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Abstract
Background: Microbial genomes contain an abundance of genes with conserved proximity
forming clusters on the chromosome. However, the conservation can be a result of many factors
such as vertical inheritance, or functional selection. Thus, identification of conserved gene clusters
that are under functional selection provides an effective channel for gene annotation, microarray
screening, and pathway reconstruction. The problem of devising a robust method to identify these
conserved gene clusters and to evaluate the significance of the conservation in multiple genomes
has a number of implications for comparative, evolutionary and functional genomics as well as
synthetic biology.

Results: In this paper we describe a new method for detecting conserved gene clusters that
incorporates the information captured by a genome phylogenetic tree. We show that our method
can overcome the common problem of overestimation of significance due to the bias in the genome
database and thereby achieve better accuracy when detecting functionally connected gene clusters.
Our results can be accessed at database GeneChords http://genomics10.bu.edu/GeneChords.

Conclusion: The methodology described in this paper gives a scalable framework for discovering
conserved gene clusters in microbial genomes. It serves as a platform for many other functional
genomic analyses in microorganisms, such as operon prediction, regulatory site prediction,
functional annotation of genes, evolutionary origin and development of gene clusters.

Background
In microorganisms, it is often seen that genes tend to
locate in conserved proximity in a number of genomes
forming conserved gene clusters [1]. Further analyses
often uncover biologically meaningful relationships
between genes with conserved proximity [1-3]: they are
often co-transcribed as operons [4], or co-regulated as part
of a larger biochemical network [5-7]. Examples include
the widely present DNA restriction and modification gene

pairs [8], which provide a way of defending against bacte-
riophage and other foriegn DNA, and the two component
systems which respond to changes in environmental con-
ditions [9]. Thus, delineation of conserved gene clusters
will help reveal functional relationships between genes
within them [10]. In addition, the conserved gene clusters
provide an invaluable resource for corroborating the
growing number of co-expressed gene sets obtained from
microarray based mRNA expression experiments.
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The increasing accumulation of genome sequence data
has facilitated the practice of finding conserved gene clus-
ters since both similarity and synteny information can be
easily obtained [11]. Various computational methods for
finding clusters have been described [1,6,12-16]. An
important issue has been the estimation of significance of
the observed conserved proximity. It is generally accepted
that phylogenetic distances between genomes largely
determine the significance: conservation is deemed more
significant when a cluster appears in distantly related
genomes than in closely related ones. The rationale is that
the greater the length of time a gene cluster has persisted,
the more it has resisted dissolution by recombination
events, and the stronger the selective pressure to maintain
it. Previous published methods have incorporated phylo-
genetic information into the estimation of significance by
using either 16S RNA distance [1] or statistical methods
[12]. However, few efforts have focused on the develop-
ment of a full evolutionary model to describe conserved
gene clusters. Empirical approaches include grouping
closely related genome into clades [7] or choosing a sub-
set of genomes based on knowledge of the evolution of
microorganisms [14]. Although the latter approaches are
efficient in finding non-trivial conserved gene clusters,
they do not scale automatically, which is problematic
with more and more sequenced genomes.

Moreover, sequenced organisms are often close relatives
of known model organisms or pathogens selected for bio-
medical reasons, so phylogenetic coverage can be rather
sparse and biased. For example, there are many more close
relatives of Escherichia coli than those of Helicobacter pylori
in the genome database. Thus, simply counting the
number of genomes where a gene cluster is conserved
often overestimates the significance of conservation of a
cluster observed in microorganisms such as E. coli.

Delineation of evolutionarily conserved gene clusters
must take into account a stochastic model of evolution of
these clusters. In this paper we used a simplified stochastic
generative evolutionary process where an organism inher-
its a gene cluster from its immediate ancestor with a prob-
ability proportional to the evolutionary distance in the
tree. This model facilitates an efficient computation of the
probability that a particular pattern of conservation in
many genomes is observed. In particular, observing a
large number of occurrences in closely related genomes
will not carry the same significance as the occurrence of a
cluster in a wider evolutionary phylum.

We define a tree-based probabilistic conservation score
and show that it provides a quantitative measure the
strength of proximity constraints in genome evolution
and serves as a better predictor of functional links among
genes than more naïve methods. It also sheds insight into

the relationship between evolutionary development and
the functional selection.

