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Abstract

Background: Protein tertiary structure can be partly characterized via each amino acid's contact
number measuring how residues are spatially arranged. The contact number of a residue in a folded
protein is a measure of its exposure to the local environment, and is defined as the number of C,
atoms in other residues within a sphere around the Cgzatom of the residue of interest. Contact
number is partly conserved between protein folds and thus is useful for protein fold and structure
prediction. In turn, each residue's contact number can be partially predicted from primary amino
acid sequence, assisting tertiary fold analysis from sequence data. In this study, we provide a more
accurate contact number prediction method from protein primary sequence.

Results: We predict contact number from protein sequence using a novel support vector
regression algorithm. Using protein local sequences with multiple sequence alignments (PSI-BLAST
profiles), we demonstrate a correlation coefficient between predicted and observed contact
numbers of 0.70, which outperforms previously achieved accuracies. Including additional
information about sequence weight and amino acid composition further improves prediction
accuracies significantly with the correlation coefficient reaching 0.73. If residues are classified as
being either "contacted" or "non-contacted", the prediction accuracies are all greater than 77%,
regardless of the choice of classification thresholds.

Conclusion: The successful application of support vector regression to the prediction of protein
contact number reported here, together with previous applications of this approach to the
prediction of protein accessible surface area and B-factor profile, suggests that a support vector
regression approach may be very useful for determining the structure-function relation between
primary protein sequence and higher order consecutive protein structural and functional

properties.
Background Approaches include comparative modelling, threading
Prediction of protein three-dimensional structure from  and fold recognition methods. One protein structural fea-
primary sequence is the central problem in structural bio-  ture is of particular interest here, namely, residue contact
informatics. One approach is to use known structure ho-  number (CN) which can be used to enhance protein fold
molog proteins as templates to determine the tertiary = recognition [1]. This measure has also been regarded as
structures of novel proteins of unknown structure.  the conserved solvent exposure descriptor of similar folds
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without a common evolutionary origin [2]. Furthermore,
contact number may be used to determine the energy
function allowing molecular dynamics simulations of
protein structures [3]. Here, we seek to use protein contact
number to assist with the tertiary fold prediction of novel
proteins for which an accurate functional relationship
between a protein's primary sequence and its residues'
contact numbers must be determined. To fulfil the task,
we use a new method, the so-called support vector regres-
sion, to approximate the sequence-contact number rela-
tionship. We demonstrate that, as a result, we achieve
more accurate predicted contact numbers than have been
achieved to date.

The contact number, or coordination number, of a given
residue of a folded protein is defined as the number of Cy
(or C,) atoms in other residues within a sphere around
the Cz (or C,) atom of that given residue. Previous
approaches to the prediction of protein contact number
fall into two categories: classification and regression. In
the classification approach, residue contact numbers were
first classified into two populations allowing a subsequent
use of machine learning methods such as recurrent neural
networks to perform predictions [4,5]. Unfortunately,
decomposing contact numbers into two states via an arbi-
trary threshold oversimplifies the problem and much
original information is lost. In contrast, the regression
approach provides a direct and more accurate way to
determine a functional relationship matching contact
numbers and protein sequence and thus to provide more
accurate contact number predictions. A recent study of
Kinjo et al. [3], followed this approach but used a simple
linear regression scheme to determine the functional rela-
tionship. They reported that the predicted and observe
contact numbers had a correlation coefficient (CC) of
0.627. However, most functions in nature are non-linear
and cannot be accurately approximated by linear formu-
las. Under the reasonable expectation that the sequence-
contact number is indeed nonlinear, we use a more com-
plicated machine learning method to determine the rela-
tionship and expect thereby to obtain more accurate
predictions. In particular, we adopt a support vector
regression (SVR) algorithm fully capable of determining a
non-linear sequence-contact number relationship.

In our former work, we studied the dependence of protein
accessible surface area (ASA) [6,7] and B-factor [8] on pri-
mary sequence. These works established that ASAs can be
predicted and match observed values with a correlation
coefficient of 0.69, while B-factors can be predicted and
match observed values with a correlation coefficient of
0.53. These approaches established that multiple
sequence inputs outperform single sequence inputs signif-
icantly. The importance of using multiple sequences was
also observed in prior predictions of contact numbers [3].
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Figure |

Contact number distributions according to different
definitions. The radius cutoffs are selected as 8 A, 10 A, 12
Aand 14 A, represented by dotted, slashed, solid and dot-
and-slashed lines, respectively. A is for discrete contact
number while B is for consecutive contact number.

