designed to search for sim-
ilar proteins, but most of them are based on character-
matching techniques. In this technique, the amino acids
are considered to be distinct characters.

However, there are certain limitations of character based
similarity measure approaches that cannot allow insights
in the structural aspects of the protein. Though two
sequences with a high character based similarity are
expected to depict similar structures and show close bio-
logical functions, the reverse is not always true. Instances
have been found where structurally closely related
sequences do not provide good character based similarity
measure [2]. Two protein sequences with low sequential
identity may show similarities in their physiochemical
properties, tertiary structure and biological activities.
There could be many reasons for this observation. The one
most widely hypothesized is that nature sometimes
retains the biological functions but changes the amino
acids as the protein evolves. Also, most of the times,
researchers are interested in the active site of the protein,
and not its overall backbone structure. The active site may
occupy just a small part of the overall protein, therefore it
is important to capture the structure and local variations
in properties of amino acids at a certain location. Overall
similarity score based on character matching may not be
able to capture the local similarities, particularly if the
amino acids differ in the location but provide similar
overall structure.

Many algorithms have been developed based on character
based similarity, though differing in their approaches.
BLAST attempts to fragment protein sequences and estab-
lishes matches between them using substitution matrices
for thresholds. PSI-BLAST [3], an extension to BLAST
[4,5], uses similarity matrices (called profiles) based on
specificity of position of an amino acid, and is probably
the most widely used sequence similarity tool. All BLAST
algorithms are based on consideration of sequences as
long strings of alphabets. In addition, various heuristics
are employed based on biological observations as exten-
sions to purely character based approaches. Similarly,
FASTA [6] algorithms using optimized gap penalties are
used to find homologous sequences from protein data-
bases. SSearch [7] engine implements Smith-Waterman
[8] algorithm, an extension to the N-W algorithm [9] for
establishment of protein similarity. PRIDE [10] estab-
lishes similarity score by considering Cα - Cα distances
between residues separated within a threshold of amino

acids. An interesting holistic approach to protein align-
ment developed by Taylor and Orengo [2] present an
algorithm that considers structural aspects inducing
hydrogen bonding like solvent exposure, torsion angle
apart from the traditional character based methods, and
does indeed presents appreciable alignments for proteins
with low sequence similarity. Tonges et al. [11] presents a
general method for sequence alignment based on conven-
tional dynamic programming and building of secondary
matrices by their results. However, it works best for highly
homologous sequences and therefore is of not much use
for less homologous sequences. Double dynamic pro-
gramming approach, an interesting extension to the N-W
[9] algorithm is used to increase the accuracy in multiple
sequence alignment by Tailor et al. [12]. T-Coffee [13] also
shows appreciable enhancement in accuracy over tradi-
tional alignment methods by prearchiving of alignment
information. CHAIN [14] uses monte carlo optimization
of a hidden markov model to establish gapped alignment
of primary structures. A whole range of CLUSTAL [15,16]
softwares are available for protein alignment customized
for specific needs and available resources. Further,
machine learning approaches [17] have been used to
improve the similarity searches. Pearson [18] and Shpaer
et al. [19] provide an extensive review and comparison of
the existing tools for searching primary protein sequence
databases. However, the algorithms fail to extract subse-

Table 1: Estimated Hydrophobic Effect for residual burial. 
Estimated Hydrophobic Effect for residual burial shown in the 
second column for each amino acid. These values are substituted 
for individual amino acid forming a property plane for further 
preprocessing of inputs in SSS. The values are in kilocalories/
mol.

Amino Acid value [kcal/mol]

Gly 1.18
Ala 2.15
Val 3.38
Ile 3.88
Leu 4.10
Pro 3.10
Cys 1.20
Met 3.43
Phe 3.46
Trp 4.11
Tyr 2.81
His 2.45
Thr 2.25
Ser 1.40
Gln 1.65
Asn 1.05
Glu 1.73
Asp 1.13
Lys 3.05
Arg 2.23
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quences that are not identical in characters but share com-
mon secondary structure. In all of the above, similarity is
very closely related to identity except while incorporating
discrete properties like acidic, basic, aromatic to which an
aligned amino acid may belong to.

Non character based approaches to establish similarity
between polypeptides have also been tried with limited
success like by capturing the repetitions of amino acids by
considering sequences in the frequency domain using the
acclaimed Fast Fourier Transformation [20-22]. Various
repeats in the protein sequences can be adequately cap-
tured by using FFT and its various versions, but we lose the
sequence information in such attempts.