Results
We applied our computational pipeline to 127 microbial
genomes which were obtained from the NCBI website (2/
2004). Pairwise genome comparisons of translated open
reading frames were performed using BLASTP [17] and
putative orthologs between genomes were identified as
reciprocal best hits (see Methods). Conservation scores Cu
and Cd were assigned to each gene (see Methods). Intui-
tively, Cu measures the strength of the conservation
between the gene under consideration and its upstream
neighboring genes while Cd does the same with its down-
stream neighboring genes on the chromosome. The
higher the Cu or Cd of a gene is, the more significant its
conservation with its upstream or downstream neighbors.
Conserved gene clusters were then detected using a con-
servation score cutoff (see Methods section). The com-
plete results of our method on all microbial genomes
included can be accessed at [18]. Results using more than
200 genomes available now are being incorporated into
the database.

Accounting for genome phylogeny can correct for 
databases bias
During evolution, genomes undergo frequent changes
such as the rearrangement and exchange of genes. For
those organisms that have diverged recently, such changes
have had little time to occur so that vertically inherited
synteny cannot be distinguished from functionally
induced proximity information. The false positive rate
could therefore drastically increase as more and more
genomes from the same taxonomic group are included in
the comparison. Early methods ignored the phylogenetic
relationship between genomes and assumed an inde-
pendence between them, which could blur the distinction
between gene clusters truly constrained by selection pres-
sures and those that merely reflect vertical inheritance.
The phylogenetic method we describe here is designed to
integrate genome phylogenetic information into consid-
eration and alleviate the common problem of overestima-
tion. For illustration we devised an experiment and
compared the performance of our method with the more
naïve method where each genome is treated equally,
which we refer to hereafter as "simple counting method".
First, we chose E. coli K12 as the query genome and a
group of 6 reference genomes including 3 closely related
ones (E. coli O157H7, E. coli CFT073 and E. coli O157H7
EDL933) and 3 distantly related ones (Mycobacterium
tuberculosis CDC1551, Staphylococcus aureus Mu50 and
Bacillus subtilis). We then examined the genomic region of
the entCEBA operon in E. coli K12 [19] and used two
methods to calculate the upstream conservation score
(Cu) as defined in the methods section. In the simple
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Improvement of signal-to-noise ratio of the phylogenetic method over the simple methodFigure 1
Improvement of signal-to-noise ratio of the phylogenetic method over the simple method. The upper conserva-
tion scores (Cu) profiles for the genomic region surrounding ent operons in Escherichia coli are shown. (a) the simple method; 
(b) the phylogenetic method.
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counting method, when a gene and its upstream gene are
also neighbors in a reference genome, the score for that
gene will be incremented by 1. Figure 1a and 1b show the
upstream conservation score profiles obtained from the
simple counting method and our phylogenetic method
respectively. In Figure 1a, the scores of the entCEBA
operon genes barely stands out from those of the flanking
genes while in Figure 1b there is a clear peak correspond-
ing to the entCEBA operon. The signal to noise ratio, as
estimated from the peak value and the base line of the Cu
profile, is about 3:1 for the phylogenetic method (Figure
1b) but only about 1.3:1 for the simple method (Figure
1a).

The signal to noise ratio increases as more genomes are
added to the reference set. The Cu and Cd profiles are
shown in Figure 2 for the same genomic region around
the entCEBA operon as we progressively include more
genomes in the reference set. While the scores of the genes
in the operon increase as more reference genomes are

included, the conservation scores of the flanking genes
increase much more slowly (Figure 2). Notice that Cu for
entC and Cd for entA do not increase as much as other ent
genes since they are the boundary genes of the ent operon.
Figure 2 shows that the phylogenetic method provides an
improved framework for detecting conserved gene clusters
as the number of genomes in the database increases.

Conserved gene clusters inferred from orthology or 
similarity
It is known that using reciprocal best BLAST hits is a con-
servative method of identifying putative orthologous
genes between two genomes. The advantage of using this
conservative method is that any pairs identified are very
likely to be true orthologs and share similar molecular
and physiological function. However, for genes that have
undergone fast evolution and for paralogous gene groups,
which are quite common in bacterial genomes, the recip-
rocal relationships are usually obscured [20]. As a result,
significantly conserved clusters or parts of a cluster may be

