BIVIC Bioinformatics moml.?@mral

Research article

Evaluating concentration estimation errors in ELISA microarray
experiments

Don Simone Daly*!, Amanda M White!, Susan M Varnum?,

Kevin K Anderson! and Richard C Zangar?

Address: Statistical and Mathematical Sciences, Pacific Northwest National Laboratory, PO Box 999, Richland, WA, USA and 2Biological Sciences,
Pacific Northwest National Laboratory, PO Box 999, Richland, WA, USA

Email: Don Simone Daly* - DS.Daly@PNL.gov; Amanda M White - Amanda.White@pnl.gov; Susan M Varnum - susan.varnum@pnl.gov;
Kevin K Anderson - Kevin.Anderson@pnl.gov; Richard C Zangar - Richard.Zangar@pnl.gov

* Corresponding author

Published: 26 January 2005 Received: 24 June 2004
BMC Bioinformatics 2005, 6:17 ~ doi:10.1186/1471-2105-6-17 Accepted: 26 January 2005
This article is available from: http://www.biomedcentral.com/1471-2105/6/17

© 2005 Daly et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Enzyme-linked immunosorbent assay (ELISA) is a standard immunoassay to estimate a
protein's concentration in a sample. Deploying ELISA in a microarray format permits simultaneous
estimation of the concentrations of numerous proteins in a small sample. These estimates, however, are
uncertain due to processing error and biological variability. Evaluating estimation error is critical to
interpreting biological significance and improving the ELISA microarray process. Estimation error
evaluation must be automated to realize a reliable high-throughput ELISA microarray system.

In this paper, we present a statistical method based on propagation of error to evaluate concentration
estimation errors in the ELISA microarray process. Although propagation of error is central to this
method and the focus of this paper, it is most effective only when comparable data are available. Therefore,
we briefly discuss the roles of experimental design, data screening, normalization, and statistical diagnostics
when evaluating ELISA microarray concentration estimation errors.

Results: We use an ELISA microarray investigation of breast cancer biomarkers to illustrate the
evaluation of concentration estimation errors. The illustration begins with a description of the design and
resulting data, followed by a brief discussion of data screening and normalization. In our illustration, we fit
a standard curve to the screened and normalized data, review the modeling diagnostics, and apply
propagation of error.

We summarize the results with a simple, three-panel diagnostic visualization featuring a scatterplot of the
standard data with logistic standard curve and 95% confidence intervals, an annotated histogram of sample
measurements, and a plot of the 95% concentration coefficient of variation, or relative error, as a function
of concentration.

Conclusions: This statistical method should be of value in the rapid evaluation and quality control of high-
throughput ELISA microarray analyses. Applying propagation of error to a variety of ELISA microarray
concentration estimation models is straightforward. Displaying the results in the three-panel layout
succinctly summarizes both the standard and sample data while providing an informative critique of
applicability of the fitted model, the uncertainty in concentration estimates, and the quality of both the
experiment and the ELISA microarray process.
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Background

Proteomic approaches are resulting in the identification
of large numbers of proteins that can potentially be used
as disease markers or drug targets. Unfortunately, pro-
teomic approaches currently lack the throughput or qual-
ity metrics necessary to evaluate hundreds or thousands of
samples that may be required to determine clinical useful-
ness of a biomarker [1]. Traditionally, candidate biomar-
kers have been commonly evaluated using a 96-well
enzyme-linked immunosorbent assay (ELISA). However,
this approach is not suited for analyzing more than a few
proteins when sample volumes are limited, as is com-
monly the case for early tumor samples. For this reason,
we and others are developing ELISA microarray systems to
evaluate 20 to 50 proteins using only a few microliters of
sample in an efficient and quantitative manner [2,3].