Thus, in this present work, we focus on multiple sequence
inputs. For completeness, we examine a range of different
definitions of contact number ("consecutive" and "dis-
crete"), and also examine whether including further infor-
mation such as protein molecular weight and amino acid
composition allows improved predictions. As a result, we
are able to make predictions which match observed values
with a correlation coefficient of 0.73, a significant
improvement on earlier studies.

Results

Contact numbers according to different ry values

We give 8 definitions of contact number and show their
CN distributions in Fig. 1. For each definition, we com-
pute the mean and standard deviation (Table 1). For the
same radius cutoff r,, the discrete and consecutive defini-
tions have very similar distributions with nearly the same
mean and standard deviation. Their correlations are
greater than 0.99 for all values of r,; (8 A, 10A, 12 A and
14 A). The contact numbers defined by different radius
cutoffs have CCs greater than 0.83. Distributions with
larger radius cutoffs more closely approximate normal
distributions as their left-hand tails are almost all present.
Since absolute contact numbers are normalized by a lin-
ear transformation (Equation 3), the general characteris-
tics of their distributions will still be kept even after the
normalization.
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Figure 2

The accessible surface area as a function of contact
number. Discrete contact numbers are used with a radius
cutoff of 12 A. Error bars represent the standard deviations.

Table I: The mean (N ) and standard deviation (SD) of contact
numbers according to different radius (r,) cutoffs. All results are

expressed as (K] , SD).

ry=8A rg=10A rg=12A rg=14A
Discrete 6.14,329 12.90,6.19 2350, 1046 35.39,15.39
Consecutive  6.27,3.25 13.07,6.14 23.56, 10.41 3553, 15.39

To study the relationship between CN and ASA of a resi-
due, we obtained the ASA for each residue in the 945 pro-
teins using the DSSP program [9]. Using discrete
definition of CN with a radius cutoff of 12 A, we calculate
the mean and standard deviation of ASA for each contact
number and show the results in Fig. 2. A strong negative
correlation between the two solvent exposure descriptors
can be observed as indicated by a correlation coefficient of
-0.734.

Estimating the sequence-contact number relationship

When we train the SVR algorithm, normalized CNs are
used instead of absolute CNs because the normalized val-
ues are always located between -3.0 and 3.0 for all radius
cutoffs. Therefore, in all cases, the same set of SVR learn-
ing control parameters can be applied. Among the three
groups of proteins (each has 315 chains), we estimate the
sequence-contact number function in turn using one
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group and examine the estimated function using the
remaining two groups. The correlation coefficient and
root mean square error (RMSE) are computed for each test
group, and their averages are shown in Table 2.

For all radius cutoffs, predictions using consecutive con-
tact numbers are slightly better than predictions using
their discrete counterparts. However, when the larger
thresholds (e.g. 12 A and 14 A) are used, the accuracy
difference decreases to insignificance. Previous work has
shown that CNs with a radius cutoff of 12 A or 14 A are
more useful for protein fold recognition [1]. Likewise, in
this work, we also find that these cutoffs give better predic-
tions. But, compared with the discrete contact numbers,
the consecutive contact numbers give only a very slight
improvement in predictions. The best accuracies are for
consecutive contact numbers with thresholds of 12 A and
14 A, in which case the correlation coefficient between
predicted and observed values can reach 0.70. If we con-
vert the normalized contact numbers to their original
absolute ones, the RMSE of 0.72 is equal to an actual error
of 7.5 for a threshold of 12 A, and an actual error of 11.1
for a threshold of 14 A.

We also calculate the CC and RMSE for each individual
protein using discrete contact numbers with a radius cut-
off of 12 A. The average CC and RMSE are then 0.67 and
7.31, respectively. More than half of the proteins are pre-
dicted with CCs greater than 0.70, and more than half are
predicted with RMSEs less than 6.93. To illustrate the
meaning of the CC and RMSE measures in this study, two
comparisons of predicted and observed values are given in
Figure 3. This figure shows the better agreement between
the predicted and observed values in GP130 (PDB: 1bj8)
as the CC is 0.75 and the RMSE is 6.07. In contrast, the
prediction for human chorionic gonadotropin (PDB:
1dz7, chain A) yields a correlation coefficient of 0.58 and
a RMSE of 9.73 with the region between position 40 and
50 being worst predicted.