Conservation score (Cu and Cd) profiles for the entCEBA genomic region using increasing number of reference genomesFigure 2
Conservation score (Cu and Cd) profiles for the entCEBA genomic region using increasing number of reference genomes.
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missed if pairwise reciprocal connections are used. This is
illustrated in Figure 3, which shows the upstream conser-
vation score (Cu) profiles for a genomic region containing
the fhu operon [21] of E. coli. Circles are calculated from
the similarity data (BLAST E-value < 1E-5) and the squares
are from the orthology data. For most genes where the
orthology relationship is clear, scores calculated from the
similarity data are equal to those from the orthology data
(Figure 3). For those genes with no clear orthologs in
other genomes, scores from similarity data are higher than
those from orthology data. For instance, the Cu of the fhuC
gene from similarity data exceeds the threshold (5.0 used
in this paper), but its Cu from the orthology data does not.
This is because fhuA, the immediately upstream gene of
fhuC, belongs to a paralogous gene family with 9 mem-
bers in E. coli and its reciprocal best hit cannot be found

in other genomes. As a result, the gene pair (fhuA, fhuC) is
not identified as a widely conserved orthologous pair. On
the other hand, only using the similarity data may intro-
duce a higher false positive rate in making predictions
about functional dependence, as discussed below.

Application in operon prediction
To test the predictive value of our method for inferring
operons, we took a compiled list of E. coli operons from
the RegulonDB [22]. A total of 345 operons with multiple
genes were extracted from the RegulonDB dataset. Genes
that are not in the RegulonDB set and have intergenic
regions of larger than 100 nucleotides on both sides com-
prise the negative set (1342 genes). Using different cut-
offs, we calculated the sensitivity (Sn) and the specificity
(Sp) by:

Upstream conservation score calculated from orthology and similarity data for a genomic region surrounding fhuABCD operon in Escherichia coliFigure 3
Upstream conservation score calculated from orthology and similarity data for a genomic region surrounding fhuABCD operon 
in Escherichia coli.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

pcnB yadB dksA sfsA yadP hrpB mrcB fhuA fhuC fhuD fhuB hemL yadQ yadR yadS yadT pfs dgt htrA yaeG yaeH

genes on chromosome

C
u

from similarity data

from orthology data
Page 5 of 14
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:243 http://www.biomedcentral.com/1471-2105/6/243
where TP and FP are the number of genes that are correctly
or wrongly predicted to be in operons, and TN and FN are
the number of genes that are correctly or wrongly pre-
dicted not to be in operons. Notice that genes in operons
must reside on the same strand while genes in clusters
detected by our system may come from both strands. Nev-
ertheless, the high percentage of conserved clusters that
overlap with operon dataset suggests our ability to iden-
tify clusters that are conserved due to the transcriptional
selection pressure and demonstrates the potential use of
the system in the task of operon prediction.

Figure 4 compares the performance of the two methods
on the operon dataset by showing the receiver operating
characteristic (ROC) curves. Our method using either
orthology data or similarity data consistently outperforms
the simple counting method, which treats each observa-
tion with equal weight (Figure 4). As a result, when using
5.0 (P-value < 2.4E-4, default cutoff) as the threshold for
making operon predictions using orthology data, our
method gives 65% sensitivity and 85% specificity in E. coli
(Figure 4). For the same cutoff value (e.g., 4.0 or 5.0), the
results using similarity data give better sensitivity but
worse specificity than the results using orthology data
(Figure 4). Higher specificity is achieved when a larger cut-
off is used. For instance, when a reported cluster has a
score (based on orthology) larger than 6.0 (P-value <
1.7E-4), there is an 89% chance that this cluster corre-
sponds to an operon.

Statistics of conserved gene clusters across genomes
Table 1 shows the statistics of conserved gene clusters in a
number of microbial genomes where we have applied our
method. Microbial genomes appear to have a highly spe-
cialized distribution of conserved clusters (Table 1). It
appears that in general 10–40% of all the genes in a
genome lie in conserved gene clusters (based on orthol-
ogy data). Among the identified clusters, there are very
few that are widely conserved across all species or con-
served with invariant gene content (Y.Z. et al, unpub-
lished results). Although it appears that in several cases
the high content of conserved gene clusters occurs in rela-
tively small genomes (Table 1), the overall correlation
between the genome size and the proportion of conserved
gene clusters is not significant (r2≈0.1).

