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Abstract

Background: Normalization is a basic step in microarray data analysis. A proper normalization
procedure ensures that the intensity ratios provide meaningful measures of relative expression
values.

Methods: We propose a robust semiparametric method in a two-way semi-linear model (TWV-
SLM) for normalization of cDNA microarray data. This method does not make the usual
assumptions underlying some of the existing methods. For example, it does not assume that: (i) the
percentage of differentially expressed genes is small; or (ii) the numbers of up- and down-regulated
genes are about the same, as required in the LOWESS normalization method. We conduct
simulation studies to evaluate the proposed method and use a real data set from a specially
designed microarray experiment to compare the performance of the proposed method with that
of the LOWESS normalization approach.

Results: The simulation results show that the proposed method performs better than the
LOWESS normalization method in terms of mean square errors for estimated gene effects. The
results of analysis of the real data set also show that the proposed method yields more consistent
results between the direct and the indirect comparisons and also can detect more differentially
expressed genes than the LOWESS method.

Conclusions: Our simulation studies and the real data example indicate that the proposed robust
TW-SLM method works at least as well as the LOWESS method and works better when the
underlying assumptions for the LOWESS method are not satisfied. Therefore, it is a powerful
alternative to the existing normalization methods.

Background titatively monitoring gene expression patterns and has
Microarray technology has become a useful tool for quan- ~ been widely used in functional genomics [1,2]. In a cDNA
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microarray experiment, cDNA segments representing a
collection of transcripts and Expressed Sequence Tags
(ESTs) are amplified by PCR and spotted in high density
on glass microscope slides using a robotic system to pro-
duce cDNA microarrays. Each microarray contains thou-
sands of such PCR products, named cDNA probes, which
serve as reporters for the expression of the respective tran-
scripts that represent the collection of genes or ESTs. The
c¢DNA microarrays are queried in a co-hybridization assay
using two fluorescently labeled biosamples derived from
RNA obtained from the cell populations of interest. One
sample is labeled with fluorescent dye Cy5 (red), and
another with fluorescent dye Cy3 (green). Hybridization
is assayed using a confocal laser scanner to measure fluo-
rescence intensities, allowing simultaneous determina-
tion of the relative expression levels of all the genes
represented on the slide [3].

A basic question in analyzing cDNA microarray data is
normalization, the purpose of which is to remove system-
atic bias in the observed expression values by establishing
a normalization curve across the whole dynamic range. A
proper normalization method ensures that the normal-
ized intensity ratios provide meaningful measures of rela-
tive expression levels. Normalization is needed because
many factors, including different efficiency of dye incor-
poration, difference in the amount of RNA labeled
between the two channels, uneven hybridizations, differ-
ence in the printing pin heads, among others, may cause
bias in the observed expression values. Therefore, proper
normalization is a critical component in the analysis of
microarray data and can have important impact on higher
level analysis such as detection of differentially expression
genes, classification, and cluster analysis.

Many normalization methods have been proposed in the
literature. The earliest normalization method for cDNA
microarray data goes back to Chen et al. [4] who proposed
a ratio-based method. Yang et al. [5] summarized several
normalization methods for cDNA microarray data such as
global normalization, dye-swap normalization, block-
wise normalization, and scale normalization. They also
proposed a locally weighted scatter plot smoothing
(LOWESS [6]) method for intensity dependent normali-
zation. Quackenbush [7] and Bilban et al. [8] provided
good reviews on normalization methods for cDNA micro-
array data. Tseng et al. [9] proposed using a rank based
procedure to first select a set of invariant genes that are
likely to be constantly expressed and then carrying out
LOWESS normalization using this set of genes. But as
pointed out by Tseng et al., selected invariant genes may
not cover the whole dynamic range of the expression val-
ues, and extrapolation is needed to fill in the gaps that are
not covered by the invariant genes. Kepler et al. [10] also
first estimated a set of "constantly expressed genes" and
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then used the LOWESS method. Wang et al. [11] pro-
posed an iterative normalization method for cDNA
microarray data by estimating a normalization coefficient
and identifying control genes. Workman et al. [12] used
array signal distribution analysis for a robust non-linear
method of normalization. Park et al. [13] compared a
number of normalization methods, including global, lin-
ear and LOWESS normalization methods. Wolfinger et al.
[14] used a mixed model for normalization. They pro-
posed a normalization model for normalization and a
gene model for inference and these two models are related
by the residual terms in the normalization model. A con-
stant normalization factor assumption is needed in this
method. Fan et al. [15] considered a Semi-linear-In-slide
Model (SLIM) method using within-array replications.
The SLIM method requires replication of a subset of the
genes in an array. If the number of replicated genes is
small, the expression values of the replicated genes may
not cover the entire dynamic range or reflect spatial varia-
tion in an array. Fan et al. [16] generalized the SLIM
method to account for across-array information, resulting
in an aggregated SLIM, so that replication within an array
is no longer required. Huang et al. [17] proposed a two-
way semi-linear model (TW-SLM) for normalization of
¢DNA microarray data. They used the least squares
method for estimating the normalization curves based on
B-splines. This method does not require the assumptions
required by the LOWESS normalization method, i.e. (i) a
small fraction of genes are differentially expressed or (ii)
there is symmetry in the expression levels of up- and
down-regulated genes.

It is well known that the least squares method is not resist-
ant to outliers which arise often in ¢cDNA microarray
experiments because of many sources of variations. In this
paper, we propose a robust method for normalization in
the framework of the TW-SLM. We conduct simulation
studies and use a real cDNA microarray data set to com-
pare the proposed method with the LOWESS normaliza-
tion method.

Results

Simulation study

Simulation was conducted to compare the mean square
errors (MSE) and biases of estimated gene expression lev-
els between the proposed robust TW-SLM and LOWESS
normalization methods, between the proposed method
and the TW-SLM using OLS. The MSE for the jth gene is
calculated as the following:

MSE; =L 3 (8, B, =L X.(8; By +-L 3.8, -8,
J Ni=1 ] ] Ni=1 ] ] Ni=1 ] 7l
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Table I: The mean square errors (MSE) of estimated gene expression levels (up:down = 9:1) for simulated cDNA microarray data with

the R-I plots similar to Figure 2.