Sequence weight, as a feature, can improve prediction
accuracy significantly

Prediction accuracy can be improved by taking account of
protein size as measured by its weight. Given a sequence,
the weight is the sum of individual weights of consisting
amino acids. We use discrete contact numbers (radius cut-
off = 12 A) and divide all proteins into three groups with
equal number of proteins, according to their weights. For
the three groups, the weights (mean + standard deviation)
are 10611 + 1637, 17421 + 2666 and 40073 + 5952 Dal-
tons. Their average correlation coefficient between pre-
dicted and observed contact numbers are 0.61, 0.67 and
0.72, while their average RMSEs are 7.49, 7.09 and 7.35,
respectively. These results suggest that smaller molecules
are worst predicted.
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Table 2: Correlation coefficient (CC) and root mean square error (RMSE) for different contact number predictions. All results are

expressed as mean * standard deviation.

r,=8A ry=10A ry=12A rg=14A
Discrete Ccc 0.64 + 0.0l 0.66 0.0l 0.69 + 0.0l 0.69 £ 0.0l
RMSE 0.77 £ 0.01 0.75 £ 0.01 0.72 £ 0.0l 0.72 £ 0.02
Consecutive ccC 0.66 £ 0.01 0.67 £ 0.01 0.70 + 0.0l 0.70 £ 0.01
RMSE 0.75 + 0.0l 0.74 + 0.0l 0.72 + 0.0l 0.72 £ 0.02

To consider this effect, we calculate weight for each pro-
tein sequence and include this data as an additional input
to the machine learning algorithm and re-run the training
and testing procedures. Additional information, that of
protein amino acid composition, was also included as an
input, either individually or together with sequence
weight data. For the separate groups of small chains,
median chains, large chains and all chains, we calculate
the mean and median values of the correlation coefficient
between predicted and observed values of contact
number, and their RMSEs, according to each set of differ-
ent input information: local sequence ("LS"), local
sequence plus sequence weight ("LS+W"), local sequence
plus amino acid composition ("LS+AA") and local
sequence plus sequence weight and amino acid composi-
tion ("LS+W+AA"). All results are shown in Table 3.

For all cases, it was determined that amino acid composi-
tion information can improve prediction performance.
However, sequence weight can give yet more significant
improvements. For example, in the group of small mole-
cules, data about amino acid composition can increase
the CC mean to 0.62 and decrease the RMSE mean to
7.24, while sequence weight data can increase the CC
mean to 0.64 and decrease the RMSE mean to 6.68. When
information about both sequence weight and amino acid
composition is used together, we find still further
improvement compared with using each data individu-
ally, although this may not be reflected by all measures.
Particularly, the difference between "LS+W" and
"LS+W+AA" is very minor. However, all the results clearly
show that sequence weight is more important than amino
acid composition in the prediction of contact numbers.

Fig. 4 gives the overall distributions of CCs and RMSEs for
945 proteins. Compared with the CC, the RMSE is more
sensitive in that its distribution more clearly reflects the
improvement, while the distributions of "LS+W" and
"LS+W+AA" are nearly identical. For all cases, the peak
values of CC and RMSE are around 0.70 and 6.0,
respectively.

In addition to the above analyses based on individual pro-
teins, we also measure the accuracies on protein residues
in the whole data set. We calculate CCs and normalized
RMSEs for six testing groups, and express them as mean +
standard deviation, as given in Table 4. The CCs for "LS",
"LS+W", "LS+AA" and "LS+W+AA" are 0.69, 0.733, 0.708
and 0.734, respectively. The normalized RMSEs are 0.72,
0.68, 0.71 and 0.68, respectively. Therefore, an obvious
improvement can be found even if we measure it at the
residue level.