Case studies of conserved gene clusters
Conserved gene clusters, once identified, can be used to
make functional predictions for the genes within them,
and to hypothesize interactions between their products.
For example, in the genome of Mycobacterium tuberculosis

CDC1551, we found a four-gene cluster encoding putative
homologs of (1) mraZ (MT2224), (2) mraW/yabC
(MT2223), (3) ftsL/mraR (MT2222), and (4) ftsI/pbpB
(MT2221). This cluster is widely conserved among both
gram-positive and gram-negative bacteria, and in E. coli
these four genes comprise the start of a known operon of
cell division and cell envelope genes [23]. FtsI and FtsL are
known to be essential for the assembly of the cell division
septum in E. coli. MraW has been shown to be a methyl-
transferase whose substrates are localized to the cell enve-
lope [24]. Furthermore, it has been shown that lack of S-
adenosylmethionine (SAM) leads to a cell division defect
in E. coli, with one possible explanation being that SAM
serves as a methyl donor in a required methylation event
[25]. The location of mraW within this cluster suggests it
may encode the methylase involved in such an event, pos-
sibly modifying the FtsL and/or FtsI proteins. Indeed,
there is experimental data to suggest this [23], although it
has not yet been conclusively shown.

In addition to conserved gene clusters that are widely dis-
tributed in many genomes, we also find statistically signif-
icant conserved gene clusters that are present in only a few
species. Instead of the number of genomes, the large evo-
lutionary span across genomes contributes to the signifi-
cance of the conservation. Due to their limited
occurrence, these clusters are difficult to find in the data-
base using conventional methods. Figure 5 gives two
intriguing examples: one is conserved in 4 genomes (Fig-
ure 5a) and the other is conserved in only 3 genomes (Fig-
ure 5b). In both examples the large evolutionary span is
reflected by the fact that they are conserved in both bacte-
rial and archaeal species.

The gene cluster in Figure 5a was originally found and
characterized in Sinorhizobium meliloti and was shown to
synthesize a special type of siderophore, rhizobactin
1021, involved in iron uptake [26]. It is largely conserved
in another three genomes: one is an archaea, Halobacte-
rium sp., and the other two are bacteria, Nostoc sp. and
Bacillus halodurans. Notice that this cluster is absent in
other Bacilli species (Bacillus subtillis, etc.) despite their
closeness to Bacillus halodurans. On the other hand, Bacil-
lus subtilis is known to possess the dhb operon responsible
for synthesizing a different type of siderophore, 2,3-dihy-
droxybenzoate [27], and this operon is absent in Bacillus
halodurans. Figure 5a suggests that the other three micro-
organisms may possess the ability to synthesize rhizobac-
tin 1021 or a siderophore with a similar structure,
reflecting a requirement for iron in the life cycles of these
species.

Figure 5b depicts a three gene cluster that is conserved in
Pirelulla sp., Methanosarcina acetivorans and Oceanobacillus
iheynesis. One of the three genes is annotated as a
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cellulosomal protein. A BLAST search reveals its similarity
to cotH, which has been characterized in Bacillus subtilis
and is essential for spore coat assembly [28]. The other
two are conserved hypothetical genes in Genbank with no
functional information although they are both predicted
to be transmembrane proteins (by TMpred). The conser-
vation in Figure 5b suggests the two unknown genes are
functionally related to cotH. We note that these conserved
gene clusters that appear in just a few genomes with a
large evolutionary span could be instances of horizontal
transfer.

Functional enrichment in conserved gene clusters
If conserved gene proximity indeed implies relatedness,
we expect to see functional enrichment in the list of gene
clusters found by our method. We used the 18 functional
codes of COG [29] as a crude measure of this, counting
gene pairs in which both members belong to the same
COG category. For 39 genomes examined, we determined
the fraction of gene pairs found by our method (m/n),
then performed a one-tailed Fisher's exact test to deter-
mine the probability of observing at least m gene pairs
with the same functional code among n pairs selected

Receiving operating characteristic (ROC) curves of different methods on the RegulonDB operon datasetFigure 4
Receiving operating characteristic (ROC) curves of different methods on the RegulonDB operon dataset. 
Curves are color-coded for different methods. Points using cutoffs of 4.0 and 5.0 for our method are highlighted on the curve.
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Table 1: Statistics of conserved gene clusters in a number of microorganisms