Processing a ELISA microarray experiment produces large
volumes of data of wide variety and high complexity. Sim-
ilar to traditional 96-well ELISA data, ELISA microarray
data often are perturbed by processing error [4-7].
Processing errors are introduced by unintended variation
in sample preparation, slide or pin arrangement, printing,
imaging, and estimation of spot summary statistics. The
specific role of concentration error estimates and the gen-
eral role of statistical diagnostics is to reveal process accu-
racy and precision. This evaluation then enables an
insightful interpretation of the biological significance, an
informative critique of the current experiment, and
insights to improve the accuracy and precision of future
experiments. In a high-throughput ELISA microarray sys-
tem, there is a need to not only quickly and accurately
generate the standard curves and estimate concentrations
from the sample data, but also to quickly evaluate the
quality of those estimates. The resulting information can
be used in both the development stage for optimizing
assay conditions and in the production phase for ensuring
that the overall analytic process is working well on a day-
to-day basis.

Statistically evaluating ELISA microarray concentration
estimation errors depends upon both the availability of
the appropriate set of comparable measurements and the
choice of data analysis methods. Sufficient replication
within and across arrays is key to making precise estimates
of both concentrations and errors [8]. Hence, evaluating
concentration estimation errors in an ELISA microarray
experiment begins with the design of the experiment.
Evaluation of these estimation errors also depends on the
recording of the pedigree, or history, of each result from
probe preparation and array printing through sample
preparation and spot intensity estimation [9-12]. Screen-
ing for anomalous results and normalizing within and
across arrays may significantly reduce obscuring variation
and improve homogeneity [13-15]. Although the mathe-
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matical statistics and algorithms are quite sophisticated,
software makes actual estimation and application of the
standard curve and the concentration error function
straightforward. This is true also for the presentation of
modeling results for diagnostic purposes.

In this paper, we describe and illustrate a methodology for
calculating the concentration estimation error of each
assay in an ELISA microarray experiment based on a statis-
tical analysis of the most likely sources of error. We expect
the resulting data analysis algorithms to be a key compo-
nent in a bioinformatics package for evaluating ELISA
microarray data.

Methods

Making concentration estimates and estimating their
errors in our ELISA microarray studies involve a sequence
of steps beginning with the layout of the ELISA microarray
and design of the experiment. Following execution of the
analytical components of the experiment, the statistical
analysis proceeds with data screening, normalization, and
model identification. Estimation and evaluation of the
standard curves and error estimation functions come next.
Finally, the standard curves and error estimation func-
tions are applied and then evaluated using a modeling
diagnostic.

Layout of the ELISA microarray and design of the
experiment

To estimate errors in concentration estimates, it is neces-
sary to carefully lay out the microarray and design the
experiment. Our layout features several distally separate
replicates of each assay spot on each microarray to evalu-
ate local processing effects. Our design addresses selection
and application of treatments - in particular, replicate
treatments — to a collection of arrays. This replication
facilitates adjustments for the sources of variability that
lead to ambiguous concentration estimates [16,17]. In
array experiments featuring relatively small numbers of
assays, usually 50 or fewer analytes, thoughtful design is
critical to normalization, calibration, and estimation of
concentrations due to the significant lack of technical rep-
licates found in arrays with thousands of assays. With
regard to error estimation, the major consideration in the
design of the experiments is replication of treatments
across arrays to capture the effects of process error.

To illustrate our technique for evaluating estimation
errors in an ELISA microarray experiment, we used a sub-
set of data from an ELISA microarray investigation of
breast cancer biomarkers. The ELISA microarray experi-
ments were performed as previously described [2,3].
Briefly, capture antibodies were covalently attached to an
aminosilanated glass slide surface (Sigma, St. Louis, Mis-
souri, USA) using a Microgrid 2 robot from Genomic
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Solutions (Ann Arbor, Michigan, USA) equipped with
ChipMaker?2 split pins from TeleChem (Sunnyvale, Cali-
fornia, USA). As demonstrated previously, these spots are
typically uniform in shape with a reasonable homoge-
nous distribution of protein across the spot [1-3]. That is,
"donut" formation is not normally observed. These spa-
tially confined antibodies bind a specific antigen from a
sample overlaying the array. A second, biotinylated anti-
body that recognizes the same antigen as the first anti-
body but at a different epitope is then used for detection.
Detection of the second antibody is based upon streptavi-
din (which binds biotin) and an enzymatic signal
enhancement method known as tyramide signal amplifi-
cation (TSA). The resultant fluorescence was detected at
10-micron scan resolution using a ScanArray 3000 from
General Scanning (Billerica, Massachusetts, USA). The
experiment used 94 arrays printed in pairs on 47 slides.
Each array contained 4 (2 x 2) replicate subarrays of 25 (5
x 5) spots. A subarray contained 21 unique assays, 1 pos-
itive control and 3 negative control spots. A set of 7
known standard concentrations and a buffer blank was
assembled by performing a three-fold dilution series of a
single mixture of all the standards. Each standard concen-
tration was applied to duplicate slides. The remaining 39
slides were treated with serum samples from women with
or without breast cancer. These sera were encoded to pre-
vent knowledge of the study group during sample process-
ing. The treated microarrays were imaged with a ScanArray
microarray scanner (PerkinElmer, Boston, Massachusetts,
USA). The spot fluorescence estimates were calculated
with custom array-image-analysis software that was devel-
oped in-house.