To measure the prediction performance for residues with
different contact numbers, we compute the absolute
errors for the residue with contact numbers from 0 to 60.
The mean absolute errors for certain contact numbers are
shown in Fig. 5, partitioned according to the four infor-
mation inputs. Clearly, "LS+W+AA" gives the least abso-
lute errors and therefore perform the best. Residues with
about 20 contacting Cgatoms are predicted with the least
mean absolute error (4.1) and are the best predicted. This
is because they have the largest number of samples in the
dataset. Greater errors are found at each tail-end of the dis-
tribution corresponding to the residues with smaller or
greater contact numbers. This is due to the small number
of data points in each tail fed into support vector
machines, and their representation is not adequate. Fur-
thermore, this can be used to explain why the region from
residue 40 to residue 50 of protein 1dz7 in Fig 3B is the
worst predicted. This region mostly contains exposed res-
idues with smaller contact numbers and thus, the residues
cannot be well predicted by our method. An improvement
on this part may be achieved by using other predicted fea-
tures such as accessible surface area.

Examining performance by formulating regression as a
two-class problem

CN prediction has previously been examined as a two-
class classification problem through use of a threshold
with the accuracy being defined as the percentage of the
correctly predicted residues on the overall residues [3-5].
However, this is not a good measure because the accuracy
is susceptible to changes in the selected threshold that
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Figure 3

The predicted and observed contact numbers for proteins GP130 (PDB: 1bj8) and Human chorionic gonado-
tropin (PDB: 1dz7, chain A). Discrete contact numbers are used with a radius cutoff of 12 A. Observed and predicted con-
tact numbers are represented by solid and dashed lines, respectively. A) GP 130 is predicted with a correlation coefficient of
0.75 and a root-mean-square error of 6.07; B) Human chorionic gonadotropin is predicted with a correlation coefficient of
0.58 and a root mean square error of 9.73.

Table 3: Correlation coefficients (CCs) and root mean square errors (RMSEs) for individual proteins in different weight groups. The
results are given as (mean, median).

LS LS+W LS+AA LS+W+AA
W<3485 CcC 0.61,0.65 0.64, 0.67 0.62, 0.66 0.64, 0.67
RMSE 7.49, 6.95 6.68, 6.41 7.24, 6.82 6.71, 6.45
13485<W<22750 CcC 0.67,0.70 0.68,0.71 0.68,0.71 0.69, 0.72
RMSE 7.09, 6.79 6.76, 6.54 7.05, 6.79 6.76, 6.60
W>22750 CcC 0.72,0.73 0.72,0.74 0.72,0.73 0.73,0.74
RMSE 7.35,7.07 7.12, 6.95 7.24, 6.94 7.10, 6.90
All CcC 0.67,0.70 0.68, 0.71 0.68, 0.71 0.68, 0.71
RMSE 7.31, 6.94 6.86, 6.66 7.18, 6.86 6.86, 6.66
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Table 4: Correlation coefficients (CCs) and root mean square
errors (RMSEs) are calculated for all residues when performing
support vector regression algorithm using different input
information.

CcC RMSE
LS 0.69 = 0.01 0.72 + 0.0l
LS+W 0.733 £ 0.005 0.68 + 0.01
LS+AA 0.708 + 0.009 0.71 £ 0.01
LS+W+AA 0.734 £+ 0.006 0.68 £ 0.0l

splits the data set. If the data set is heavily unbalanced,
accuracy is always very high [10]. In this study, we use a
different measure, and adopt the least (worst) prediction
accuracy for each case to reflect its performance. Table 5
gives the least two-class prediction accuracies for eight def-
initions of contact number when using only local
sequence information. Note that all the accuracies are the
average of six tests. All accuracies are found to be greater
than 74%, and in particular, when r;= 12 A and a consec-
utive contact number definition is adopted, the least
prediction accuracy is around 76.1%, which is compara-
ble with the accuracy 76.3% recently reported based on
choosing a particular threshold in linear models also
using the same consecutive contact number definition [3].

We use discrete definitions of contact number and let r,; =
12 A. Using all the SVM outputs from six tests, we choose
a number of thresholds to classify the data points as being

22

20

Mean absolute error
I~

4 1 ) - 1 1 1
0 10 20 30 40 50 60
Contact number

Figure 5

The mean absolute errors for residues of different
contact numbers. The four inputs "LS", "LS+W", "LS+AA"
and "LS+W+AA" are represented by dotted, slashed, dot-
and-slashed and solid lines, respectively.