Genome Total genes Total genes in 
clusters

Total detected 
clusters

Percentage Average cluster 
size

Chlamydophila pneumoniae J138 1070 209 58 0.20 3.6
Mycobacterium tuberculosis CDC1551 4187 547 161 0.13 3.4
Sinorhizobium meliloti 6205 841 230 0.14 3.7
Clostridium acetobutylicum 3672 707 166 0.19 4.3
Mycobacterium tuberculosis H37Rv 3918 543 156 0.14 3.5
Staphylococcus aureus Mu50 2748 757 174 0.28 4.4
Aeropyrum pernix 2694 160 44 0.06 3.6
Clostridium perfringens 2723 633 147 0.23 4.3
Mycoplasma genitalium 480 153 40 0.32 3.8
Agrobacterium tumefaciens C58 5301 805 221 0.15 3.6
Deinococcus radiodurans 3102 389 117 0.13 3.3
Mycoplasma pneumoniae 688 167 47 0.24 3.6
Streptococcus pneumoniae R6 2043 546 151 0.27 3.6
Agrobacterium tumefaciens C58 UWash 5402 832 224 0.15 3.7
Escherichia coli K12 4289 1313 287 0.31 4.6
Mycoplasma pulmonis 782 168 52 0.21 3.2
Streptococcus pneumoniae TIGR4 2094 534 147 0.26 3.6
Escherichia coli O157H7 5361 1327 288 0.25 4.6
Neisseria meningitidis MC58 2025 457 129 0.23 3.5
Streptococcus pyogenes 1696 501 136 0.30 3.7
Aquifex aeolicus 1553 178 57 0.11 3.1
Sulfolobus solfataricus 2977 244 65 0.08 3.8
Archaeoglobus fulgidus 2407 250 73 0.10 3.4
Nostoc sp 6129 284 88 0.05 3.2
Sulfolobus tokodaii 2826 242 65 0.09 3.7
Bacillus halodurans 4066 952 219 0.23 4.3
Borrelia burgdorferi 1709 214 57 0.13 3.8

Examples of gene clusters that are conserved in only a few genomesFigure 5
Examples of gene clusters that are conserved in only a few genomes.
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randomly from all gene pairs in the genome. Gene pairs
including at least one gene with no functional informa-
tion (i.e., having no assigned category, or designated as
general function or unknown function) were excluded
from the analysis.

A partial list of the results of this analysis is shown in
Table 2, with the fraction of enriched clusters and the
associated P-values in columns 2 and 3, respectively. In all
cases, these P-values are extremely significant (P << 0.01),
indicating that the gene pairs obtained by our method are
much more likely to be functionally related than expected
by chance.

Using the same methodology, we divided the gene pairs
into colinear (on the same strand) and divergent (on
opposite strands) pairs to see if the bulk of functionally
enriched pairs were of one type or the other. The P-values
for colinear pairs were similar to those for all pairs, sug-
gesting the vast majority of gene pairs captured by our
method might be operons (data not shown). On the other
hand, there are only limited numbers of divergent pairs
and the P-values for divergent pairs are often insignificant
(data not shown).

Functional enrichment analysis has been also applied to
the results from the simple counting method, using a cut-
off of 10 organisms (of 127 total). The results are shown
in Table 3, columns 4 and 5. Although there is no equiva-
lency between them (one is an absolute number, whereas

the other is a log-odds score), the number of gene pairs
captured by the two methods with their respective cutoffs
were similar for many of the genomes examined (Table
3). In most cases, the simple counting method also
yielded significantly functionally enriched gene pairs, as
indicated by the P-values in column 5. For most genomes,
the P-values of the simple counting method are much
smaller than those from the phylogeny method (column
6 of Table 2). This is especially true for those genomes
which have many close relatives in the database, e.g., E.
coli and other Enterobacteriaceae. In those cases, we also
observe a large increase in the number of pairs obtained
by the simple counting method. We expect this increase to
consist largely of functionally unrelated false positives
that are conserved because of close phylogenetic distance.

We recognize the limitations of using COG codes to cap-
ture functional relationships, and our results will certainly
include both false positives and exclude false negatives.
For example, consider a functionally related gene pair
consisting of a transcriptional regulator and the gene it
regulates. These genes would likely be assigned different
COG codes, so such a functional relationship would not
be captured by this analysis. Therefore, to independently
verify our results with COG, we performed a similar anal-
ysis using KEGG pathway information in E. coli, the
organism with the largest number of KEGG pathway
assignments. The overrepresentation statistics for E. coli
using KEGG are similar to our results using COG and thus
support the above discussion (data not shown).