Percentage of

Descriptive Statistics

DEG
Method Mean Minimum 25% Quantile Median 75% Quantile Maximum
1% oLS 0.0837 0.0243 0.0474 0.0614 0.1074 1.7586
Huber 0.0510 0.0106 0.0235 0.0312 0.0703 1.1750
Tukey 0.0481 0.0101 0.0215 0.0291 0.0675 0.8684
LOWVESS 0.0849 0.0197 0.0485 0.0642 0.1085 1.7488
5% OoLS 0.0984 0.0197 0.0487 0.0648 0.1128 2.1413
Huber 0.0605 0.0117 0.0246 0.0331 0.0740 1.5012
Tukey 0.0556 0.0110 0.0226 0.0305 0.0712 1.2406
LOWESS 0.0990 0.0234 0.0493 0.0677 0.1145 2.1275
10% OoLS 0.1198 0.0259 0.0519 0.0695 0.1244 1.7445
Huber 0.0749 0.0118 0.0266 0.0371 0.0830 1.1705
Tukey 0.0673 0.0111 0.0241 0.0340 0.0795 1.0206
LOWVESS 0.1196 0.0232 0.0514 0.0722 0.1264 1.7935
20% OoLS 0.1545 0.0239 0.0601 0.0855 0.1482 22914
Huber 0.0983 0.0121 0.0322 0.0497 0.0994 1.4550
Tukey 0.0854 0.0112 0.0285 0.0451 0.0932 1.1777
LOWVESS 0.1530 0.0244 0.0602 0.0900 0.1612 2.1958
40% OoLS 0.2099 0.0287 0.0835 0.1293 0.2086 2.3221
Huber 0.1365 0.0155 0.0465 0.0827 0.1428 1.6918
Tukey 0.1164 0.0135 0.0395 0.0735 0.1296 1.4402
LOWVESS 0.2220 0.0345 0.1153 0.1665 0.2491 2.8279

DEG: differentially expressed genes. OLS: the TW-SLM using the ordinary least squares.
Huber: the robust TW-SLM using Huber's weight function. Tukey: the robust TW-SLM using Tukey's weight function.

that is, var(;) +bias]2~, where N is the total number of

replicates for each simulation, J is the number of unique
genes, S is the true gene expression level (base two log

scale) for gene j, ,B j is the estimated value for 3, Bj is the

mean of Bj for N replicates, j = 1, 2,..., J, where J is the

total number of genes. The data simulation procedure is
based on the method proposed by Balagurunathan et al.
[18]. In each simulation, we generated 10 slides with
twelve blocks in each, and 500 genes in each block. We
repeated 100 times for each simulation. The simulation
procedure can be summarized in the following steps:

1. Simulate true signal intensity for each gene j using the
exponential distribution with the mean of 3,000, i.e. [;~
exp(4 =1/3000), forj=1,.., J;

2. Simulate fluorescent intensity for the Cy5 channel and
the Cy3 channel with the normal distribution, respec-
tively. Suppose the coefficients of variation for intensity in

the Cy5 channel and the Cy3 channel are ¢, and a
respectively, then the fluorescent intensity on the two
channels can be generated by the normal distribution
with mean I; and standard deviations ,l;and ¢l for the
red channel and the green channel, respectively. Let R;and
G; represent simulated fluorescent intensity for the Cy5
channel and the Cy3 channel for gene j, respectively;

3. Simulate differentially expressed genes. Suppose y x
100% genes are differentially expressed in the whole sim-
ulated gene set, then the ratio of the expression level for
gene j can be generated by ;= 10+Y with b ~ Beta(1.7,4.8).
The sign + will determine if the gene is up- or down-regu-
lated. The probability of the up-regulated genes within
those y x 100% differentially expressed genes is given as
an input parameter. For the genes that are not differen-
tially expressed, the b takes value zero;

4. Incorporate the ¢ into signal intensity of gene j. The R;
and G; will be adjusted by adding the simulated expres-
thranoh  the following formulae:

R] =R]\/T,G] =G]/\/E fOI'j = ].,..., ]}

dnn ratin f.
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Table 2: Bias of estimated gene expression levels (up:down = 9:1) for simulated cDNA microarray data with the R-I plots similar to

Figure 2.
Percentage of Descriptive Statistics
DEG
Method Mean Minimum 25% Quantile Median 75% Quantile Maximum
1% OoLS 0.0000 -1.2716 -0.0212 -0.0033 0.0154 1.2441
Huber 0.0000 -1.0330 -0.0161 -0.0020 0.0115 0.9925
Tukey 0.0001 -0.8617 -0.0153 -0.0014 0.0112 0.8462
LOWVESS -0.0017 -1.2685 -0.0226 -0.0047 0.0137 1.2367
5% OLS 0.0000 -0.8941 -0.0412 -0.0209 0.0019 1.4051
Huber 0.0000 -0.7785 -0.0326 -0.0167 0.0007 1.1751
Tukey 0.0000 -0.7195 -0.0299 -0.0146 0.0017 1.0581
LOWESS -0.0005 -0.8995 -0.0384 -0.0182 0.0008 1.3993
10% OoLS 0.0000 -1.1402 -0.0705 -0.044| -0.0125 1.2574
Huber 0.0000 -0.9240 -0.0578 -0.0353 -0.0096 1.0326
Tukey 0.0000 -0.8245 -0.0521 -0.0313 -0.0064 0.9551
LOWVESS -0.0050 -1.1332 -0.0666 -0.0429 -0.0207 1.2736
20% OoLS 0.0000 -1.4381 -0.1108 -0.0742 -0.0336 1.3336
Huber 0.0000 -1.1569 -0.0927 -0.0607 -0.0247 1.1176
Tukey 0.0000 -1.0430 -0.0841 -0.0540 -0.0175 0.9757
LOWVESS -0.0325 -1.4180 -0.1352 -0.1009 -0.0634 1.2991
40% OLS 0.0000 -1.4475 -0.1943 -0.1348 0.1870 1.3258
Huber 0.0000 -1.2461 -0.1620 -0.1061 0.1474 1.1159
Tukey 0.0000 -1.1429 -0.1460 -0.0907 0.1294 0.9800
LOWVESS -0.1488 -1.6159 -0.3340 -0.2603 0.0182 1.1444

DEG: differentially expressed genes. OLS: the TW-SLM using the ordinary least squares.
Huber: the robust TW-SLM using Huber's weight function. Tukey: the robust TW-SLM using Tukey's weight function.