either "contacted" or "non-contacted" and calculate their
accuracies. All accuracies are plotted in Fig. 6, according to
different information input. The least accuracies for "LS",
"LS+W", "LS+AA" and "LS+W+AA" are 75.8%, 77.2%,
76.1% and 77.1%, respectively. Using sequence weight is
much better than using amino acid composition.
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Table 5: The least prediction accuracy (%) for two-class
problems according to different contact number definitions.
Only local sequence information is used.

ry,=8A r,=10A r,=12A r,=14A
Discrete 74.1 74.5 75.8 75.2
Consecutive 75.6 75.7 76.1 75.6

095+

D9

Accuracy (%)

08}

5 10 15 20 25 30 35 40
Contact number threshold

Figure 6

Prediction accuracies when predictions are formu-
lated as two-class problems using different contact
number thresholds. The four inputs "LS", "LS+W",
"LS+AA" and "LS+W+AA" are represented by dotted,
slashed, dot-and-slashed and solid lines, respectively.

Discussion

Protein structural properties such as secondary structure,
solvent accessibility and contact number provide valuable
information for prediction of protein tertiary structures.
How to improve the prediction accuracy of these
parameters is still a challenging problem. Following Rost
and Sander's pioneering work [11] on how to find a con-
served and useful prediction index, Hamelryck [2] exam-
ined the conservation of nine solvent-exposure measures
and found that contact number is the most conserved
(correlation coefficient 0.72). His study suggested that CN
is more suitable for fold recognition than other descrip-
tors such as ASA. However, difficulties in accurately
expressing the prediction problem (for example, it was
previously framed as a two class problem using an arbi-
trary threshold) limited its further application. Recent
work on contact number [3] formulating the problem for
a regression analysis has enhanced studies in this area.

http://www.biomedcentral.com/1471-2105/6/248

From our work here, we confirm the utility of a regression
analysis, and more specifically, establish that allowing for
non-linearity via support vector regression allows a more
accurate determination of the sequence-contact number
relation which further illuminates relationships between
protein structural and functional properties and their pri-
mary sequence and other features.

Conclusion

We provide a new method for the prediction of protein
contact number. Using protein local sequence informa-
tion generated by multiple sequence alignments, the cor-
relation coefficient between predicted and observed
contact numbers can reach 0.70, with normalized root
mean square error less than 0.72. The addition of infor-
mation about sequence weight and amino acid composi-
tion as input features can increase the correlation
coefficient to 0.734 and decrease the root mean square
error to 0.68. This improvement is mainly attributed to
the information about sequence weight while the infor-
mation about amino acid composition only contributes
slightly. Moreover, more than half of the proteins are pre-
dicted with correlation coefficients greater than 0.71. The
prediction accuracies in the two-class problems, regardless
of the cutoff thresholds, are greater than 77.0%. The suc-
cessful application of SVR approach in this study suggests
that it can more accurately describe the relationship
between protein contact numbers and primary sequence.

Methods

Residue contact number

We take two definitions of contact number in this study,
namely, that of "discrete" and "consecutive" contact
number. The "discrete" contact number, N, is defined by
the number of Czatoms on other residues located within
a sphere of radius , centred on the Czatom of the residue
of interest. The discrete contact number for i-th residue in
a sequence with M residues is given by

(1)

. M
Ni= %

{0(1’1-,,-):1 ifrl-’j <1y
jij-ib2

o(r; ,
(7) o(r;)=0ifr;2m

where 7, is the distance between the Czatoms of the ith
and jth residues which are understood to be separated in

sequence by at least two amino acids. Note that Nfi is a
discrete integer. By replacing the step function ofr;;) with

a sigmoid function, N; becomes a real number. This pro-

cedure was previously adopted by Kinjo et al. [3] to
smooth the discrete contact numbers. A particular sig-
moid function is given by

o(ry) = 1/{1 +exp [3(r;- 1)1} (2)
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We have tried four values of , (8 A, 10 A, 12 A and 14 A)
with discrete and consecutive definitions and thus have 8
combinations all of which will be used in our SVR
approach.

Normalization of contact number
The distributions of contact numbers can be approxi-
mated by normal distributions, as shown in Fig. 1. With

respect to a certain r; we calculate the mean ([T]) and
standard deviation (SD). So, the normalized contact

number N, is determined by the following formula:

N-N
Nporm = W

(3)

At the first step, we predict the normalized contact
number because 1) it is easy to handle the data, and 2) it
is easy to compare the results for different r; thresholds. At
the second step, we recover the absolute contact numbers
from their predicted normalized values using this
equation.