Table 2: Statistics of functional enrichment

Phylogeny Method Counting Method

Organism Fraction P-value Fraction P-value P-value ratioa

Aeropyrum pernix 39/45 6.33E-12 40/46 2.21E-12 0.349
Aquifex aeolicus 80/107 1.23E-32 81/111 8.71E-32 7.08
Bacillus subtilis 329/503 1.86E-44 363/601 4.10E-38 2.20E+06
Buchnera sp. 167/246 1.28E-31 181/307 1.90E-23 1.48E+08
Chlamydia trachomatis 95/132 3.94E-24 123/295 1.88E-03 4.77E+20
Chlamydophia pneumoniae 104/137 5.03E-30 135/327 4.29E-03 8.53E+26
Deinococcus radiodurans 173/221 4.07E-57 167/218 5.56E-52 1.37E+05
Escherichia coli K12 439/750 8.92E-48 606/1553 0.19 2.13E+46
Halobacterium sp. 127/150 7.60E-38 125/145 6.27E-39 0.0825
Helicobacter pylori 26695 120/151 1.11E-37 122/158 4.92E-36 0.443
Lactococcus lactis 182/277 2.79E-28 196/319 4.19E-25 1500
Methanococcus janaschii 68/83 5.82E-22 64/79 5.91E-20 102
Mycobacterium tuberculosis 203/293 1.05E-42 226/347 1.09E-41 10.4
Mycoplasma pulmonis 75/98 3.61E-11 77/103 1.44E-10 3.99
Neisseria meningitidis MC58 150/222 1.25E-51 156/241 9.14E-51 7.31

a Ratio is P-value for functional enrichment by the phylogeny method divided by P-value for functional enrichment by the counting method [i.e., 
(column 3) / (column 5)].
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Discussion
There is a general problem when comparing sequenced
genomes because the samples of such genomes presently
available are not uniformly distributed across the micro-
bial kingdoms. Rather, several groups of related bacteria,
such as the Enterobacteriaceae, are over-represented. This
means that the significance of a feature found in organ-
isms from this group must be interpreted with caution
because it may be conserved by simple lineage effects
rather than by functional selection. Most papers dealing
with this problem either ignore it or simply remove the
multiple members of the family and settle for a single rep-
resentative example. Both methods necessarily lead to
inaccuracies in estimating significance. In this paper, we
have attempted to overcome this problem by using a
method that takes into account the phylogenies of the
individual members of related families. We show that it
results in a reduction in the false positive rate over the
simple counting method. We have not attempted to com-
pare it to the selective sampling method, where one
organism is used to represent a phylum, because given the
wide variability usually observed within a phylum, the
results from that approach will vary widely depending
upon which genome is selected as the exemplar.

We have applied our new phylogenetically informed
method to the problem of detecting conserved gene clus-
ters. Such clusters are generally believed to reflect conser-
vation of biological function in that often the gene
products from the various genes in the cluster are involved
in closely-related pathways. This may include the tradi-
tional operons known to encode the biosynthetic path-
ways of intermediary metabolism, or they may reflect the
fact that enzymes responsible for post-translational mod-
ification will sometimes affect neighboring gene products.
Other functional connections may also be found in these
clusters. This can be a powerful tool in making predictions
about gene products that might otherwise be recalcitrant
to direct similarity analysis. Examples here include the
restriction-modification enzymes where the DNA methyl-
transferases often show reasonable degrees of similarity
that enable them to be identified, whereas the genes for
the restriction enzymes evolve rapidly and usually cannot
be identified on the basis of sequence similarity. Never-
theless, the genes are usually clustered. In addition, the
current methodology is not necessarily restricted to the
conserved synteny between genes. It may be applied to
conserved synteny of other functional elements in
genomes such as cis-elements, riboswitches, etc.

In our current methodology we have made several simpli-
fying assumptions of which the most important might be
to ignore horizontal gene transfer. While this is not a
problem if an entire cluster is transferred horizontally, it
does become a problem for those "hitchhiking" genes that

may be transferred with the cluster. Nevertheless, the
results we report seem promising and we do not view this
as being a serious limitation at the present time.

The mode of phylogenetic inference is an important con-
sideration in the type of analysis presented here. The basis
for the tree underlying the analysis is not restricted to
shared gene content, as we have employed here, but could
alternatively be based on 16S RNA sequences, gene con-
tent, gene order, genome statistics, or coding sequences.
Our current method is oblivious to "local" changes such
as rearrangements inside the cluster, or differential selec-
tion within individual coding sequences. For example, it
is possible that genes in the cluster might have different
gene trees from each other. The choice of the best phylo-
genetic methodology in this context is an important
follow-up and we feel that the final solution will combine
the benefits of multiple methodologies in a single system.