Most of the algorithms for similarity detection are prima-
rily alignment tools and are based on string managements
of protein sequences that are considered as words of 20
characters. The algorithm presented here attempts to
remove this limitation by considering the properties of
the amino acids and also their variation directly during
matching of sequences. Our approach is inspired by a few
recent researches in the field of music retrieval and the
commercial success of Music Database and Retrieval Sys-
tems [23] (MDR) based on the Spectral Analysis of audio
signals. We have attempted to use the ideas in the field
advantageously along with the traditional methods to
adapt to protein sequence similarity estimation. Since the
MDRs have been commercialized, new algorithms and
heuristics may not be available in the public domain. The
developed algorithm is capable of evaluating similarity
based on any or a combination of the 256 attributes listed
down in the AA index database [24,25] and is intended to
detect local variations in the property in the sequence along
with global alignment. We present this method as an
extension to traditional character based matching
algorithm.

Results
The algorithm was coded, with Sz and F kept as variable
parameters. A single property, i.e. hydrophobicity [26] was
taken as the property, F is kept more than twice the Sz so
that no information is lost while the neighborhood
around the highest peak is considered. βp, the penalty fac-
tor can be changed to accommodate the parameters and
can be tuned to consider the 'not so similar' segments in
the sequences. The threshold for selection of subse-
quences of size 8 amino acids with β = 2.5, was kept as a
function of the actual character identities in the subse-
quences. The threshold t was taken as SSS < = 3.5 - n * 0.4,
so that if there is no character identity, subsequence
matches with SSS < = 3.5 were looked for. This non-fixed
threshold function was evolved as matchings with high
character identity did produce low matches, but the
"interesting" matches are typically the ones with low iden-
tity of amino acids. A detailed analysis of the matching
presents subsequences that are alphabetically dissimilar,
and are therefore not detected by traditional algorithms,
but share common 3D structures.

1. Various branches of the evolutionary tree of Human
Kinome [27] were generated by tree-generating algorithm,
after finding the distance measure for various kinases. As
an illustration, when closely related kinases (with Swiss-
Prot accession no. in brackets), PAK4 (O96013), PAK5
(O95547), PAK6 (Q9NQU5) and a distant neighbor PLK1
(SwissProt acc.no: P53350) are run through the automa-
tion of the algorithm, expected results are obtained (see
table 2). This establishes the global alignment capability
which is due to the Dynamic Programming Algorithm.
Similarly evolutionary relationships were found for the
PKC series of human kinases (see table 3) with F doubled.
The global alignment capability does not seem to be
dependent on the F measure significantly.

Table 2: Distance Matrix for human kinases PAK series. Distance measures D between various human kinases. PAK series are closely 
similar kinases, while PLK1 is a distant relative in the kinome evolutionary tree [27]. Smaller SSS values correspond to strong 
similarity. GAP (Needleman-Wuntch [9] algorithm implemented in gcg package) scores are in percentage similarity. F = 8, Sz = 4, β = 
0.502. It can be seen that the dynamic programming approach used in the SSS algorithm is a simple but effective approach to 
ascertain global similarity. A replica of the branch of the kinome tree can be generated using the matrix.

PLK1 PAK4 PAK5 PAK6

SSS GAP SSS GAP SSS GAP SSS GAP

PLK1 0.000 100 0.981 39.688 0.976 37.813 0.969 39.264
PAK4 0.981 39.688 0.000 100 0.681 69.898 0.845 63.776
PAK5 0.976 37.813 0.681 69.898 0.000 100 0.870 58.045
PAK6 0.969 39.264 0.845 63.776 0.870 58.045 0.000 100
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2. PKCd (pdbid [28,29] (accession number in the Protein
Data Bank [28]): 1bdy) and PKCe (pdbid: 1GMI) (BLAST
identity 40%, similarity 57%) human kinases are consid-
ered as evolutionarily similar but do not produce close
alignments (GAP 55.472%, SSS .7149). The algorithm
was able to identify many subsequences that are not iden-
tical but share close secondary structure similarity. Results
are tabulated in table 4 alongwith the alignment found in
BLAST. Also, results are compared with those of Smith-
Waterman algorithm [8], using the standard software
called SSearch [7]. In both the cases, it was seen that SSS
was able to identify subsequences that are alphabetically
dissimilar but gives low SSS scores, but are structurally
similar. The value of segment size Sz was kept 8 and F 16.
The tertiary structures of the subsequences within the
threshold were found to be closely similar using Swiss
pdbviewer (SPBDV) [30,31]. The references of the figure
showing alignments are given in each row in table 4. The
alignments shown is between the subsequences by a sim-
ple "Magic Fit" in SPDBV using the actual pdb files of the
proteins, and most of the fits obtained for SSS within the
threshold validate our results. Therefore, it is possible that
even when the subsequences have complete identity, they
may theoretically not fit at all in the actual protein owing
to the non-alignment of other regions.

