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Abstract

Background: Distance-based methods are popular for reconstructing evolutionary trees thanks
to their speed and generality. A number of methods exist for estimating distances from sequence
alignments, which often involves some sort of correction for multiple substitutions. The problem
is to accurately estimate the number of true substitutions given an observed alignment. So far, the
most accurate protein distance estimators have looked for the optimal matrix in a series of
transition probability matrices, e.g. the Dayhoff series. The evolutionary distance between two
aligned sequences is here estimated as the evolutionary distance of the optimal matrix. The optimal
matrix can be found either by an iterative search for the Maximum Likelihood matrix, or by
integration to find the Expected Distance. As a consequence, these methods are more complex to
implement and computationally heavier than correction-based methods. Another problem is that
the result may vary substantially depending on the evolutionary model used for the matrices. An
ideal distance estimator should produce consistent and accurate distances independent of the
evolutionary model used.

Results: We propose a correction-based protein sequence estimator called Scoredist. It uses a
logarithmic correction of observed divergence based on the alignment score according to the
BLOSUMS62 score matrix. We evaluated Scoredist and a number of optimal matrix methods using
three evolutionary models for both training and testing Dayhoff, Jones-Taylor-Thornton, and
Miiller-Vingron, as well as Whelan and Goldman solely for testing. Test alignments with known
distances between 0.0l and 2 substitutions per position (I-200 PAM) were simulated using ROSE.
Scoredist proved as accurate as the optimal matrix methods, yet substantially more robust. When
trained on one model but tested on another one, Scoredist was nearly always more accurate. The
Jukes-Cantor and Kimura correction methods were also tested, but were substantially less
accurate.

Conclusion: The Scoredist distance estimator is fast to implement and run, and combines
robustness with accuracy. Scoredist has been incorporated into the Belvu alignment viewer, which
is available at ftp://ftp.cgb.ki.se/pub/prog/belvu/.

Background ary distance estimates are used by many of the most com-
Estimating divergence time of protein sequences is one of = monly used phylogenetic tree reconstruction algorithms
the fundamental problems in bioinformatics. Evolution- [1-3]. In current research, phylogenetic trees are used for
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many types of subsequent analysis, e.g. orthology infer-
ence [4-6]. Early models for sequence evolution focussed
on nucleotides. They commonly employ Markov chains
and assume independent evolution at every site. Each of
the four nucleotides is identified by one state and the sub-
stitution probability is modelled as a state transition
probability from one state to another. In the most
straightforward approach, the same state transition prob-
ability is assigned to every substitution [7]. Subsequent
models take account of more nucleotide specific proper-
ties, e.g. transitional and transversional substitutions as
well as GC content (see [8] for an introduction). These
more advanced approaches are bound to nucleotide
sequences and cannot be directly used with protein
sequences.

Markov chain models for protein evolution differ from
nucleotide approaches in their larger number of states and
transitions for which parameters need to be estimated.
The protein sequence Jukes-Cantor model assigns the
same probability to each substitution and is hence a rather
poor approximation. This method essentially takes the
observed differences between two sequences and corrects
this value to the estimated evolutionary distance using a
logarithmic function. Other similar methods exist that
also correct observed differences, e.g. Kimura's method
[9]. Although they produce rather inaccurate distance esti-
mates, correction-based distance estimators are popular
because of their simplicity. More advanced protein evolu-
tion models estimate parameters from protein sequence
alignments. Assuming the same substitutions for closely
and distantly related sequences leads to the construction
of the Dayhoff matrix series [10]. Following this
approach, it suffices to collect data from alignments of
closely related sequences to build an evolutionary model
of amino acid substitution.