5. Simulate a fluorescent system with the imperfect
response characteristics. Due to various reasons, such as
the unequal amount of mRNA for the two channels, dif-
ferent labeling efficiencies, or uneven laser powers at the
scanning stage [18], actual intensity in the two channels
are not exactly the same. More over, fluorescent intensity
is not necessarily linearly related to the expression levels.
Balagurunathan et al. proposed the following functional
family,

f(2) = 6560 +2(1-e </ )2 ;05 > 1

to distort the response characteristic functions of observed
fluorescent intensity for the two channels, which are

expressed as R] = fT(R]) and G] = fg(G]) , Tespectively.

So four parameter values need to be determined for each
channel before simulation. Different parameter values in
the two channels will control the shape of the ratio vs. sig-
nal intensity plots (R-I plots);

6. Simulate background noise for each channel. The mean
of background noise is determined by one input parame-
ter: the signal to noise ratio (SNR) and the true mean of
signal. The SNR is the ratio between the true mean of the
signal and the true mean of background noise. The SNR
controls variability of background noise. The normal dis-
tribution with a given mean value is used in simulating
background noise. Variance of background noise will be
controlled by the input parameters ¢, and ¢, for the Cy5
channel and the Cy3 channel, respectively. These two
parameters are the ratios between the mean and the stand-
ard deviations of background noise for the two channels,
respectively. Simulated signal intensity for the two chan-

nels, R] and G] , are adjusted by subtracting background

noise in each channel. Let R] and G] still denote back-

ground adjusted signal intensity for the two channels;

7. Add noise to the signal intensity for each channel.
Finally, the signal intensity of each channel is generated
by
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Table 3: The mean square errors (MSE) of estimated gene expression levels (up:down = 9:1) for simulated cDNA microarray data with

the R-I plots similar to Figure 3.

Percentage of

Descriptive Statistics

DEG
Method Mean Minimum 25% Quantile Median 75% Quantile Maximum
1% oLS 0.0370 0.0116 0.0258 0.0323 0.0410 2.2092
Huber 0.0248 0.0112 0.0195 0.0223 0.0255 1.7156
Tukey 0.0238 0.0109 0.0191 0.0217 0.0247 1.5648
LOWVESS 0.0375 0.0119 0.0251 0.0321 0.0419 22162
5% OoLS 0.0489 0.0126 0.0265 0.0333 0.0422 1.5836
Huber 0.0324 0.0110 0.0198 0.0228 0.0263 1.1765
Tukey 0.0299 0.0108 0.0194 0.0222 0.0254 1.0278
LOWESS 0.0493 0.0125 0.0255 0.0325 0.0429 1.6134
10% OoLS 0.0692 0.0124 0.0285 0.0359 0.0464 1.6907
Huber 0.0455 0.0098 0.0210 0.0245 0.0288 1.1667
Tukey 0.0404 0.0102 0.0204 0.0236 0.0276 1.0175
LOWVESS 0.0692 0.0119 0.0270 0.0349 0.0461 1.6846
20% OoLS 0.0961 0.0137 0.0324 0.0428 0.0570 1.8614
Huber 0.0632 0.0124 0.0235 0.0282 0.0354 1.2969
Tukey 0.0547 0.0127 0.0225 0.0266 0.0329 1.0525
LOWVESS 0.0950 0.0154 0.0325 0.0431 0.0580 1.8834
40% OoLS 0.1439 0.0147 0.0493 0.0665 0.1007 2.5021
Huber 0.0960 0.0134 0.0330 0.0446 0.0673 1.9988
Tukey 0.0821 0.0136 0.0305 0.0401 0.0602 1.6771
LOWVESS 0.1562 0.0187 0.0832 0.1121 0.1418 3.0480
*70% OoLS 0.1530 0.0138 0.0554 0.1146 0.1882 1.2717
Huber 0.1040 0.0121 0.0366 0.0791 0.1267 09153
Tukey 0.0901 0.0115 0.0337 0.0700 0.1098 0.7778
LOWESS 0.4082 0.0350 0.1651 0.3563 0.6331 1.0816

DEG: differentially expressed genes. *: all DEG are up-regulated. OLS: the TW-SLM using the ordinary least squares.
Huber: the robust TW-SLM using Huber's weight function. Tukey: the robust TW-SLM using Tukey's weight function.

_n" 2 _ " 2
SR] = R] +N(/1R},O'R} ),SG] = G} +N(#G}’GC})

with uR; = (Xle,GR-]v_ = O‘ZHR}'“G'}'. = a3Gj,O-G'} = oc4,uc} ,
where a; ~ U (ay, by), o~ U (¢, dy), o5~ U (ay by), oy~
U (cy d,). The ay, by, ¢y, dy, a,, b,, c,, d, are given as input

parameters to control variability of fluorescent signal
intensity.

We simulated two situations, one is the no-dye bias case
and another one is the shape case (dye bias exists). R-I
plots of twelve blocks on one slide for two simulated cases
are shown in Figures 2 and 3, respectively. We considered
five different percentage levels of differentially expressed
genes: 1%, 5%, 10%, 20%, and 40%. The ratio of the up-

regulated genes to the down-regulated genes takes three
values, i.e., 1:1, 3:1, and 9:1 at each percentage level of dif-
ferentially expressed genes. In addition, based on the sug-
gestion of a reviewer, we simulated an extreme case for the
scenario in Figure 3, in which 70% genes are all up-regu-
lated and the remaining ones are not differentially
expressed.