Conclusion
The methodology and results that we present here should
be generally useful in any situation where the functional
significance of conserved genes or clusters is being inves-
tigated, for example, as a way of cross-validating co-
expressed genes inferred from many microarray
experiments or as a starting point for the assembly of gene
networks. As more and more genomes are sequenced, the
approach described here should be generally applicable
and it will scale well computationally.

Of particular significance in this paper has been our find-
ing that many of the clusters we have observed contain
unknown genes with no biological function currently
assigned. In these cases it seems reasonable to hypothesize
that the product of the unknown gene has a function
closely related to the functions of the known genes. Such
a function may be a key enzymatic step in a biosynthetic
pathway, a key regulatory function or an important post-
translational modification. We have assembled a database
of conserved gene clusters, called GeneChords http://
genomics10.bu.edu/GeneChords[18], with a simple user
interface to permit its rapid query. This will be described
in detail in a separate publication.

Methods
Once a genome is chosen for analysis, our algorithm con-
sists of the following steps:

a) For each gene pair (as defined below) in the genome, a
tree-based conservation score is computed;

b) For each gene in the genome, two neighbourhood con-
servation scores are computed, measuring the strength of
proximity constraint of the gene with its upstream or
downstream neighboring genes;
Page 10 of 14
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c) Adjacent genes with conservation scores between them
exceeding some threshold are joined into conserved
clusters.

The details are described in the following sections.

Definition of conserved neighboring gene pairs
For simplicity let us consider the problem of identifica-
tion of a conserved gene pair, the building block of our
gene clusters. We define a gene pair as two genes with no
more than k open reading frames separating them along
the chromosome (k = 1 in this paper). In contrast to the
operon identification procedure [12], the two genes in a
pair do not need to reside on the same strand of the chro-
mosome. When orthologs of a gene pair form a pair in
other genomes, the pair is considered conserved. Orthol-
ogous genes are often detected as reciprocal best hits
(BLAST E-value < 1E-5) between the two genomes by
sequence comparison software, such as BLAST [17]. How-
ever, evolutionary events such as gene duplication fol-
lowed by diversification could obscure the reciprocal
relationship, resulting in relatively high false negative
rates in the identification of orthologous genes. To relieve
this concern, we loosen the criteria to include genes with
high similarity (BLAST E-value ≤ 1E-5) (see Results). How-
ever, unless specifically pointed out, the results presented
are calculated on the basis of orthology data.

Computation of conservation scores using phylogenetic 
information
We assign a score to a conserved gene pair by computing
the probability a particular pattern of conservation is
observed in analyzed genomes based on a stochastic
model of evolution. Before introducing the detailed
implementation, we first lay out the theoretical founda-
tion of the method and point out our assumptions.

As an example, consider the rooted bifurcating phyloge-
netic tree shown in Figure 6. The leaf nodes Q, A, B, C and
D represent extant genomes, and internal nodes X0, X1, X2
and X3 are inferred ancestor genomes. Let us assume a
gene pair in Q is conserved in A, B and C but not D. We
model evolution as a stochastic process represented as a
probabilistic graphical model in the form of a tree [30].
We associate a binary random variable with each node in
the tree, assigning it a value 1 if the specific gene pair is
conserved in the genome and 0 if absent. The values of
leaves in the tree are determined by our initial gene cluster
identification procedure.

We assume that the probability of a genome acquiring a
gene cluster given its absence in the ancestor is negligible,
i.e., P(child = 1|parent = 0) = 0. This is a simplifying
assumption which considers the predominance of vertical
inheritance and omits the negligible probability of inde-
pendent formation of identical clusters. Under this
assumption the most recent common ancestor of all the
leaves that are assigned to 1 is also set to 1. Accordingly,
in the Figure 6 tree model, X0 is set to 1. We compute the
significance of the conservation based on the probability
of observing the specific gene cluster given that the closest
common ancestor has it, that is,

P(conservation) = P(Q = 1, A = 1, B = 1, C = 1, D = 0|X0 = 1)

In our initial model we do not take into account the
genomes that do not possess the cluster, although it is not
difficult to do with the appropriate assumption on the
conditional probability of loss of a cluster in a descendant
of an organism that has it. Thus a leaf node D that lacks
the cluster is dropped from further calculation. Now we
have

P(conservation) = P(Q = 1, A = 1, B = 1, C = 1|X0 = 1)

The tree in Figure 6 can also be interpreted as a Bayesian
network in a tree form [31,32]. In particular, the vertical
inheritance along any path in the tree is a generative prob-
abilistic process, and the probability that a child inherits a
gene pair is only dependent on its immediate evolution-
ary ancestor. More specifically, we associate a conditional
probability table with each edge of the tree enumerating
the probability of the presence or absence of a gene pair in