Data screening, normalization and model identification
Data screening, an exploratory data analysis, serves several
purposes - identifying outliers, anomalous values, and
experimental design shortcomings; identifying data trans-
forms to improve curve-fitting and application; identify-
ing measurement trends and other processing effects; and
suggesting an appropriate functional form for the stand-
ard curve [6,18-21]. This exploratory analysis combines
simple summary statistics and graphical displays. For
instance, graphs of control spot intensities versus process-
ing variables such as array print order or pin number may
reveal variability due to processing. These processing
trends can be made more apparent with locally weighted
regression, or loess, a statistical technique to fit a smooth
curve through the scatterplot [22,23]. These graphs can be
used as the basis for modifying the process or for data
normalization.

Because our protein arrays feature fewer spots per array
than do typical gene expression microarrays, a different
approach to normalization, suitable for low spot-fre-
quency arrays, is required. This normalization is critical,
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given that array-to-array processing error is common and
that standard curves are estimated from reference spot
intensities calculated from one set of arrays and then
applied to sample spot intensities estimated from a sepa-
rate set of arrays.

A scatterplot of intensity estimates of standard spots ver-
sus concentration is particularly useful. First, outliers and
anomalies may be readily apparent. Second, the spacing
between concentration values may be assessed. If standard
concentrations follow from a dilution series, then the sep-
aration between concentrations decreases significantly
with the decrease in concentration. This results in spot
intensities measured at higher concentrations having
much more leverage on the fit of the model than may be
desirable. It should also be apparent whether the variabil-
ity in spot intensity is increasing with mean spot intensity.
Both increasing spacing in the concentrations and heter-
oskedasticity in the measured intensities affect the model
fit and follow-on statistical inferences [24]. These may be
minimized with log, transformations of both concentra-
tions and spot intensities.

A scatterplot of raw or transformed standard spot intensity
versus concentration also provides an indication of the
appropriate model for the data. In particular, data follow-
ing a sigmoid curve favor the logistic curves while data
apparently lacking the horizontal asymptotes of a sigmoid
curve favor a linear or power law model. Although several
models may be fit and one selected based on a goodness-
of-fit statistic (see next section), the scatterplot is a useful
visual check on this selection.

Several plots provide useful information about the quality
of the fitted model. Of special importance are the scatter-
plot of residuals versus concentration and the scatterplot
of residuals versus estimated intensity. In both cases, the
variability of the residuals should be centered about zero
and constant across concentration or intensity. Model
bias is indicated by a systematic drift of residuals to one
side of the zero line. Heteroskedasticity is indicated by a
systematic change in the variation of the residuals. Both
may indicate that a better model is necessary before pro-
ceeding to estimation of sample concentrations and esti-
mation of concentration errors.

Standard curves and estimation errors

An ELISA standard curve expresses protein concentration
as a function of spot intensity. One standard curve is
required for each assay. In an ELISA microarray experi-
ment, the standard data are collected by fixing a set of con-
centrations and measuring spot intensities via imagery of
the treated arrays. A standard curve is estimated by fitting
an appropriate function to the set of (concentration,
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intensity) measurement pairs [25]. This equation is then
inverted to obtain the standard curve.

Common parametric choices for standard curve models
are multiparameter logistic functions and power law func-
tions. For an ELISA microarray, a strictly monotone model
is consistent with the belief that a monotone change in
concentration should result in a monotone change in spot
intensity.