Sequence coding

We predict contact number from protein local sequence.
For a given residue, the local sequence contains its N-ter-
minal and C-terminal seven nearest-neighbour residues.
Thus, the local sequence makes a window of fifteen amino
acids. We code each residue in the window using the PSI-
BLAST position-specific scoring matrix [12]. The matrices
are obtained by querying the input sequence using PSI-
BLAST against the NCBI non-redundant protein sequence
database with three rounds, masking coil-coiled and low-
complexity regions [13]. The elements in the row of the
matrix reflect the probabilities for 20 amino acids occur-
ring at this position. All the elements are divided by 10 for
normalization and thus each residue is represented by a
20-dimesional vector. Since the residues in coil-coil and
low-complexity regions do not have meaningful scores,
we encode the residue with an orthogonal scheme. In the
20-dimensional vector coding a given residue, only the
entry representing this type of amino acid is assigned as
0.5 with all other entries set as zeros. To consider the
terminal residues, we expend the 20-dimensional vector
to being 21-dimensional for all residues. When the last
entry is set as 0.5 and other entries have zeros, it represents
a blank residue added to the N-terminal or the C-terminal
to make a local sequence of 15-residue length. For all
other residues, the 21-st entries are set to zero. In sum-
mery, a residue is coded by a 315-dimensional vector.

Support vector regression

To find the function between protein local sequence and
normalized contact number, we use € -insensitive support
vector regression (€-SVR) [14,15]. The expected function
can be formulated as

http://www.biomedcentral.com/1471-2105/6/248

fX) =W, (X)) + b, (4)

where W is the weight and b is the bias. ®(X;) is a non-lin-
ear function mapping a data point from the input space to
the feature space, so consequently, SVR is able to perform
non-linear regression. The goal of the regression is to find
the optimal W and b using some optimisation criteria. In
€-SVR, errors greater than € are penalized, where two pos-
itive variables £ and &* are used to measure the deviation
of samples outside the &insensitive tube. The optimisa-
tion problem can be expressed as

M
Minimize %||W||2+CZ(51'+§;)'
in1
fXi)-vise+§
subject to yi— f(X)<e+& (5)

£,6 20 fori=1,...,M

where C is the regularization constant that determines the
trade off between the norm and the error penalty.

The solution of the above problem was given by the
authors of € SVR [14,15] as follows,

M
FX) =Y (e — o )(D(X;), D(X)) +b, (6)

i=1

where ¢; and a; are Lagrange multipliers. We can replace
(@(X;), ®(X)), the inner product of ®(X;) and ®(X), by a
kernel function K(X;, X), if K(X;, X) = (®(X;), ®(X)). The
radial basis function are used in our study, as given by

K(X;, X) = exp(-#|X;- X[[?),  (7)
where yis a parameter to be tuned by the user.

We constantly set € as 0.01, yas 0.01 and C as 5.0, because
this set of parameters yielded the best performance in our
previous work [6,8]. A number of software packages can
be used to find the solution such as SVMlight [16].

Dataset preparation and prediction evaluation

To test our approach, we selected 945 unique protein
chains, which were previously used for prediction of pro-
tein ASA, and were prepared by PDB-REPRDB [17]. The
structures solved by X-ray crystallography were with reso-
lution less than 2.0 A and with an R-factor less than 0.2.
All chains are at least 60 amino acids or longer, and the
pair-wise identity is less than 25%. The protein names can
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be found in the additional file 1 (supplementary
material).

The proteins are randomly divided into three groups with
each group having 315 chains. Each group is in turn used
for training with the remaining two groups used for test-
ing. Therefore, each group is tested twice by the two func-
tions derived from the other groups, and as a result we
have six groups of examination results.

Pearson's correlation coefficients and root mean square
errors are calculated with respects to all residues and
individual proteins. In addition, the absolute errors are
calculated for the residues with different contact numbers.
In order to compare with previous classification methods,
we use different thresholds to classify contact numbers as
"contacted" or "non-contacted" and compute the overall
accuracy. The accuracy is defined as the ratio between the
number of correctly predicted residues and the total
number.

Additional material

Additional File 1

The names of 945 protein chains. The first four characters are their PDB
names. The fifth is the chain name and "_" means single chain.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-6-248-S1.doc]
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