A simple genome phylogenetic treeFigure 6
A simple genome phylogenetic tree.
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Q A B C
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a genome given the state of its immediate ancestor.
According to the tree model, we have

Assuming independence between the siblings, the above
can be rewritten as

Note that this derivation is a simple generalization of the
forward algorithm [30,32,33]. According to our vertical
inheritance assumption, the probability for a child to
have a gene pair is approximately zero if the immediate
ancestor does not have the gene pair. After applying this
assumption and evaluating the equation recursively, the
above formula reduces to

P(Q = 1, A = 1, B = 1, C = 1|X0 = 1) = P(Q = 1|X2 = 1)·P(A
= 1|X2 = 1)·P(B = 1|X3 = 1)·P(C = 1|X3 = 1)·P(X2 = 1|X0 =
1)·P(X3 = 1|X0 = 1)

More generally, for a gene pair found in a set of genomes
and a given genome phylogeny tree T, the following sim-
ple relation holds

where Y is an immediate ancestor of X in T.

Taking the negative logarithm of both sides, we have

Thus the probability of conservation of a gene cluster in a
given tree is simply the sum of log conditional probabili-
ties of all the branches on paths leading to the genomes
where the gene pair is present.

We further assume that log(P(X = 1|Y = 1) is proportional
to the length of the branch that connects X and its parent
Y, that is, log(P(X = 1|Y = 1)) ~ d(X,Y). Thus,

where Y is the parent of X. The summation of all the tree
branches in the phylogenetic tree is proportional to the
logarithm of the overall probability.

In our implementation, the genome phylogenetic tree is
built by using the genome distance metric based on the
shared gene content suggested by Snel and coworkers
[34]. We first calculate the pairwise distance between
genomes by d = -ln(s), where s = (number of shared
orthologs)/(average of total gene numbers in two
genomes). In this implementation, Escherichia coli and
Salmonella typhi, have a distance of 0.35, while Escherichia
coli and Bacillus subtilis, which are much more distantly
related, have a larger distance of 1.18. The genome phylo-
genetic tree is then constructed from the pairwise distance
matrix using the neighbor joining algorithm [35].

For each gene pair, a genome phylogenetic tree is built on
the genomes that have the pair, the conservation score of
the gene pair is the summation of all the branch lengths
in the tree. Notice that another nice property of the score
is that it is independent of the query genome.

Detection of long conserved gene clusters
We now extend the methodology by using the gene pair
conservation to detect longer conserved gene clusters. For
the gth gene on the query chromosome, we estimate its
upstream conservation score (Cu) and downstream con-
servation score (Cd) by:

where each s(g-i, g) is the conservation score assigned to
gene pair (g-i, g) calculated using the method above; k is
the maximum number of intervening genes allowed in a
conserved gene pair (k = 1 in this paper). As a result, each
gene will be associated with two numerical scores, meas-
uring the extent of conservation between itself and its
upstream or downstream neighboring genes respectively.

The statistical significance of the conservation scores is
inferred from a bootstrap simulation. For each genome,
the null distribution is computed by calculating the con-
servation scores of the randomly shuffled genome. The P-
value cutoff is set at about 1E-4 in this paper, which corre-
sponds to a conservation score of about 5.0 for most
genomes. Notice that P-values are related to genome size
since genes in very small genomes may have higher
chance of forming conserved gene clusters. For instance,
conservation score of 5.0 corresponds to a larger P-value
(3.5E-3) in a small genome Mycoplasma genitalium than in
E. coli (2.4E-4).

For genes that are at the boundaries of the cluster, only
one of the conservation scores will exceed the threshold,
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which provides a convenient way of detecting the bound-
aries. We detect the maximal conserved gene clusters by
scanning the genomes sequentially. The gene with Cd over
the threshold, but not for its upstream genes, marks the
start of a new cluster. The gene whose downstream genes
have Cu scores below the threshold mark the end of the
cluster. All the genes between are considered as part of the
cluster.

More sophisticated dynamic programming procedures, or
single-linkage clustering algorithm to identify maximal
conserved gene clusters are also possible.

The main program was written in C and used the LEDA
library for the manipulation of trees. Scripts for generating
genome BLAST data and for analyzing data were written in
Perl. GeneChords was built with PostGreSQL. All scripts
are available upon request from  the authors.
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