Dayhoff and co-workers introduced the term Percent
Accepted (point) Mutation (PAM), which denotes a com-
monly used measure for evolutionary distance between
two aligned sequences (insertions and deletions are
ignored). In other words, two sequences at a distance of
150 PAM are related to each other by 1.5 substitutions per
position on average. As substitution is a stochastic proc-
ess, some positions will experience multiple substitutions
while others will experience none. It is also possible that
secondary substitutions at one site will result in the origi-
nal residue, making the evolutionary steps invisible. This
is in essence the reason why estimating evolutionary dis-
tance is so hard - multiple substitutions cannot be
observed directly. An evolutionary distance of 250 PAM
corresponds roughly to 80% observed differences. The
term PAM is found in literature for both the matrix series
given by Dayhoff et al. as well as for evolutionary distance
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unit. In this publication we refer to the matrices as Day-
hoff matrices and reserve the term PAM for distance units.

There are two major shortcomings connected with the
derivation of the Dayhoff matrices. First, potential errors
inherent in the experimental data will be magnified by
extrapolation. Additionally, it is questionable whether
substitution probabilities observed on closely related
sequences can accurately reflect the evolution of more dis-
tantly related sequences. The efforts of researchers since
the publication of the Dayhoff matrices have led to several
other matrix series, sharing the idea of an underlying
Markov chain. They differ in terms of the data they are
built upon and account for the above-mentioned short-
comings in various ways [11-13].

The approach behind the BLOSUM matrices [14] is differ-
ent from Dayhoff's evolutionary model. Whereas the
Markov model assumes that any transition probability
matrix may be derived from another matrix in the same
series, the BLOSUM matrices do not imply any evolution-
ary time. There is no direct mathematical relationship
between matrices in the BLOSUM series. Sequences with
identities above a given identity cutoff are clustered and
used to derive score matrices. The BLOSUM matrices are
known as a good general-purpose choice. Especially,
BLOSUMSG?2 is frequently chosen for the alignment of
sequences.

Results

We here introduce Scoredist, a novel correction-based dis-
tance estimator for protein sequences. It applies a correc-
tion function to an observed reduction in normalised
score, rather than to observed differences as other correc-
tion-based methods. This gives a better estimate of the
divergence in the well-established PAM measure and
allows the popular BLOSUM matrix series to be used.
Other matrices could in principle be used, but the BLO-
SUM matrix has proved to be the most universal. Scoredist
distance estimates are calculated directly by a simple
equation and do not require cumbersome computational
approximations, which is needed for e.g. Maximum Like-
lihood (ML) and Expected Distance (ED) estimates [15].
Additional calibration opens the possibility to make
Scoredist tuned to other evolutionary models.

In order to evaluate our novel protein distance estimator
Scoredist against other estimators, we generated a large
testset of artificial sequence alignments. Simulation is the
only way to exactly know an alignment's evolutionary dis-
tance. The substitutions were made by ROSE [16] accord-
ing to an evolutionary model that can be chosen
arbitrarily. It is to be expected that a distance estimator
based on a particular evolutionary model will perform
optimally on a testset generated with the same model. We
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Table I: Accuracy as average RMSD values for combinations of data modelsand estimators

testset

Dayhoff MV JTT WAG average
Scoredist — Dayhoff 12.68 20.85 13.67 12.81 15.00
ML — Dayhoff 12.70 28.40 14.75 15.15 17.75
ED — Dayhoff 13.57 31.36 16.10 16.63 19.41
Scoredist — MV 19.28 13.15 16.29 18.73 16.86
ML - MV 19.96 13.44 19.36 19.21 17.99
ED — MV 15.68 13.35 13.95 14.75 14.43
Scoredist — JTT 13.67 17.16 12.89 13.47 14.30
ML-)TT 12.15 25.07 12.10 13.44 15.69
ED-JTT 12.56 27.71 12.70 14.37 16.84
Jukes-Cantor 23.92 16.28 19.88 22.48 20.64
Kimura 16.24 29.81 22.36 19.16 21.89

For each testset and method, the average root mean square deviation from the true distance was calculated for 2,000 alignment samples in the
interval 1-200 PAM units. Lower RMSD values indicate higher accuracy on a single testset. The column 'average' gives the mean of the four
evaluated testsets. A low value in this column shows the estimator's robustness as it measures the accuracy over all four models (including "wrong"
data models). Scoredist was more robust than ML, as it for each training set always had higher accuracy on average. The ED estimator gave good
results when trained with MV, but was poor in all other cases (see Discussion for details). Scoredist, Jukes-Cantor, and Kimura distances were
calculated with the Belvu alignment viewer. The Maximum Likelihood (ML) and Expected Distance (ED) estimates were produced by lapd (L.