PKCd and PKCe, though share a similar fold, do not
superimpose well using SPDBV but our experiments sug-
gest that the subsequences picked up by SSS within the
threshold do produce good fits with low rms (root mean
square) value apart from their similarity in the secondary
structure (also shown in the table 4). Figure 4 shows the
fits obtained using SPDBV for subsequences that were
picked by the algorithm with the exception of Figure 6
which reported a high SSS value, and also has reported a
high rms value during pdb fitting. Matches found with

high character identity are not shown in the table, but in
general their SSS value is lower which is taken care of by
the threshold. This demonstrates that the algorithm's abil-
ity to pick non identical subsequences if they are similar
in their tertiary structure. The accounting of subsequences
through SSS that are found below threshold would
increase the BLAST similarity score by more than 10% in
this particular example and more than 5% in most other
protein pairs. However, the potency of the algorithm
essentially remains in capturing "interesting" subse-
quences and not perse at global alignment.

3. SSS consistently was found to capture subsequences
with similar secondary structures, and most of the times
with similar tertiary structures purely by the primary struc-
ture. In xyna-psefl (pdbid: 1clx) and xynz-clotm chain A
(pdbid: 1xyz) we found interestingly subsequences that do
not get aligned in BLAST but still show similar tertiary
structures using the algorithm. Table 6 shows subse-
quences that are not aligned in BLAST and do not share
sequential similarity but are similar in tertiary structures
as seen through their pdb coordinates. Similar conclu-
sions can be drawn by comparison with the results
obtained by Smith-Waterman algorithm. SSearch engine
was used for comparative analysis. This strongly suggests
the potency of the algorithm to even find non aligned sub-
sequences that are structurally similar and renders SSS as
a useful test after traditional alignment algorithms. This
seems to be a result of the inadequacy of the simplistic
dynamic programming approach compared to BLAST
which is a better alignment tool, but depicts that SSS with
better alignment tools as an abstraction (like the way
dynamic programming is used as a wrapper) can be used
effectively for finding alignments between proteins where
homology is not detected using traditional algorithms.

Table 3: Distance Matrix for PKC series in human kinome. Distance matrix for PKC series in Human Kinome. These proteins occur as 
a distinct branch in the phylogenetic tree of the Human Kinome. GAP results are given as percentages while SSS scores are fractions. 
Lower SSS scores refer to higher similarity detection. It is seen that SSS with the dynamic programming approach is able to capture 
phylogenetic relationships between human kinases in the PKC subfamily of proteins. F = 16, Sz = 8, β = 2.5

PKCa PKCb PKCd PKCe

SSS GAP SSS GAP SSS GAP SSS GAP

PKCa 0.000 100 0.4678 85.949 0.7238 61.835 0.7391 63.851
PKCb 0.4678 85.949 0.000 100 0.7254 61.029 0.6904 62.944
PKCd 0.7238 61.835 0.7254 61.029 0.000 100 0.7149 55.472
PKCe 0.7391 63.851 0.6904 62.944 0.7149 55.472 0.000 100
PKCg 0.5137 81.081 0.5951 79.464 0.7348 60.589 0.7550 61.695
PKCh 0.7160 64.794 0.7371 - 0.7371 53.506 0.6146 76.035
PKCi 0.7498 52.072 0.7568 50.357 0.7338 45.098 0.7599 52.909
PKCt 0.7113 61.847 0.7474 59.370 0.6068 73.333 0.7451 55.043
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4. The algorithm was run on xyna-theau (pdbid: 1gor) and
xynz-clotm chain A (pdbid: 1xyz) and compared with the
results from BLAST. Subsequences that were found to be
matching with large distance values (meaning that the
similarity is not very high, but reported in the matching
segments) were looked for their secondary structures.
Appreciable similarity in secondary structures were
reported though alignment was not perfect (see table 5).
Figures 5 shows the fits obtained for the individual subse-
quences picked by the SSS using SPDBV. Xyna-theau and
xynz-clotm are abound in H (Helix), but the algorithm is
able to catch the subsequences where for short duration β
strands were located within two bends and align them
with a similar stretch in the other sequence. It must be
considered, that interesting results may be expected by the
algorithm (and those not expected from character based
alignment) only when the distance value D is not very
small, and a micro analysis of the matching segments may
produce results that are unobtainable otherwise.