We estimate standard curves with both logistic and power
law parametric models. The four-parameter logistic model
[26], expressing intensity I as a function of concentration
C and parameters P;, P,, P;and P,, is defined as

D-h
+
1+exp[ (P3-C)/Py |
The two-parameter power law model [27] expressing

intensity I as a function of concentration C and parame-
ters P; and P,, in log, terms, is

I(C|P)=DP +

(1)

log, (I) =P, + P,log, (C) + ¢

We assume the errors, denoted by the term & are inde-
pendent and normally distributed with mean 0 and vari-
ance o2. With either of these parametric models,
concentration estimation errors may be estimated using
propagation of error, also known as the delta method.

To choose between competing candidate models, a
number of measures exist for evaluating model fit when
replicate observations of each assay are available. These
include partitioning the mean squared error, or MSE, into
components representing pure error and lack of fit [28],
and penalized measures such as Akaike (AIC) and Baye-
sian (BIC) information criteria [29]. We also examine the
PRESS statistic, a direct measure of the predictive capabil-
ity of each candidate model [30].

To calculate the PRESS statistic for each candidate model,
suppose we exclude each poin (x; y;) in turn and fit the

model to the remaining points. We predict the value )7]-,_ i
at the excluded point x; and calculate the PRESS residual
defined by ¢; .;=y;- f’j,— j - Then, the PRESS statistic is the
sum of the squared PRESS residuals

PRESS =" (e; )2
j

The candidate model with the lowest PRESS score as the
best predictive model to estimate concentrations.
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The basic approach to estimating concentration errors
with the propagation of error method has three steps [31].
First, fit intensity as a function of concentration and esti-
mate the covariance among model parameter estimates.
Next, solve the fitted function for concentration as a func-
tion of intensity. Finally, propagate error estimates from
the fitted model through the inverted model and combine
with the error estimate of the sampled spot intensity to
estimate the concentration estimation error.

Let C(I| P), with P = (131,132,...,13N ), denote the inverted
N parameter model expressing concentration C as a func-
tion of intensity I and the parameter estimates P Suppose

)y p is the NxN parameter covariance matrix estimated by
fitting I as a function of C, say I(C|P). Now, let C, be the
estimated concentration from the sample intensity esti-
mate I, say Cs = C(I3/P) and & be the corresponding
estimated standard error of I. Then, the propagation of
error estimate for the concentration estimate Cg is the

square root of the product of Y, the sample covariance

matrix augmented with &g, and the Jacobian matrix J

evaluated at I and the parameter estimates 131,132,...,15[\].
In this application, the Jacobian is the matrix of partial

derivatives of C(I|P) with respect to the intensity I and the
parameters P. Hence, the concentration estimation error
of C(I|P) is the square root of the concentration estima-
tion variance V(C(I|P))
V(C(I|P)) = J(C(I[P)TZJ(C(I|P))
where the Jacobian is
J(C(I|P))T = [6C/el, 8C/oP,..., dC/OPy]
and the augmented covariance matrix is
5 - o 0

0 p

Hence, the formula for estimated standard error of Cy is

SE[Cs]=/V(Cs.Is.P)

For a given intensity estimate Igand standard error G, the

estimated concentration and approximate 95% confi-
dence interval (Cyso1, Coso47) are

Cs= C(Is)
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C95%L = Cs - 2SE[CS] (2)
and
Cosoerr = Cs + 2SE[Cs]  (3)

For example, consider the four parameter logistic model,
Eqn. 1. The concentration estimation equation is
obtained by solving this equation for C in terms of I and
the four parameters

P -1
C(I|P)=P;-Pylog,| 2— (4)

I-p,
The Jacobian matrix is obtained by taking the partial
derivatives of the inverted four-parameter logistic func-
tion of C (Eqn. 4) with respect to I and the parameters P;,

P,, Pyand P,

P (P, -P
2o 3 (P =R)
(I-P)(P,-1)
-P,
oC/oP, = 4
/0P —p
-P,
oC/oP, = 4
/oP, b, 1
P -1
oc/or, = -1 P
/ 4 Oge(I_PlJ