Arvestad, unpublished).

therefore generated testsets using four different matrix
series: Dayhoff [10], MV [12], JTT [11], and WAG [13]. For
each model, 2000 alignments were created for evolution-
ary distances between 1 and 200 PAM units, i.e. 10 align-
ments for each distance. The Scoredist, Maximum
Likelihood, and Expected Distance estimators can all be
tuned towards a particular evolutionary model. We there-
fore used three evolutionary models which were also used
to generate the testsets for these distance estimators, and
use a shorthand to refer to these as "method-model". For
instance, Maximum Likelihood using the MV model is
denoted ML-MV. The Jukes-Cantor and Kimura estimators
can not be tuned to a specific model but were tested on all
four datasets.

Table 1 shows a compressed summary of the results. For
each combination of distance estimator and dataset, the
average root mean square deviation from the true distance
was calculated for all 2000 alignments. The Expected Dis-
tance results were similar to ML, as the methods are akin
in nature, but ML was generally more accurate and is
much more widely used. As expected, low RMSD values as
a sign of good distance estimates were generally obtained
when using the same model for alignment creation and
subsequent distance estimation. This is seen in the diago-
nal of low RMSD values from Dayhoff/Dayhoff to JTT/
JTT. The only exception to this rule was observed when the
testset was generated with Dayhoff. Here, ML-JTT was
slightly better than ML-Dayhoff. This result was also veri-
fied for distances up to 250 and 300 PAM (data not
shown). Comparing Scoredist and ML accuracies when

training and testing using the same model resulted in a tie.
Scoredist was better for MV, ML was better for JTT, and they
were equally accurate for Dayhoff. When comparing accu-
racies for different training and testing models, however,
Scoredist dominates. Here, Scoredist performed better than
ML in five of the six cases. For the MV testset the difference
was very big. The only case where ML was better than
Scoredist was again when running ML-JTT on the Dayhoff
testset, which for unclear reasons produced very accurate
distance estimates.

The Jukes-Cantor and Kimura correction methods are gen-
erally less accurate than Scoredist and ML estimators. In
some cases they reached higher accuracy than Scoredist
and ML trained on the "wrong" model. For instance, on
the Dayhoff testset Kimura was better than Scoredist-MV
and ML-MYV, and on the MV testset Jukes-Cantor was bet-
ter than Scoredist and ML trained on Dayhoff or JTT. How-
ever, Jukes-Cantor and Kimura never came near the
Scoredist and ML accuracy when trained on the "right"
model. In a real situation, it is of course not known which
evolutionary model is most appropriate. Therefore, taking
the average RMSD values for each training model reveals
the generality and robustness of the method on different
testsets. The average accuracy of Scoredist is consistently
better than for ML, and Jukes-Cantor and Kimura are even
further behind.

Figure 1 two shows a more detailed picture of the different
distance estimators. The average of 10 estimates from 10
independent simulations at each evolutionary distance is
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Stratified accuracy analysis of Scoredist and ML. To illustrate how estimated distance depends on the model, the average
deviation is plotted as a function of true distance for two evolutionary models, Dayhoff and Mueller-Vingron. For each evolu-
tionary distance between | and 200 PAM, 10 alignments were generated. For each alignment, the deviation was calculated as
the difference between the estimated distance and the true distance used for data generation by ROSE [16]. The average of the
10 deviations was plotted using a running average with a window of 10 residues. Note that positive and negative deviations at
the same true distance can cancel each other out — the curve only shows the average deviation and not the variability. The val-
ues in Table | measure the accuracy more correctly by using RMSD of every datapoint. The testset data was created with the
matrices given by Dayhoff (A) or Miiller-Vingron (B). In both cases, the estimators using the same evolutionary model as the
testset data perform well. However, when switching the model in the estimator, Scoredist diverges less than ML, indicating that
Scoredist is more robust. The curves show that ML-MV is more different from ML-Dayhoff than Scoredist-MV is from Scoredist-
Dayhoff, particularly for the MV dataset in (B). The less difference between estimates using different models, the more robust

is the method.