5. xyna-theau (pdbid: 1gor) and xyna-strli (pdbid: 1eov)
when run over by the algorithm also produced subse-
quences that were dissimilar in characters but highly sim-
ilar in their overall structure. In Table 7, subsequences 3
and 4 were completely dissimilar sequences but were
obtained by the algorithm and were found to be very
similar in their tertiary structure with very low rms values.
Both the subsequences produce α helical structures.

This illustrates the chief advantage of the algorithm,
wherein not only direct character alignment but similarity
between subsequences is captured. Analysis in the spectral
domain after conversion to an orthogonal plane of prop-
erty using FFT allows SSS to establish similarity where tra-
ditional character based algorithm may not succeed. This
holds true for BLAST and many other algorithms based on
a similar approach. Though, essentially SSS is suited for
detailed analysis of sequences in a locality and can be
wrapped over by other global alignment tools (like N-W
dynamic programming or BLAST), but within the locality

Table 4: SSS results for PKCd and PKCe kinases. SSS results for the human kinases PKCd and PKCe (BLAST identity score 40%, 
similarity 57%). Similar subsequences are shown where BLAST is not able to find appreciable similarity with pure character matching 
strategies. None of the good alignment detected by BLAST were found to be with high SSS scores. Only the sequences with low SSS 
scores but low BLAST alignments are shown. Smith-Waterman algorithm application SSearch results are also shown. Figures in the 
last column are created by Magic Fit using the SPDBV software with real pdb files downloaded from the PDB Databank. F = 16, Sz = 8, 
β = 2.5. PDBids : PKCd = 1BDY, PKCe = 1GMI. The assignments for secondary structure are: h = helix; b = residue in isolated beta bridge; 
e = extended beta strand; g = 310 helix; i = pi helix; t = hydrogen bonded turn; s = bend [37].

Seq Segment Subseq msd Blast Result SSearch Results rms Image

1 PKCd
PKCe

(4) [31–39]
(6) [46–54]

2.31 MKEALSTE
DDSRIGQT

1.67 fig 4a

2 PKCd
PKCe

(3) [22–30]
(4) [33–41]

4.38 ANQPFCAV
QTFLLDPY

ANQPFCA V
QTFLLDP Y

1.17 fig 4b

3 PKCd
PKCe

(12) [99–107]
(12) [95–103]

3.96 GKAEFWLD
ANCTIQFE

GKAEFWL D
ANCTIQF E

2.08 fig 4c

4 PKCd
PKCe

(14) [110–118]
(15) [111–119]

3.85 0.83 fig 4d

5 PKCd
PKCe

(8) [66–74]
(10) [76–84]

1.77 0.66 fig 4e
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it scores over other algorithm due to its emphasis on the
local variation of the property besides the property itself. As
has been demonstrated in the results, local variation of a
group of properties can also have an effect on determining
the structural and functional properties of the protein in a
locality. Therefore, it scores over even Smith-Waterman
[8] in the cases where alphabetical similarity is either low
or does not exist. Further, any purely character based sim-
ilarity approach cannot capture the local variation of mul-
tiple properties in a local region. If two subsequences
register an appreciably low SSS score, and are sequentially
different, it depicts the local variation of property (here
hydrophobic effect for residue burial) to be similar in
both the subsequences, which might be of interest to the
analyst. Taking a greater frequency component (F being

doubled) and subsequent analysis at such locations might
give useful insight into the similarity pattern where char-
acter matching is not evident. The flexibility to use the
algorithm with a healthy compromise between the fre-
quency and position offers another advantage of the
developed algorithm. Further, other properties like α hel-
ical propensity, β strand propensity may be used in con-
junction with hydrophobicity as different property
planes.