The trend of MSEs and biases of estimated gene expression
levels are similar between the robust TW-SLM and the
LOWESS normalization methods across different levels of
the ratios between the up-regulated genes and the down-
regulated genes. This trend also exists in the extreme case.
We present the results of the following two scenarios: (a)
a 9:1 ratio between the number of the up-regulated genes
and that of the down-regulated genes and, (b) the extreme
case. Tables 1 and 3 present MSEs, Tables 2 and 4 show
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biases of estimated gene expression levels. MSEs and
biases for the extreme case (70% of the genes are up-regu-
lated) are presented in the bottom of Tables 3 and 4,
which are displayed in Figures 6 and 7, respectively. The
robust TW-SLM method has smaller means of MSEs than
the LOWESS normalization method and the TW-SLM
using OLS, respectively. Also the ranges of MSEs for the
proposed method are also smaller than those using the
LOWESS method and the TW-SLM with OLS, respectively.

Comparing the different robust weight functions, means
of MSEs are slightly smaller using Tukey's weight function
than that using Huber's weight function. These results are
observed across different percentage levels of differen-
tially expressed genes. Biases for estimated gene expres-
sion levels distributed similarly between the proposed

http://www.biomedcentral.com/1471-2105/6/14

method and the LOWESS normalization method. But the
ranges of the biases for the proposed method are smaller
than those of the LOWESS normalization method and the
TW-SLM using OLS, respectively. These observations are
true in both simulated situations.

The extreme case is an example where the proposed
method does better than the LOWESS method (Tables 3
and 4, Figures 6 and 7). Estimates using the LOWESS
method are downward biased in this case. This is what we
would expect because the LOWESS method fits normali-
zation curves through the majority of genes, which are
mostly up-regulated here. In contrast, the TW-SLM
method does not need the either of the two assumptions
needed by the LOWESS method, neither of which is satis-
fied here.

Table 4: Bias of estimated gene expression levels (up:down = 9:1) for simulated cDNA microarray data with the R-l plots similar to

Figure 3.
Percentage of Descriptive Statistics
DEG
Method Mean Minimum 25% Quantile Median 75% Quantile Maximum
1% OLS 0.0000 -0.8219 -0.0173 -0.0043 0.0094 1.4229
Huber 0.0000 -0.6011 -0.0146 -0.0034 0.0080 1.2449
Tukey 0.0000 -0.4942 -0.0137 -0.0031 0.0079 1.1431
LOWESS 0.0017 -0.8382 -0.0155 -0.0018 0.0116 1.4261
5% OLS 0.0000 -1.1839 -0.0307 -0.0151 0.0009 1.1853
Huber 0.0000 -1.0325 -0.0258 -0.0118 0.0016 0.9497
Tukey 0.0000 -0.9366 -0.0240 -0.0107 0.0024 0.8284
LOWESS 0.0028 -1.1707 -0.0257 -0.0123 0.0015 1.1979
10% OLS 0.0000 -1.2366 -0.0567 -0.0351 -0.0108 1.2074
Huber 0.0000 -1.0440 -0.0477 -0.0297 -0.0078 1.0073
Tukey 0.0000 -0.9654 -0.0444 -0.0270 -0.0056 09112
LOWVESS 0.0034 -1.2259 -0.0467 -0.0310 -0.0151 1.2333
20% OLS 0.0000 -1.2168 -0.0922 -0.0677 -0.0368 1.3011
Huber 0.0000 -0.9445 -0.0771 -0.0568 -0.0286 1.0866
Tukey 0.0000 -0.8220 -0.0707 -0.0510 -0.0241 0.9765
LOWESS -0.0089 -1.2455 -0.0953 -0.0765 -0.0537 1.3045
40% OLS 0.0000 -1.5360 -0.1722 -0.1230 0.1383 1.3821
Huber 0.0000 -1.3680 -0.1451 -0.1030 0.1192 1.1008
Tukey 0.0000 -1.2384 -0.1328 -0.0934 0.1114 0.9741
LOWESS -0.1418 -1.7047 -0.2937 -0.2553 -0.0205 1.2253
*70% OLS 0.0000 -0.5137 -0.2925 -0.0519 0.2306 1.0736
Huber 0.0000 -0.4227 -0.2466 -0.0429 0.1947 0.9327
Tukey 0.0000 -0.3924 -0.2259 -0.0390 0.1802 0.8543
LOWESS -0.5203 -1.0007 -0.7719 -0.5651 -0.3230 0.5017
DEG: differentially expressed genes. *: all DEG are up-regulated. OLS: the TW-SLM using the ordinary least squares.
Huber: the robust TW-SLM using Huber's weight function. Tukey: the robust TW-SLM using Tukey's weight function.
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Study designs for cDNA microarray experiments among the human placenta, the universal reference, and the Probe Set.

The distributions of MSEs and biases between the TW-
SLM using OLS and the LOWESS method are similar for
cases where there is a relatively small percentage of differ-
entially expressed genes. However, the TW-SLM with OLS
performs better than the LOWESS when a larger propor-
tion of genes are differentially expressed. It appears that
the more deviation from the two assumptions required by
the LOWESS, the better the TW-SLM performs. This trend
is consistent with findings in our previous work [17].

An example

In this section, a real data set was analyzed to compare
consistency of the LOWESS normalization method and
the proposed robust TW-SLM method. A collection of
human placenta cDNAs comprising 7,042 clones was
identified and used as the probe set for cDNA microarray
fabrication in this study [19].

Three kinds of RNA samples were used which include: (i)
a common reference RNA obtained by in vitro transcrip-
tion from a pool of cDNAs in equal amount comprising
the entire probe set (PS); (ii) the "Universal Human Ref-
erence RNA" from Stratagene, a pool of RNAs derived
from 10 different cell lines; and (iii) human full-term pla-
centa RNA. The original goal of the study was to evaluate
the performance of the PS RNA as a reference RNA in com-
parison with that of Stratagene's universal reference RNA.