Diagnostic visualizations

A three-panel display combining a histogram of normal-
ized sample spot intensities for a given antigen, its corre-
sponding standard curve, and the graph of the
concentration coefficient of variation, or relative error,
versus concentration provides pertinent information
about the conduct of the current experiment as well as
information to improve future experiments. The standard
curve panel presents a scatterplot of normalized standard
spot intensities versus standard concentrations. The scat-
terplot is overlain with the estimated standard curve
expressing concentration as a function of spot intensity.
This panel also includes approximate 95% confidence
intervals. These intervals summarize the uncertainty in
concentration estimates due to both the uncertainty in
estimating the standard curve and the uncertainty in the
sample spot intensity estimate. Finally, a highlighted
region helps distinguish concentration estimates s with
acceptable errors from concentration estimates with pos-
sibly less than acceptable errors.

The segment of the standard curve corresponding to
acceptable concentration errors may be determined using
the 95% confidence intervals. The lower and upper end-
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Control spot fluorescence and slide print order We
expect control spot intensity to be constant across slide
print order. The trend, estimated with loess regression, indi-
cates a processing effect due to printing order. In this case,
the decrease in control spot intensity, coupled with knowl-
edge of the printing process, suggests that the quantity of
printed material is decreasing over a printing run.

points of this segment, (I;, C;) and (I, C), are the two
points such that the confidence intervals begin to increase
significantly in length. This segment generally corre-
sponds to the linear segment of a standard curve. We iden-
tify the intensity I, of the lower pair as the smallest
intensity such that 95% UB(I,) is less than 95% UB(I) for
intensity values I less than I;. Similarly, we identify I, as
the largest intensity such that 95% LB(I};) is greater than
95% LB(I) for intensity values I greater than I;;. We define
C,and C;to be C; = C(I;) and C; = C(I};), respectively. We
believe that this is a conservative approach to identifying
intensities that generate concentration estimates with
acceptable errors.

An informative visualization of acceptable concentration
estimates may be generated using the points (I;, C;) and
(I, Cy). Consider the union of the two rectangular
regions defined by the two sets of vertices [(I}, 0), (I, C,),
(I Cy), (I 0)], and [(0, Cy), (0, Cy), (Iyy Cy), (I Cr) -
This union defines an L-shaped region covering the stand-
ard curve segment and bound at its extremes by the inten-
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Spot fluorescence and standard concentration A graph of spot fluorescence as a function of standard concentration (A)

shows that both the difference in concentration and the variability in spot fluorescence increase with concentration. Both neg-
atively affect model fitting and subsequent statistical inferences due to the excessive leverage of the larger concentrations and

the heteroskedasticity of the spot intensities. In this case, log, transforms of both concentration and spot fluorescence reduce
the excessive leverage and improve the homogeneity (B). The log transformation is consistent with the featured concentration
dilution series and is a common transformation of chemical measurements that often are assumed log normally distributed.

sity and concentration segments. From this visualization,
one can quickly grasp the dynamic range of acceptable
intensities and the potential range of acceptable concen-
tration estimates.

In regard to this first panel, two notable aspects of this
propagation of error methodology are noteworthy. First,
the error bands are computed pointwise and provide rea-
sonable error estimates for a small number of concentra-
tions. As the number of concentration estimates grows,
the impact of the multiple testing problem grows [32].
This a problem in any biomedical testing that features
numerous simultaneous tests and has spawned consider-
able debate and research. The second aspect of note is the
divergence of the error bands from the estimated standard
curve as the standard curve approaches a horizontal
asymptote. We see this apparent deficiency in the method
as a plus. This divergence is a clear indicator that concen-
tration estimates in the segment of a standard curve
approaching a horizontal asymptote are highly suspect.

The second panel in this display shows the concentration
coefficient of variation - that is, %CCV = 100 * SE(C|I)/

C(I), or relative error of a concentration estimate - as a
function of concentration. This provides an alternative
view of the error in concentration estimation over the con-
centration range covered by the concentration estimation
equation. A standard curve modeled with a four-parame-
ter logistic function generally will have a bathtub shape
due to the increasing uncertainty in concentration
estimates at the two ends of the concentration range
where the curve approaches horizontal asymptotes.