plotted for data generated with the Dayhoff matrices. The
variance among the 10 estimates is not shown for clarity;
they are however reflected by the RMSD values in Table 1
which may give a slightly different picture. For instance, it
is possible that the average deviation is close to zero if the
individual estimates have large positive and negative devi-
ations that cancel each other out. Therefore, the RMSD
values should be trusted more than the deviation plots
when in doubt. Figure 1A shows the dependence on evo-
lutionary model for Scoredist and ML. Testing on the Day-
hoff testset, Scoredist-Dayhoff and ML-Dayhoff stayed
reasonable accurate in the entire range (below 5% error).
In contrast, Scoredist-MV and ML-MV deviated considera-
bly from the true distance. It is however clear that ML is
more affected by switching model than Scoredist is. In Fig-
ure 1B the testset was generated with the MV model.
Again, the corresponding deviation was observed for
"wrong model" estimators. Here it is even more pro-
nounced that ML is more dependent on the model, and
generalizes poorly. Scoredist was less affected by the
change of model - Scoredist-Dayhoff was considerably

more accurate on the MV testset than ML-Dayhoff. As
expected, when Scoredist and ML had been trained on MV
data, the accuracy is very good for both estimators. In con-
clusion, we observed that although the Scoredist method is
very simple compared to the ML method, it is approxi-
mately equally accurate when testing and training using
the same evolutionary model. However, when testing on
a different model, Scoredist is considerably more accurate.

Implementation

The Scoredist estimator was implemented in Belvu, which
is a general-purpose multiple alignment viewer that
allows basic alignment editing. Belvu can calculate and
display phylogenetic trees. The tree reconstruction can be
based on Scoredist or other common correction-based dis-
tance estimators available within Belvu.

Multiple alignments can be coloured in Belvu according
to conservation using average BLOSUMG62 score in the
column, or by residue-specific colours. User-specified
cutoffs can be employed to fine-tune the display. Belvu
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Figure 2

The Belvu multiple sequence alignment viewer. Belvu is a multiple sequence alignment viewer that implements the
Scoredist distance estimator. The alignment window (A) shows a subset of the Pfam family DNA_pol_A (PF00476). Uniprot IDs
are shown throughout. A sequence with known structure is included (DPO|_ECOLI) — the SA line showing surface accessibil-
ity and the SS line showing secondary structure. The neighbour-joining tree in (B) used uncorrected distances (observed differ-
ences), while the tree in (C) used Scoredist correction. Belvu assigns a colour to each species if provided with species markup
information. The distance correction mainly affects the longer branches, and affects the tree topology in some cases, e.g. the
placement of DPOQ_HUMAN. Structural markup and taxonomic information were embedded in the Stockholm format align-

ment provided by the Pfam database.
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has a range of functions for sorting, colouring, marking
up, and printing alignments. In Figure 2, the alignment is
coloured according to conservation, and sorted according
to the tree. The effect of distance correction with Scoredist
is illustrated.

Belvu can also be utilised for batch mode operations on
the multiple alignment, or for producing distance matri-
ces or phylogenetic trees without graphical output. It is
available for the most common UNIX operating systems
and can be obtained from [20]. A Windows version exists
but is less frequently maintained. See [17] for instruc-
tions, and 18] for information on the Stockholm format,
which is used by the Pfam project.

Discussion

Our analysis was based on four different evolutionary
models - Dayhoff, MV, JTT and WAG. We chose these
because they represent the spectrum of models well. The
only tuning done in the Scoredist method is the estimation
of the calibration factor c. This factor can be seen as a scal-
ing factor for the logarithm base in equation (5) that
needs to be set empirically.