In this study, the Universal Human Reference RNA and
the human placenta RNA were treated as two experimen-
tal samples. The PS RNA was used as the reference against
which the two other bio-samples were compared. In the
simple direct comparison, gene expression values were
obtained through direct hybridizations between the
human placenta RNA and the Universal Human Reference
RNA. In the indirect comparison using the PS set as the
common reference, hybridizations were performed
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An example of R-| plots for twelve blocks of slide one with no-dye bias for two channels, 10% genes are differentially
expressed.
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Consistency analysis based on cutoff p-value 10-5. Both x and y axes are estimated log intensity ratios. (a)-(b) between the
direct design and the indirect design for the robust TW-SLM and the LOWESS normalization method, respectively; (c)-(d)
between the LOWESS method and the robust TW-SLM for the direct design and the indirect design, respectively.
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A boxplot for comparing mean square errors among normalization methods for the case that 70% genes are all up-regulated

(Table 3).

between the human placenta RNA and the PS reference
RNA, and between the Universal Human Reference RNA
and the PS reference RNA. The design of this experiment
is depicted in Figure 1.

After hybridization, slides were scanned with the Axon
instruments 4000B scanner. The 633 and 532 lasers are
used for excitation of the Cy5 and Cy3 fluorophores,
respectively. For each of the three types of hybridizations
(i.e., the human placenta vs. the universal reference, the
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A boxplot for comparing biases among normalization methods for the case that 70% genes are all up-regulated (Table 4).

human placenta vs. the PS reference, and the universal ref-
erence vs. the PS reference), there are four slides, including
two dye-swapped slides. Each clone was printed three
times on different blocks on each slide. Background
adjusted medians for the Cy5 and Cy3 channels were used
as expression levels. We removed negative controls

including "Human Cotl", "PolyA" and "Empty" in the
analysis.

To evaluate the proposed method, we compare it with the
LOWESS method by examining which method produces
more consistent results between the direct comparison
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Slide-wise normalization curves based on different methods for one slide of the human placenta vs. the probe set hybridization
in the example.
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Table 5: Consistency analysis with and without background adjustment under slide-wised and block-wised normalization strategies

(the cutoff p-value is 10-5)

Normalization Strategy Normalization Method

Direct comparison

Indirect comparison

Common genes!

With background subtraction
Slide-wised LOWESS
TW-SLM
Common?
LOWESS
TW-SLM
Common?

Block-wised

Without background subtraction
Slide-wised LOWESS
TW-SLM
Common?
LOWESS
TW-SLM
Common?

Block-wised

1447(32.27)°(78.85)p
2907(58.93)(39.25)
1141
1551(37.91)(76.47)
2545(48.84) (46.60)
1186

1240(37.98) (86.05)
1924(72.77)(55.46)
1067
1357(46.13)(82.68)
1904(59.51)(58.93)
1122

1045(44.69) (70.62)
2791(61.38)(26.44)
738
1464(40.16)(59.84)
2267(54.83) (38.64)
876

1599(29.46) (77.42)
3237(43.25)(38.25)
1238
2099(29.82) (69.46)
2872(39.45) (50.77)
1458

Common!: intersection between the direct and the indirect comparison given the same method.
CommonZ intersection between the LOWESS and the TW-SLM given the same comparison.

4
a: consistency between the comparisons expressed as the percentage. Eg.—— x100% = 32.27% .
1447

|
b: the percentage of Common?2 for each method. Eg.—— x100% = 78.85% .
1447

467
1713

588
1243

471
1400

626
1133

Table 6: Consistency analysis with and without background adjustment under slide-wised and block-wised normalization strategies

(the cutoff p-value is 10-3)

Normalization Strategy Normalization Method

Direct comparison

Indirect comparison

Common genes'

With background subtraction
Slide-wised LOWESS
TW-SLM
Common?
LOWESS
TW-SLM
Common?

Block-wised

Without background subtraction
Slide-wised LOWESS
TW-SLM
Common?
LOWESS
TW-SLM
Common?

Block-wised

2563(44.52)7(79.05)b
4330(68.45) (46.79)
2026
2731(49.40)(78.58)
4085(61.32)(52.53)
2146

2440(52.50) (82.99)
3615(77.01)(56.02)
2025
2694(57.24) (79.62)
3530(67.39) (60.76)
2145

2234(51.07)(73.23)
4055(73.09) (40.35)
1636
2700(49.96) (66.74)
3645(68.72) (49.44)
1802

3024(42.36) (79.27)
4400(63.27) (54.48)
2397
3495(44.12)(74.91)
4190(56.79)(62.48)
2618

1141
2964

1349
2505

1281
2784

1542
2379

Common!: intersection between the direct and the indirect comparison given the same method.
Common?Z intersection between the LOWESS and the TW-SLM given the same comparison.

a: consistency between the comparisons expressed as the percentage. Eg.

0
b: the percentage of Common? for each method. Eg.Z—3 x100% = 79.05% .
56

41
x100% = 44.52% .
563
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and the indirect comparison of human placenta and uni-
versal human reference RNA samples as described above
(see also Figure 1). The rationale is that the results from
the direct comparison design and the indirect comparison
design should be similar, because the same RNA samples
are compared in both designs, albeit the indirect compar-
ison is through a third common reference. Therefore, a
better normalization method is the one that yields more
consistent results between the direct and indirect compar-
ison experiments.

The data were normalized using the LOWESS normaliza-
tion method and the robust TW-SLM with Tukey's robust
weight function separately. Significance analysis was car-
ried out for the normalized data for each method by
comparing gene expression levels in the human placenta
tissue relative to the universal reference. One sample t-test
was used for the direct comparison and two-sample t-test
was used for the indirect comparison. We used 105 and
10-3 as cutoff points for p-values to determine if clones are
statistical significant or not. Consistency of estimated
relative gene expression levels was compared between the
direct design and the indirect design for each method. We
also compared overlap between the LOWESS normaliza-
tion method and the robust TW-SLM for each design. The
results are presented in Figures 4 and 5.

We used 105 as a cutoff point for p-values in Figure 4.
Using the robust TW-SLM normalization and the t-tests,
there are 2,907 genes with p-value less than 105 in the
direct comparison and 2,791 in the indirect comparison.
There are 1,713 genes common in these two sets of genes
with p-value less than 10-5, which account for about 59%
(1713/2907) in the direct comparison and about 61%
(1713/2791) in the indirect comparison.