Conclusion
We present a novel method to establish similarity
between two amino acid sequences that goes further than
the conventional character based similarity approaches
and purely frequency based similarity approaches based

Hydrophobicity Profiles generated before preprocessing for PAK4 & PAK5Figure 1
Hydrophobicity Profiles generated before preprocessing for PAK4 & PAK5. Hydrophobicity profiles of the 
sequences of kinases PAK4 and PAK5 generated by substituting the amino acid characters with their respective property value 
(hydrophobicity values given in table 1). The two sequences are known to be closely similar. These profiles would subsequently 
be divided in equal segments and the neighborhood around the maximum peak in each segment would be converted to an 
orthogonal plane using Fast Fourier Transformation.
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Preprocessing of Inputs in a single property planeFigure 2
Preprocessing of Inputs in a single property plane. The property profile of one of the input sequences in a plane is sub-
jected to segmentation of equal sizes. Maximum peak in each segmented is identified by simple comparison of the heights of the 
peaks and the a neighborhood of size F around the position containing the peak is taken. Each neighborhood is then collectively 
subjected to fourier transformation. This preprocessing is implemented in each plane of the property profile.

Matching of segments using dynamic programmingFigure 3
Matching of segments using dynamic programming. Matching of the Sequence vectors generated through Dynamic 
Programming. The method used is a version of the N-W Algorithm. A penalty of β is imposed on each non matching of seg-
ments while for an accepted match the distance score is increased by the dissimilarity measure between the segments. A 
matching is defined as an ordered map between the two ordered sets of segments.
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3D matching for PAKd PAKe using SPDBV magic fitFigure 4
3D matching for PAKd PAKe using SPDBV magic fit. 3D images of fit obtained by using SPDBV [30, 31] software's 
"magic fit" tools. The first value in the bracket is the SSS for the subsequence and second refers to rms value obtained by the 
tool in 0A. Color red is used for PKCd and yellow for PKCe. The subsequences in the figures are (a)MKEALSTE & DDSRIGQT 
(b) ANQPFCAV & QTFLLDPY (c) GKAEFWLD & ANCTIQFE (d) QAKVLMSV & RVYVIIDL (e) RVIQIVLM & RKIELAVF 
belonging to PKCd and PKCe respectively. All subsequences are completely dissimilar using character based approaches but 
are found to be similar using SSS. Appreciably low rms values confirms that the subsequences in fig 4a-4e are similar 
subsequences.
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3D matching for xyna-theau xynz-clotm using SPDBV magic fitFigure 5
3D matching for xyna-theau xynz-clotm using SPDBV magic fit. 3D images of fit obtained by using SPDBV [30, 31] 
software's "magic fit" tools. The first value in the bracket is the SSS for the subsequence and second refers to rms value 
obtained by the tool in 0A Color red is used for xyna-theau and yellow for xynz-clotm. The two proteins are similar proteins 
with high BLAST score and overlapping 3D structures. SSS however is still able to catch subsequences that are left as dissimilar 
by BLAST, and low rms values for captured subsequences confirm the findings. The subsequences in the figures are (a) 
SCVGITVM & NCNTFVMW (b) GITVWGVA & TFVMWGFT (c) RVKQWRAA & MIKSMKER (d) EDGSLRQT & SGNGLRSS 
belonging to xyna-theau and xynz-clotm respectively.
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on repetitions of amino acids. The algorithm derives its
inspiration from spectral similarity approaches employed
successfully in music database retrieval systems and
attempts to establish similarity based on the Spectral Sim-
ilarity Score on any general attribute of amino acids. We
have demonstrated that the approach is capable of picking
subsequences of amino acids as similar though they may
not be identical in nature. Further, tertiary structures of
these picked subsequences have shown appreciable simi-
larity and fit, though the overall structure of the protein

may not fit well. This demonstrates that the algorithm is
capable of establishing similarity in tertiary structure
purely by processing primary structures even when the
primary subsequences do not match well. Further, as SSS
is able to find even subsequences that do not align
through BLAST or SSsearch but are nevertheless similar, it
can be used as a useful tool after operation by traditional
alignment algorithms. Further, SSS without dynamic pro-
gramming can be used to pick a subsequence of interest