The difference between Scoredist and ML becomes particu-
larly apparent in the MV dataset. There are several hypoth-
eses for this behaviour. The Dayhoff matrices were
constructed with the limited data available at the time.
Given the substantial increase of research output in this
field particularly during the last decade, it is not surprising
that the Miller-Vingron model (published in 2000)
reports substantially other results than the Dayhoff
(1978) and JTT (1992) matrices. Additionally, the calibra-
tion factor ¢ can also be interpreted as measure for the
similarity of the respective models. Following this argu-
ment, JIT and Dayhoff are more akin given a Ac = 0.05.
The MV model is more distant to both JTT (Ac=0.11) and
Dayhoff (Ac = 0.16).

The Expected Distance estimator generally overestimates
distances. For instance, among Dayhoff-calibrated estima-
tors on the MV testset, Expected Distance is more than 10
PAM RMSD units (over 50%) poorer than the best
method Scoredist. Similar values are observed for JTT cali-
brated estimators. Generally, MV-trained estimators are
prone to underestimate evolutionary distances (Figure
1A). In combination with the ED higher distance estima-
tion, this rather fortuitously leads to good results for ED -
MV. However, the scope of this research was to identify a
robust method that performs well on various data sources.
An estimator which is highly sensitive to the data source
or possible incorrect calibration is of less value. The best
single estimator was JTT-calibrated Scoredist. If the method
per se is measured by averaging over all calibrations and
testsets, Scoredist receives 15.39, ED 16.89, and ML 17.14

http://www.biomedcentral.com/1471-2105/6/108

PAM RMSD units. This highlights Scoredist as the most
robust estimator, with the distance between Scoredist and
ED (Agorediss, ep = 1.50) being 6 fold the difference between
ED and ML (Agp, . = 0.25).

We here only present Scoredist results using BLOSUM62
for calculating the score obetween two sequences. In prin-
ciple one could use some other score matrix, but we found
that this had little effect on the results. Since the goal was
to make a general-purpose method, BLOSUMG62 was an
obvious choice. The key to Scoredist is the usage of scores
rather than identities, and the choice of somewhat arbi-
trary parameters is not of primary concern. At present,
gaps in the alignments are not included in the Scoredist
calculation. Traditionally, gaps have been difficult to
embody in evolutionary models. In the models used here,
they are at best crudely modelled by treating every gap
equally. An inherent problem is that the probabilities for
insertions and deletions (indels) are not necessarily syn-
chronized with the substitution probabilities. Some pro-
tein families are more prone to indels than others, hence
it is hard to make a generalizable model that suits all pro-
tein types. We have experimented with affine gap penal-
ties in the Scoredist method (this is an option in the
implementation), but this resulted in decreased accuracy.
We therefore do not recommend using gaps to estimate
protein distances.

Conclusion

We have developed the score matrix based distance esti-
mator Scoredist for aligned protein sequences. Its main
advantages are computational simplicity and high robust-
ness. Most other distance estimators produce good results
for certain evolutionary models but perform poorly on
others. The Maximum Likelihood and Expected Distance
were found to overfit their estimates to the evolutionary
model so much that the results on testsets generated with
other models suffered heavily. The correction-based
methods Jukes-Cantor and Kimura also favoured a partic-
ular evolutionary model, but were not competitively accu-
rate on any testset. It seems that Scoredist achieved the best
compromise between accuracy and generalization power.