In comparison, using the LOWESS normalization and the
t-tests, there are 1,447 genes with p-value less than 10->in
the direct comparison and 1,045 in the indirect compari-
son. The number of overlapping genes with p-value less
than 10->is 467, which is around 32% (467/1447) in the
direct comparison and about 44% (467/1045) in the indi-
rect comparison. It is clear that the proposed method per-
forms more consistent between the direct comparison and
the indirect comparison.

We also examined overlap between the LOWESS and
robust TW-SLM methods for the two comparisons. In the
direct comparison, about 79% (1141/1447) of the genes
found to be significant based on the LOWESS method are
also found to be significant based on the robust TW-SLM
method. But they only account for about 40% (1141/
2907) of the significant genes detected based on the
robust TW-SLM method. In the indirect comparison,
about 71% (738/1045) of the significant genes based on

http://www.biomedcentral.com/1471-2105/6/14

the LOWESS method are also found to be significant
based on the robust TW-SLM method. But they only
account for about 26% (738/2791) significant genes
detected based on the robust TW-SLM method.

In our analysis, we used background adjusted intensity
values. How to adjust background is an important issue in
microarray data analysis. To evaluate if background affects
our conclusions, we repeated the comparison analysis
without adjusting background for the intensity values in
both channels, the results are presented in Tables 5 and 6.
We see from these tables that the overall results are similar
to those using background adjusted intensity values in
normalization. This is what we would expect because of
low and uniform distributed background noise in all
arrays in this example (data description is not shown).

Therefore, the robust TW-SLM method yields more con-
sistent results between the direct comparison and the indi-
rect comparison with the human placenta and the
universal human reference RNA samples. In addition, the
robust TW-SLM method detects more significant genes for
a given cutoff p-value. This makes sense biologically
because most of the 7,042 genes specifically discovered
from human placenta are expected to have differential
expressions relative to the universal reference RNAs. We
would expect that the similar comparison results will be
got if we compare the TW-SLM using OLS or Huber's
weight function with the LOWESS method because the
normalization curves for the TW-SLMs (TW-SLM:OLS,
TW-SLM:Huber, TW-SLM:Tukey) are similar, but all these
three curves are different from the LOWESS normalization
curve (Figure 8).

Discussion

We have proposed a robust TW-SLM normalization
method for cDNA microarray data. It is interesting to
compare the proposed normalization method with the
existing methods, such as the widely used LOWESS nor-
malization proposed by Yang et al. (2001) [5] and further
discussed by Tseng et al. (2001) [9]. In the LOWESS
method, normalization is done separately by first fitting a
separate curve for each slide through the R-I plot of log-
intensity ratios versus log-intensity products. In compari-
son, the proposed method uses all the slides in estimating
each normalization curve, using the gene effects /3 as the
thread linking these slides. In addition, in the proposed
method, the normalization curves ¢,and gene effects 3 are
estimated simultaneously. With this approach, there is no
need to assume that the percentage of genes with differen-
tial expression levels is small or the expression levels of
up- and down-regulated genes are symmetric, or when
one of these assumptions is not satisfied, to use dye-swap
normalization, which in turn requires the assumption
that the two normalization curves are symmetric. (How-
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ever, we note that dye-swap as a design strategy is useful
to balance the experimental conditions and reduce bias
due to different dye incorporation efficiencies.) An
underlying condition required for the proposed method is
independence of arrays, which is satisfied in a typical
microarray experiment. Further theoretical conditions for
the TW-SLM can be found in the paper by Huang et al.
[17].

We have only considered the proposed robust TW-SLM
method for the simple direct comparison design
described in the Methods section. We can easily extend
the method to more complicated designs. For example,
we can adapt the proposed robust method to the TW-SLM
that accommodates the design where a gene is printed
multiple times. Such a design is helpful for improving the
precision and for assessing the quality of an array using
the coefficient of variation (Tseng et al. 2001 [9]). We can
also adapt the robust TW-SLM to incorporate control
genes with known concentration ratios in estimating the
normalization curves. Model (1) can be easily extended to
block-wise normalization by treating different blocks as
separate arrays and normalization can be carried out as
what we did here. Block-wise normalization considers
spatial variation within an array. We did block-wise nor-
malization on the data sets in the example and compared
the results with that using the LOWESS method (Tables 5
and 6). The proposed method still outperforms the
LOWESS method if we use block-wise normalization in
this example.

Conclusions

In our simulation studies, the proposed method performs
better than the LOWESS normalization method in terms
of MSEs of estimated gene effects in the simulation mod-
els we considered. Analysis of the probe set reference data
set [19] shows that the proposed method yields more con-
sistent results between the direct and indirect compari-
sons than the LOWESS normalization method. In
addition, the proposed method is more sensitive in
detecting differentially expressed genes than the LOWESS
method. Therefore, we believe that the proposed robust
TW-SLM method is a powerful alternative to the existing
normalization methods. We have coded the proposed
method in an R package which is available from the cor-
responding authors.

Methods

We first describe the TW-SLM. For simplicity, we focus on
the case of comparing two cell populations, in which two
cDNA samples from the respective cell populations are
competitively hybridized on the same array. Let n be the
number of slides, and J be the number of genes in the
study. Let R; represent background corrected signal inten-
sity from the Cy5 channel and G; the background

http://www.biomedcentral.com/1471-2105/6/14

corrected signal intensity from the Cy3 channel, and let y;
= 10gy(R;/Gy), x;;= (1/2) log,(R; x Gy), for gene j on slide
i. We assume that there is only one spot for each gene on
each slide. The TW-SLM [17] is

yijz ¢l (xlj) +ﬂj+ Eij’ 1 = ].,..., n,j = ].,...,] (].)