3D matching for xyna-psefl xynz-clotm using SPDBV magic fitFigure 6
3D matching for xyna-psefl xynz-clotm using SPDBV magic fit. 3D images of fit obtained by using SPDBV [30, 31] soft-
ware's "magic fit" tools. The first value in the bracket is the SSS for the subsequence and second refers to rms value obtained 
by the tool in 0A. Color red is used for xyna-psefl and green for xynz-clotm. The subsequences for which structures are shown 
are (a) NCNTFVMW & RRGGITVW (b) RDSLLAVM & ENGAKTTA (c) YNSILQRE & RQSVFYRQ belonging to xynz-clotm 
and xyna-psefl respectively. All the subsequences found to be similar are left by traditional algorithms as dissimilar (or uniden-
tical). Interestingly, the subsequences paired up in fig 6b and 6c are not aligned by BLAST but were still found to be similar by 
SSS and are captured by the same.
Page 10 of 16
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Table 5: SSS results for xyna-theau and xynz-clotm. SSS results for the human kinases xyna-theau and xynz-clotm (BLAST identity 
score 41%, similarity 59%). Similar subsequences are shown where BLAST is not able to find appreciable similarity with pure character 
matching strategies. None of the good alignment detected by BLAST were found to be with high SSS scores. Only the sequences with 
low SSS scores but low BLAST alignments are shown. Figures in the last column are created by Magic Fit using the SPDBV software 
with real pdb files downloaded from the PDB Databank. F = 16, Sz = 8, β = 2.5. PDBids : xyna-theau = 1GOR, xynz-clotm = 1XYZ. The 
assignments for secondary structure are: h = helix; b = residue in isolated beta bridge; e = extended beta strand; g = 310 helix; i = pi helix; t 
= hydrogen bonded turn; s = bend [37].

Seq Segment Subseq msd Blast Result rms Image

1 x-theau
x-clotm

(32) [259–267]
(30) [242–250]

3.89 0.76 fig 5a

2 x-theau
x-clotm

(36) [288–296]
(31) [245–253]

1.96 0.61 fig 5b

3 x-theau
x-clotm

(27) [215–223]
(20) [158–166]

2.45 0.17 fig 5c

4 x-theau
x-clotm

(20) [160–168]
(13) [103–111]

2.97 1.59 fig 5d

Table 6: SSS results for xyna-psefl and xynz-clotm. SSS results for the F/10 xylanases xyna-psefl and xynz-clotm (BLAST identity score 
33%, similarity 52%). Similar subsequences are shown where BLAST is not able to find appreciable similarity with pure character 
matching strategies. Interestingly the second subsequence does not find alignment in BLAST and is not sequentially similar but 
produces good alignment. SSearch alignment results are based on Smith-Waterman algorithm. SSearch also did not align the 
presented subsequences, though it is more sensitive to local and detailed alignments of sequences. Smith-Waterman score was 510 
while similarity score in SSearch was 32.984%. Referenced figures show the fit obtained using SPDBV Magic Fit. F = 16, Sz = 8, β = 2.5, 
SSS = 0.783. PDBids : xyna-psefl = 1CLX, xynz-clotm = 1XYZ. The assignments for secondary structure are: h = helix; b = residue in 
isolated beta bridge; e = extended beta strand; g = 310 helix; i = pi helix; t = hydrogen bonded turn; s = bend [37].

Seq Segment Subseq msd Blast Result SSearch Results rms Image

1 x-clotm
x-psefl

(37) [297–305]
(37) [297–305]

2.10 1.29 fig 6a
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(23) [184–192]
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1.96 fig 6b

3 x-clotm
x-psefl
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(18) [145–153]
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RQSVFYRQR

NSILQRE
QSVFYRQ

2.58 fig 6c
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from a corpus of subsequences that alignment algorithms
would fail to achieve.

A distinct advantage of the algorithm is its ability to detect
subsequences that are not similar in characters but in the
property under consideration, and even in the profile of
the local variation of the property in a localized region.
Therefore, it is able to establish similarity in those subse-
quences where character based similarity is not possible to
establish. The algorithm is flexible and allows alteration
of size of subsequences as powers of 2. If FFT is replaced
by other fourier transformation algorithm (at the cost of
time complexity) then this constraint on the size of the
subsequence may also be eliminated. Another advantage
of the algorithm is its ability to encode any property of the
amino acids as given in the AAindex database. Therefore
different indices may be used in different contexts to
establish similarity in function, fold, structural, or evolu-
tionary or superfamily relationships. These indices may be
normalized to compare the results from different indices.
Further, multiple properties may be handled at a time
either by generating property profiles in different planes or
by creating a new property as a linear combination of

multiple properties. Effects of such extensions are cur-
rently being explored.