The third panel in this display features an annotated his-
togram of sample spot intensity estimates on the intensity
axis opposite the scatterplot. In this representation, it is
easy to see the extent of overlap between the distribution
of sample intensity estimates and the range of intensities
that result in concentration s estimates with acceptable
eIToTS.

Results and discussion

To evaluate concentration estimation errors in the exam-
ple analysis, we attempted to quantify or understand
those errors that we can and minimize those errors that we
cannot. We began with data screening. The most signifi-
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Candidate standard curves A review of the graphs of a four-parameter logistic curve (A) and a power law curve (B) sug-
gests that the former shows higher fidelity to the data and is a better choice for the standard curve in this case.

cant anomaly uncovered during this exploratory analysis
of the cancer biomarker data was a decreasing trend in
control spot intensity as a function of array print order
(Figure 1). The trend was quantified using loess, a flexible,
nonparametric method to fit a smooth curve through a
scatterplot to uncover trends in data [22,23]. This trend
suggests that 1) normalizing across arrays would improve
precision; 2) in future experiments, assigning study
groups to arrays should address array print order; and 3)
array printing should be monitored and, if possible, mod-
ified to reduce this source of obscuring variation. In this
case, we normalized for slide-level processing errors by
subtracting from each spot's log,(fluorescent intensity)
the difference between the mean of its slide's control spot
log, (intensities) and the corresponding loess estimate.

Our evaluation addressed the selection and fitting of an
acceptable concentration estimation model. To that end,
we examined two plots. The first displays the fluorescent
intensities of the standards as a function of concentration
(Figure 2A). Two characteristics of the data that signifi-
cantly affect selecting and fitting the model and then inter-
preting the results in a statistically meaningful way are
apparent.

The first is heteroskedasticity, or the increasing variation
in fluorescent intensity with increasing concentration.
Meaningful statistical inferences about concentration esti-
mation errors depend upon correct modeling assump-
tions. To apply propagation of error when estimating and
then interpreting the approximate 95% confidence inter-
vals, we rely on normal distribution theory and require
that the random variability in spot intensities be homoge-
neous across concentrations [28]. In this case, a log, trans-
formation of the intensity estimates stabilizes the
variability across concentrations (Figure 2B).

The second characteristic is the undue leverage of data at
high concentrations due to the increasing separation
between standard concentrations with increasing concen-
tration. Although both are expected (the first due to the
randomness generally observed when counting photons,
and the second due to the use of a concentration dilution
series in the design), each must be addressed to achieve
the best fit of the standard curve and resulting concentra-
tion estimation inferences. A log, transformation of the
concentrations standardizes the separation in concentra-
tions (Figure 2B).
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Modeling diagnostics The points in graphs of the standardized residuals versus the log, standard concentrations (A) and the
standardized residuals versus the estimated log, spot intensities (B) are reasonably well behaved, showing no strong systematic
trends or deviations from the zero line. These indicate that the four-parameter logistic model is acceptable, that subsequent
statistical inferences are reasonable, but that a better model may exist in another model family.

With the heteroskedasticity and undue leverage
addressed, we estimated a standard curve by selecting one
of two models: a four-parameter logistic model (Eqn. 1)
and a power curve model (Eqn. ??). We chose the logistic
model as the model that fits the data best visually and in
terms of the PRESS statistic (Figure 3). The logistic curve
more closely follows the data points, while the power
curve is too high in the lower concentrations and too low
in the higher concentrations. We confirmed our choice
with a review of the modeling diagnostics. In this case, we
examined graphs of the standardized residuals as a func-
tion of concentration and the estimated intensities (Figure
4). In both graphs, the residuals show no significant sys-
tematic trends or deviations from the zero line and vary
uniformly. Further, the preponderance of standardized
residuals falls between -2 and 2, indicating that a statisti-
cal interpretation of the 95% confidence intervals is
warranted.