In this model, the observed log intensity ratio is decom-
posed into three components. The first component is ¢,
which is the intensity dependent normalization curve for
slide i, the second component is B which represents the
relative expression value of the jth gene after
normalization, the last one is the residual error term. Let

% be a robust estimator of the ith normalization curve &

based on this model described above. The normalized
data are

}71'}' =yi]' —¢i(xij),i=1,...,n, j=].,...,]. (2)

Huang et al. (2004) [17] considered the least squares
method for estimating ¢;and £ in the TW-SLM. However,
it is well known that least squares estimates are not robust
against outliers which often arise in microarray experi-
ments. Therefore, we propose to use the robust method
[20] for estimating ¢ and f. This is done by minimizing
the objective function

n J . —0:(x:)— B
s(l,ﬂ,a)ZZZ[P[y” %)~ b; ]+a]o, 3)
i=1j=1 o
where p is an appropriately chosen function for robust
estimation, A is the collection of the coefficients in the
spline representations of ¢ described below, o is the scale
parameter, and « is a constant to be described below. We
note here that estimation of ¢, f are done jointly and uses
data from all the arrays. This is different from the LOWESS
normalization method in which estimation of normaliza-
tion curves are done array by array.

We consider two p functions: Huber's p function and
Tukey's biweight function. Huber's p function is

2
32 if |z|< H

ple)= Hz| -1 i |z[>H.

Tukey's biweight function is

%[1—(1—(%)2 ” l2lsk

12 if |2|> k.

p(z) =
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Two other usefull functions derived from p,  and y, will
be used repeatedly in the description of the algorithm
below. They are defined as

p(x) = p'(x), 2(x) = xy(x) - p(x).  (4)

The expressions of these functions are given in the Appen-
dix. We choose commonly used constants in the literature
for Huber's and Tukey's functions, i.e., H = 1.345 and k =
4.685. The influence of the choice of these constants on
normalization methods is beyond the scope of this study.

We use the cubic B-splines [21,22] to approximate the
normalization curves ¢, Specifically, let b,,..., by be K B-
spline basis functions. We approximate ¢, by

K ’
0;(%) = Aig + X Aieb (¥) = b (x)2;,
k=1
where b(x) = (1, by (x),..., bg(x))' and 4, = (Lig, Aiys--r Aix) -

We estimate the parameters in model (1) by minimizing
objective function (3) using an iterative procedure. Two
steps, a location step and a scale step, will be used in the
computation.

Location step

We use the following vector and matrix notations in
describing the location step:

B; = (b(x;1), b(x;5),-.., b(x;))",

Vi= (Vi Viareor Vig)"-

Let
v yii —b'(x; ) 4 — B;
c
wj; = ' (5)
i =) % = B
c

W, = diag(wﬂ,wiz,...,wu )

and let
-1, -4 -1,
. 1, (:) 0
0 o 1

A

fori=1,..., n. Given the scale parameter o, A; and f sat-
isfy the equations:

http://www.biomedcentral.com/1471-2105/6/14

Ai:[B,i‘NiBi:I_lB’i‘Ni(Yi_ZiB)f (6)

~1
~ n ’ n ’
ﬁ[ZZiWiZi } D ZiW; [Yi -BiA; ] (7)
i=1 i
A A A A A ] A
where 8 =(f,,B5,...8;) and B; = —zjzzﬂj because of
identifiability requirement in the TW-SLM. We can solve

these equations iteratively to obtain ﬂ:l and B . The deri-
vations of these equations are given in the Appendix.

Scale step
According to Huber's proposal [23], the estimation equa-
tion for ois

n J .
X3 -a )

i=1j=1
where ;= y;;- b'(x;) ﬂ; - Bj ,and N is the total number of

observations in the data set. In general, equation (8) does
not have an explicit solution. So we use the following
updating equation to compute the estimated scale param-
eter o,

mP?_ 1% \ Tij (m-1)2 9
o) =33 (L)), )
No =4 m-1)
i=1j=1
In order to obtain the consistent scale estimator at the
normal distribution and obtain the classic estimates when
using the least squares objective function, i.e,

6(

p(x)= %xz, we used the constant suggested by Huber
(23],

N-p
N

o=

Egx(x),

where E4, denotes expectation with respect to the standard
normal distribution function ®.

The procedure described above is called an iterative
reweighted least squares (IWLS) algorithm that is used in
many non-least squares estimation problems. The imple-
mentation of the IWLS algorithm can be carried out using
the following steps:

1. Initialize [3](-0) =y forj=1,.,Jand o =1, wl(]-o) =1,
fori=1,.,nj=1,.,J;
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2. Calculate /li(m_l) according to equation (6) given Am-1),

olm-1) and wl(jm_l) fori=1,..,nj=1,.,J]m=1,.;

3. Check convergence of 4, § and o If the convergence
criteria is met, then stop, otherwise continue;

4. Update o{™ by equation (9) given ﬁ](.m_l), Z,.(m_l), olm-

1

1), and wl(jm_l) , and set o(m-1) = o(m);

5. Calculate weight wi™ given fm-1), li(m_l) and o(m

ij

according to equation (5), and set wl(]-m_l) = wl(jm) ;

6. Calculate Am given li(m_l) otm1) and wl(jm_l) using

equation (7), and set ,B](m_l) = ﬁ](m);

7. Go to step 2 and iteratively update the estimators of
parameters and the weights between steps 2 and 6 until
convergence.
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Appendix
Derivation of il and Bj

We derive estimation equations for location parameters
presented in the Methods section in this appendix. Again
the notations from the Methods section:

b(x) = (1, by(x),..., br(x))"
A= (Aior Ainseer Aigg)"-

#,(x;) can be approximated by a linear combination of B-
spline basis functions, i.e. b'(x;)4; where b(x;) is the kth
B-spline basis function of x;;. LetA = (a;, a,,..., 4,)", C = (¢4,
Cyeews €)' and define

A _ a4 ap, a,y
=(—,—=,..71).