The Dynamic Programming approach can be replaced by
other approaches used in character based similarity estab-
lishment with suitable modifications. Smith-Waterman
algorithm performs an exhaustive search of all possible
gapped alignments between a pair of sequences using a set
of scoring parameters, and therefore can be used more
effectively with SSS. It is noteworthy, that though there are
frequency conversion mechanisms other than FFT, but the
latter is a linear time algorithm and is therefore, faster. If
Smith-Waterman algorithm is used as a wrapper for an
exhaustive search of gapped alignments (here, SSS
similarity alignments), usage of FFT would become criti-
cally important. Penalty, windowing and normalization
parameters may be further tuned to get better depth in the
results. Histograms can be generated for a better visualiza-
tion of similarity and to avoid detailed analysis of the SSS
results. Color coding of alignment, as done in BLAST, can
be employed and algorithms used in MDR may be used in
filtering and linearity enforcing. This approach, we
believe, can be used in many fields in bioinformatics to

Table 7: SSS results for xyna-theau and xyna-strli. SSS results for the F/10 xyna-theau and xyna-strli (BLAST identity score 47%, 
similarity 62%). Both the xylanases are exceedingly similar in their structure (RMS = 2.130A using SPDBV) and therefore close identity 
in the primary structure is expected as depicted by high BLAST identity score. Similarly, SSearch produces good alignment where 
character based identity is high. Highly identical subsequences do produce low SSS score (row 1) but non identical subsequences 
producing low scores are interesting. BLAST does not detect similarity in row 3 subsequences but aligns them. SSearch, however, 
does not align the two subsequences in row 3. Most of them show similar secondary and tertiary structures. Note the similarity in 
secondary structures shown below each subsequence. F = 16, Sz = 8, β = 2.5. PDBids: xyna-theau = 1GOR, xyna-strli = 1EOV. The 
assignments for secondary structure are: h = helix; b = residue in isolated beta bridge; e = extended beta strand; g = 310 helix; i = pi helix; t 
= hydrogen bonded turn; s = bend [37]. SSS = 0.731.

Seq Segment Subseq msd Blast Result SSearch Results rms Image
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(38) [304–312]
(41) [329–337]

0.60 0.21 fig 7a
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2.17 1.51 fig 7b
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1.69 fig 7c
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2.93 0.19 fig 7d
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establish similarity. This algorithm can be effectively used
to find similarity in genomes after suitable estimation of
the parameters, and can also be used to find similarities in
the 3-dimensional structures of proteins by using varia-
tions in relatively accessible surface areas of proteins.

Methods
The focus of the SSS algorithm is to capture subsequences
in amino acid sequences that are not similar on alphabet-
ical scale, but are similar on some property(s) scale of
which a choice can be made during the course of the algo-
rithm. SSS involves preprocessing of the primary
structure, and conversion to the frequency domain fol-
lowed by matching and estimation of the similarity score.

Preprocessing of inputs
The algorithm intends to find the similarity measure
based on any general attribute of the amino acid. There-
fore, the amino acid in the input sequence is replaced with
its attribute measure, such as the hydrophobicity [26]
value. This generates a property profile of the protein in one
dimension, which is a sequence of floating point numbers
of length equal to the number of amino acids in the
protein. If more than one property is to be considered
simultaneously, then the property profile is a multi dimen-
sional sequence.

Formally, for a protein Pr of size n (number of amino
acids) let the p properties considered be {P1, P2,..., Pp}. Let
function Pp(n) give the property value of type Pp of the
amino acid at position n in protein Pr. Then the property
profile of Pr is designed as

The sequences of floating point values thus generated is
plotted with the position of amino acid as abscissa and its
attribute measure as ordinate for each dimension p. The
attribute is analogous to the amplitude of a time-varying
non static signal, and the generated graph to the ampli-
tude profile of the signal. Figure 1 describes the hydropho-
bicity profile of two closely related kinases PAK4 (Swiss-
Prot [32] accession no: Q8N4E1) and PAK5 (Swiss-Prot
accession no: O95547). Thereafter, the profile is seg-
mented in equal segments of fixed length and the local
maximum is found in each segment. The width of the seg-
ment would matter in the quality of results.

For each dimension p pertaining to property Pp, let the
sequence be divided in N equal segments denoted by sp,i
where i ∈ {1, 2 ..., N} and size of each segment be Sz. Also

let the positions in each segment where local maximum
was found be mp,i where i ∈ {1, 2, ..., N}. The maxima is
found within the segment in the abcissa by simply com-
paring the peaks of the property values, as represented in
figure 2.

The purport of identifying local maximum mp,i in each seg-
ment sp,i is to do away with bogus peaks in the
neighborhood. It is assumed that an amino acid with the
highest value of say, hydrophobicity would be able to influ-
ence the property of the protein the most in the vicinity. It
should be noted that a local minima (instead of maxima)
in each segment can also be considered for evaluation in
the case where a lower value of the property determines
the strength. For example, in the property considered
here, the minima would mean the highest hydrophilicity.
However, it is possible that the local maximum is not able
to catch the property in a limited neighborhood, but that
aspect is considered in the step that follows.