Methods

For the estimation of divergence time, let s! and s2 be two
aligned protein sequences (gaps are ignored) of identical
length 1. A similarity score ois defined as

0'(51,52)=§S|:511,5i2:|, (1)

where S is a log-odds score matrix. Log-odds score matri-
ces are constructed such that substitutions by the same or
a similar amino acid receive a positive score, whereas
substitutions to dissimilar amino acids are attributed a
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Figure 3

Estimation of the calibration factor c in Scoredist. This
factor rescales the raw distance d, to optimally fit true evolu-
tionary distances. The plot shows how c is estimated by
least-squares fitting of raw distances d, to true distances for
2000 artificially produced sequence alignments, using the
Dayhoff matrix series. The linear relationship between the
raw distance d,and the true distance of the sequence samples
justifies the introduction of the calibration factor ¢, which
was here determined to ¢pq .= 1.3370 (See Table 2).

negative score. The expected value for this kind of matrix
is negative. This ensures that the comparison of unrelated
sequences returns a negative score. For two random
sequences of length I the expected score o'(l) = o® * |,
where is the expected value of the score matrix. As we
strive to measure scores above the scores for the null
model of sequence independence, the score ofs!, s2) is
deducted by the expected score o, giving the normalised
score oV

oN=o(s!,2)-o (). (2)

For two random sequences of length I the expected score
o (1) = 0 * I, where 0° is the expected value of the score
matrix.

The expected score o for unrelated sequences can be
regarded as lower limit. The upper limit of the score
between s! and any other sequences is given by o(s!, s!).
For two different sequences, the upper limit of the score
oY is, for the sake of symmetry, assumed to be

O'(Sl,Sl)-FG(Sz,Sz)

2

ol (s,2)=

(3)
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and normalised
oUN=0lU(s!,s2)-0 (). (4)

Any sound score oV is situated within the interval [0, oUN].
The validity of the upper boundary follows from the
score's definition. The lower boundary might, however,
get violated if two sequences receive a score ofs!, s2) <o
(D). As the model assumes independent evolution already
for o (1), a score below ¢ does not contain any additional
information. A lower score is therefore set to o(s?, s2) = o'
(). We model the raw distance as a modified Poisson
process

GN
d,:—ln W *100. (5)

(o)
As seen in Figure 3, d, is linearly related to the true dis-
tance, deviating only by a constant factor. The Scoredist
evolutionary distance estimate of two sequences is given
as the product of the raw distance and a calibration factor
d=c*d. (6)
Evolutionary distances of 250-300 PAM units are com-
monly considered as the maximum for reasonable dis-
tance estimation and, therefore, the Scoredist estimate d, is
restricted to the interval [0, 300] PAM.

Calibration factors can be determined for various evolu-
tionary models. We used the ROSE program [16] to
simulate evolution with three different matrix series and
generated 2000 sample sequence alignments for distances
up to 200 PAM units. The calibration factor ¢ was calcu-
lated by least squares fitting on this data, using the
BLOSUMG62 score matrix for calculating the score o in the
estimator (Table 2, Figure 3). The simulated evolution
started with a random sequence of 200 residues. For each
integer distance within the interval [1, 200] PAM, we pro-
duced 10 alignments, yielding 2000 alignments per
dataset. The default gap parameters of ROSE V1.3 were
applied. Each dataset was generated with the transition
probability matrix and the stationary frequencies of the
respective evolutionary model.

Calculation of Maximum Likelihood (ML) and Expected
Distances (ED): ML distances were estimated by applying
the Newton-Raphson method to the derivative of the like-
lihood of the evolutionary distance given an alignment.
To calculate ED, the same likelihood function was numer-
ically integrated, to get its "center of gravity" [15]. Both
methods are implemented in the program lapd (L. Arves-
tad, unpublished), which uses Perl and Octave. The Jukes-
Cantor and Kimura distance estimators were run as imple-
mented in Belvu. The popular PROTDIST program from
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Table 2: Calibration factors for three evolutionary models

c
Dayhoff 1.3370
JTT 1.2873
MV 1.1775

The raw distance d, is scaled by the calibration factor ¢, which was
obtained by least squares fitting of 2000 artificial protein sequence
alignments generated for the matrices as given by Dayhoff, JTT (Jones-
Taylor-Thornton), and MV (Miiller-Vingron).

the PHYLIP package [19] calculates only ML-Dayhoff and
Kimura distances. We therefore chose to use lapd in order
to assess Scoredist by a broader range of distance
estimators.
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