!
C ¢ ¢ Cn
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Given scale parameter o, the first partial derivatives of S(4,
B, o) (3) with respect to A and f can be expressed in the
matrix form as

IS(4.8,0) _ —EW( yi—BiAi-ZB J

oA c c
w Yi_Bi;Li_Ziﬁ)
B; o yi—Bi4i-ZB
__B , 10
o Yi-BA-Zp © c (10)
c
9S(A,B,0) _~ Zi (vi~Biki~ZiB
B _gl‘ GW o
v Yi_BiZ'i_Ziﬂ]
_v4 o oYi=Biki—Zip (an
o Yi-BA-ZB c
c

where B;; = (b(x;1), b(x;2),..., b(xi5))" yi= (i, Vi Vi)'
w(x) = p'(x). As defined in equation (5)

vy =b(x5) 2 - B;

14
o
Wij = , ,
yii = b (x5 )4 - B;
c
and

W, = diag(w;y, wyy,..., wy),

Plugging W, into equations (10) and (11) and setting
them to zeros, and solving these two equations and

A

yielding estimation equations for A; in equation (6) and

ﬁ in equation (7). They are

Ji = [B;W;B; ] ' B;W,(y; - Z; B),

i=1 i=1

-1

N LG ’ 1 ’ g
B =[zZiWiZi J D ZiWily; —Bi(x)A].
Let

W = diag(Wy,... W,,),

2=(2y,2y,12y),
B = diag(B,,B,,....B,),

y=(y1,Y2:"""/¥n) "
A=A n),

then equation (7) can also be expressed as
B =(ZWZ)1ZW(y -B1).
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The solution of (Z'WZ)-! can be explicitly calculates using
the following matrix,

* 1 1 1
Wy wyHws WHy WwhHwy

* % * *

w w w w

1 * 1 1
o e W ey

(ZWZ) = W* W* W* W* ,

1 1 1 *

wyw, wyws wyw, w;

* * - * *

w w w w

n * J 2
where  w; =zi=1wij,Wj 221=11/(ij1)_1/wj , and

* ] .
W =zlzll/wl forj =

solution of Bj after doing some linear algebra. It is

1,..., J. We can get the explicit

wtm[ytm b,(xim )il]

Zwu[yU b (xl] )1‘1]_

Wj =1 ]

ZZ

i=1m=1 Wi

forj=2,..,J. And ﬁl = —2;22 ,Bj because of identifiabil-

ity requirement in model (1).
Derivation of scale parameter estimator G

The wand y functions derived from Huber's p(z) function
are

-H ifz<-H
y(z)=4z if-H<z<H
H ifz>H,
= if|z|gH

2(z)=4 ",
H-if | z|> H.

2
The related weight function has the form

1 if|z|K<H

WE@=VH itz H,

2|

where H is a constant.

The constant « used in the scale step for Huber's robust
estimation can be calculated as the following

http://www.biomedcentral.com/1471-2105/6/14

-
N

2 2
N ”{jH - \/1_e p(——)dz+H— 21— @(H))]

Epx(2)

N
2
NNp{H2+(1 H2)®(H) - OS—J_exp(—H—):l

where @ is the distribution function of the standard nor-
mal distribution, N is the total number of observations in
the dataset, and p is the total number of parameters in the
model.

The wand y functions derived from Tukey's p(z) function
are

z[l—(%)zjr if | 2| < k

v(z) =
0 if|z|<k,
2 4 6
2(2) = %_% Z_G 2|k
1 |z|> F.

The associated weight function has the form

2P
w(z) = z[l—(f) ] if|z| <k
0 if|z|>k,

where k is a constant and the constant a in the scale step
takes value

a=Np ]k 32 32t
- N —k k2 k4
N

:T_p{ 250 - 495(5)(k2)+ 6;((7)(k2)+2[1 tD)(k)]}

Z6
+5 ]d(b(z) +21-®(k)]

where )((2") (s) is the Chi-square probability function with

n degrees of freedom evaluated at s.

When Tukey's weight function is used, equation (8) is
solved directly for the estimator of o instead of iteratively
updating equation (9) in our R program. It can be shown
that equation (8) for Tukey's y(z) function has an unique
real root. This real root is just the solution for the estima-
tor of o. Let n* be the total number of observations that
satisfy the second case of Tukey's y function, i.e. | z | >k,
let J* be the total number of clones that satisfy the first
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1"..
case of the g, i.e. | z | < k. Replacing z by L and plugging
c

Tukey's y into equation (8), we get

*ZZ% _722% —22 +n‘—(N—p)f3=o, (12)
511]1 511]1 611]1
where
B= Eq)l(z)
2 ZG
—jk = ——4+—6 AD(z2) + 2[1 — D(k)]
k k
3
= =15y (k%) - x@w%+ > 2 () +2[1 - ()],
Let
a=Y ¥,
i=1j=1k
b=- Y30,
i=1j=1 k
J' riz
=3 332,
i=1j=1 k

d=n"~(N=-p)Bx=—.
(e}

Then equation (12) becomes

ax3+bx2+cx+d=0. (13)

Let x = y - b/3a, divided by a in the both sides of equation
(13), and plugs x into equation (13), then we get the
Cardan's cubic equation

b . d bc 2V
e e R B (14)
a  3a 3a 27a
Let p = c/a - b2/3a2, q = d/a - bc/(3a2) + 2b3/(27a3), the
above equation becomes

v+py+q=0. (15)

The determinant for Cardan's equation (15) is
2 3
A= 1 + E .
2 2
It can be shown that the determined function A must be

positive. The first term in the determinant equation must
be positive because of the square function and g cannot be

http://www.biomedcentral.com/1471-2105/6/14

zero. If we can show that the p is greater or equal to zero,
then the A must be positive. Because

c b
=== J
_ 3ac— v?
- 3¢
So the A is positive if only if 3ac - b2 is non-negative. We
can see that

6 2

3ac—b* =9 ZZTI]

11]1

zz%

11]1

zz%

11]1

According to the Cauchy inequality [24], we have

4 2 2
$30 (350
i=1j:1k4 i=1j= 1k k3

2
< ZZ ZZ
11]1 11]1

Therefore, the p must be non-negative and the A must be
positive. Thus there is only one real root for equation
(15), that is

R

Then the solution for o in equation (12) is

1

[, b~
3a
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