Figure 5 presents the three-panel diagnostic visualization
for the HER-2 data. HER-2 belongs to the family of epider-
mal growth factor receptors and has been used as a serum
biomarker for the detection of breast cancer. This figure
illustrates how data from a large study measuring HER-2

levels in the serum of women with and without breast
cancer can be visualized using this statistical approach. A
standard curve of HER-2 was generated, and the concen-
tration of HER-2 in 39 samples was determined. To esti-
mate manually the concentration for a sample HER-2 spot
intensity, say I, locate I on the vertical axis, then scan
across horizontally to the standard curve and 95% confi-
dence intervals (Figure 5A). Scan down from these points
to find the appropriate estimated concentration and lower
and upper 95% concentration confidence bounds. In this
manner, the estimated concentration and confidence
interval can be determined.

In the standard curve panel (Figure 5A), we see that near
the asymptotes of the standard curve, the uncertainty
grows much more quickly than the curve, causing the con-
centration confidence bounds to diverge. Although this
divergence is due to the approximation (Eqns 2 and 3), it
is true that near the asymptotes, the uncertainty of the esti-
mated concentration increases greatly. For this reason we
have defined our optimal region of this curve to be the
range of spot fluorescence values such that both the upper
and lower bounds are monotonically increasing in inten-
sity. The boundaries of this range are indicated by the
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Three-panel diagnostic summary The standard curve panel (A) of the three-panel diagnostic summary features a scatter-
plot of the data, the estimated standard curve (black line), the 95% confidence intervals (blue lines), and the region of accepta-
ble errors (grey). For this example, the acceptable segment of the standard curve (i.e., the segment with concentration
estimation errors acceptable to us) covers spot intensities from about 1000 to 7500 intensity units and concentrations from
about 25 to 500 pg/ml. The histogram of sample intensities (B) suggests that about one-fifth of the sample spot intensities is
below the detection limit of about 1000 units, about three-fifths will produce estimated concentrations in the acceptable range,
and one-fifth exceeds the acceptable range. With regard to remeasuring the standards in this experiment or imaging in future
experiments, the three-panel graph suggests that it may be worthwhile to attempt to extend the acceptable range. It also sug-
gests that the normalization between the standards measurements and sample measurements should be revisited. The graph of
the concentration coefficient of variation as function of concentration (C) offers an alternative summary of the estimation
errors over the range of concentrations.
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shaded area and the dashed red lines, which also show the
concentration values corresponding to the acceptable flu-
orescence range. Our optimal concentration range spans
approximately two orders of magnitude.

The histogram (Figure 5B) shows the fluorescence values
of the sample spots for which this curve may best be used
to estimate concentration. The plot shows that many of
the sample values lie outside our optimal region. The
researcher must then decide if too many of these values lie
outside this range and, if so, what can be done to fix this
problem. Nevertheless, we were able to compare the HER-
2 concentrations and found a 3.5-fold increase in HER-2
protein levels in women with stage I1l/stage IV breast can-
cer (7 samples) compared to women without breast can-
cer (12 samples).

The concentration coefficient of variation, or the ratio of
the concentration estimation error to the corresponding
estimated concentration, offers an alternative expression
to a confidence interval as a means to evaluate concentra-
tion estimation error. A graph of this estimation error as a
function of concentration offers a comprehensive sum-
mary of the variation in the concentration coefficient of
variation over the concentration range (Figure 5C).

Presenting the results in this type of plot allows us to
immediately look for several potential problems. First,
does the fitted curve seem reasonable, given the data
points to which we are fitting? We also can determine
whether most of the unknown sample data fall within the
acceptable range of the curve. The usable concentration
range is made clear and, if it is too limited in range, it is
immediately apparent. If problems are identified, several
fixes are available, including changing the settings on the
imager or using a different concentration range to create
the standard curves.

Conclusions

Evaluation of errors in estimating concentrations is
important to establishing confidence in protein concen-
tration estimates. Propagation of error provides a straight-
forward approach to estimating concentration estimation
errors in ELISA microarray experiments. When presented
in a simple multi-panel visualization, the propagated
errors provide valuable information about individual
concentration estimates, the applicability of the estimated
standard curve, quality of the experiment, and the
conduct of the ELISA microarray processing. The visuali-
zation provides a rapid assessment of the quality of the
data, particularly in regard to the goodness of fit of the
estimated standard curve and its capability to estimate
concentrations over the observed range of intensities of
biological samples.

http://www.biomedcentral.com/1471-2105/6/17
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