Conversion to frequency domain
Around each position mp,i a neighborhood of a size F is
taken and converted to the frequency domain by using
Fast Fourier Transformation (FFT) algorithm [33-35]. FFT
is faster than other frequency conversion mechanisms and
is a linear time algorithm rendering SSS faster [34]. This
procedure constraints the value of F to a power of 2 (there
are other ways with higher time order for fourier transfor-
mation that would not put this constraint on the value of
F). The global alignment during matching is to be done
for segments sp,i and not for individual amino acids. Posi-
tional information of the amino acids within a segment is
not available after fourier transformation. Therefore, F can
be used as a useful manoeuvering parameter while analy-
sis of the alignment output.

The property profile PP on segmentation and fourier trans-
formation generates a vector <vp,i >. We normalize each
segment <vp,i > so that their mean is 0 and variance is 1.
This procedure is conducted for each dimension p. For the
two protein sequences to be compared, such two vectors
are generated, of say size n and m.

Matching
We use Minimum distance matching method, a version of
the Needleman-Wunsch Algorithm [9]. Let us surmise by
considering two lists of vectors <xp,1, xp,2,..., xp,n > and <yp,1,
yp,2, ..., yp,m > respectively. Let ep,i,j be the mean square dis-
tance between xp,i and yp,j. The mean square distance
describes the extent of dissimilarity between the two com-
plex frequency vectors.

Let Mp,k = {(xp,i, yp,j)} be defined as a matching of size k,
pairing xp,i with yp,j. We need to get the largest matching
with the lowest value of dissimilarity. Given the subsets
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3D matching for xyna-theau xyna-strli using SPDBV magic fitFigure 7
3D matching for xyna-theau xyna-strli using SPDBV magic fit. 3D images of fit obtained by using SPDBV [30, 31] soft-
ware's "magic fit" tools. The first value in the bracket is the SSS for the subsequence and second refers to rms value obtained 
by the tool in 0A. Color red is used for xyna-theau and green for xyna-strli. Subsequences for which structures are shown are 
(a) TTPLLFDG & QTPLLFNN (b) SQTHLSAG & FQSHFNSG (c) VLQALPLL & YNSNFRTT belonging to xyna-theau and xyna-
strli respectively. Fig 7a shows a structure refering to matching subsequences that shows that SSS is able to capture subse-
quences like traditional algorithms also, though it is also capable of picking subsequences like in fig 7c that are not similar on the 
basis of amino acid characters.
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 = {xp,1, xp,2,..., xp,a},  = {yp,1, yp,2,..., yp,b} and a

matching Mp,k s.t. (k ≤ a ≤ n, k ≤ b ≤ m), distance between

the sets  and  wrt Mp,k is defined as:

and minimum distance between Xa and Yb can be calcu-
lated by finding the minimum over Mp,k. In effect, a pen-
alty of βp is imposed on each non-matching vector, while
the dissimilarity measure (msd) is imposed on those
which are matching.

The distance measure between the two sequences can be
found by using a dynamic programming approach [36]
employing a recursive strategy as shown in figure 3.

We determine the optimal matching set Mp,k which gives
the most optimal distance using dynamic programming
approach. The optimal matching for all properties is a
simple summation of optimal matching for all p dimen-

sions. Therefore,  after normalization gives

us the Spectral Similarity Score (SSS). Note that the focus
of the method is to capture the "interesting" subsequences
with similarity in structure, but may not be similar in the
alphabetical plane. Hence, this dynamic programming
algorithm, which is not the chief concern of the method,
can well be replaced suitably by any other matching algo-
rithm for more accurate global alignment.

Time complexity analysis
The time order of an algorithm refered by O is defined as
the number of operations required as an order of the
input size of data. The preprocessing of inputs to replace
with attribute amplitudes, and subsequently to identify
local maximae in segments is O(n), while identifying the
neighborhood of size F takes O(n) time for n residues. FFT
takes Flog2(F) time for each vector in the list, and hanning,
normalization take O(F) time for each vector. Since there
are m = n/F vectors in all, it takes m * (O(F) + Flog2(F)) in
all for a sequence. Dynamic Programming requires O(m2)
time, if both sequences are assumed to be of equal length.

Matching set can also be found in linear time over the
number of segments m.

If the algorithm is implemented in a database, and que-
ried for fixed values of F and segment size, then for a data-
base of size n the time required is approximated to O(np),
or linear in time for p properties considered at a time.
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