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Abstract

Background: Recent studies have shown that the patterns of linkage disequilibrium observed in
human populations have a block-like structure, and a small subset of SNPs (called tag SNPs) is
sufficient to distinguish each pair of haplotype patterns in the block. In reality, some tag SNPs may
be missing, and we may fail to distinguish two distinct haplotypes due to the ambiguity caused by
missing data.

Results: We show there exists a subset of SNPs (referred to as robust tag SNPs) which can still
distinguish all distinct haplotypes even when some SNPs are missing. The problem of finding
minimum robust tag SNPs is shown to be NP-hard. To find robust tag SNPs efficiently, we propose
two greedy algorithms and one linear programming relaxation algorithm. The experimental results
indicate that (1) the solutions found by these algorithms are quite close to the optimal solution; (2)
the genotyping cost saved by using tag SNPs can be as high as 80%; and (3) genotyping additional
tag SNPs for tolerating missing data is still cost-effective.

Conclusion: Genotyping robust tag SNPs is more practical than just genotyping the minimum tag
SNPs if we can not avoid the occurrence of missing data. Our theoretical analysis and experimental
results show that the performance of our algorithms is not only efficient but the solution found is
also close to the optimal solution.

Background

In recent years, Single Nucleotide Polymorphisms (SNPs)
have become the preferred marker for association studies
of genetic diseases or traits. A set of linked SNPs on one
chromosome is called a haplotype. Recent studies have
shown that the patterns of Linkage Disequilibrium (LD)
observed in human populations have a block-like struc-
ture [4,13]. The chromosome recombination only takes
place at some low LD regions called recombination

hotspots. The high LD region between these hotspots is
often referred to as a "haplotype block." Within a haplo-
type block, there is little or even no recombination
occurred, and the SNPs in the block tend to be inherited
together. Due to the low haplotype diversity within a
block, the information carried by these SNPs is highly
redundant. Thus, a small subset of SNPs (called "tag
SNPs") is sufficient to distinguish each pair of patterns in
the block [7,13,17-19]. Haplotype blocks with corre-
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{.1: Missing data

The influence of missing data and auxiliary tag SNPs. (A) A haplotype block defined by 12 SNPs and 4 haplotype pat-
terns. Each column represents a haplotype pattern and each row represents a SNP locus. The black and grey boxes stand for
the major and minor alleles at each SNP locus, respectively. (B) Tag SNPs genotyped without missing data. (C) Tag SNPs geno-
typed with missing data. (D) The auxiliary tag SNP S; for h,. (E) The auxiliary tag SNP Sq for h;.

sponding tag SNPs are quite useful and cost-effective for
association studies as it does not require genotyping all
SNPs. Many studies have tried to find the minimum set of
tag SNPs in a haplotype block. In a large-scale study of
human Chromosome 21, Patil et al. [13] developed a
greedy algorithm to partition the haplotypes into 4,135
blocks with 4,563 tag SNPs. Zhang et al. [17-19] used a
dynamic programming approach to reduce the numbers
of blocks and tag SNPs to 2,575 and 3,562, respectively.
Bafna et al. [1] showed that the problem of minimizing
tag SNPs is NP-hard and gave efficient algorithms for spe-
cial cases of this problem.

In reality, a SNP may not be genotyped and considered to
be missing data (i.e., we fail to obtain the allele configura-
tion of the SNP) if it does not pass the threshold of data
quality [13,16,19,20]. These missing data may cause
ambiguity when using the minimum set of tag SNPs to
distinguish an unknown haplotype sample. Figure 1 illus-
trates the influence of missing data when identifying hap-
lotype samples. In this figure, a haplotype block (see
Figure 1 (A)) defined by 12 SNPs and 4 haplotype patterns
is presented (from the public haplotype data of human
Chromosome 21 [13]). We follow the same assumption
as previous studies that all SNPs are diallelic (i.e., taking
on only two values) [1,13]. Suppose we select SNPs S, and
S,, as tag SNPs. The haplotype sample #, is identified as

haplotype pattern P; unambiguously (see Figure 1 (B)).
Consider haplotype samples h, and h; with one missing
tag SNP (see Figure 1 (C)). h, can be identified as haplo-
type patterns P, or P5, and h; can be identified as P, or P;.
As a result, these missing tag SNPs result in ambiguity
when distinguishing unknown haplotype samples.

Although we can not avoid the occurrence of missing data,
the remaining SNPs within the haplotype block may pro-
vide abundant information to resolve the ambiguity. For
example, if we re-genotype an additional SNP S; for h,
(see Figure 1 (D)), h, is identified as haplotype pattern P
unambiguously. On the other hand, if SNP Sy is re-geno-
typed (see Figure 1 (E)), hs is also identified unambigu-
ously. These additional SNPs are referred to as "auxiliary
tag SNPs," which can be found from the remaining SNPs
in the block and are able to resolve the ambiguity caused
by missing data.

Alternatively, instead of re-genotyping auxiliary tag SNPs
whenever encountering missing data, we work on a set of
SNPs which is not affected by the occurrence of missing
data. Figure 2 illustrates a set of SNPs which can tolerate
one missing SNP. Suppose we select SNPs S;, Ss, Sg, and
S,, to be genotyped. Note that no matter which SNP is
missing, each of the 16 missing patterns can be distin-
guished by the remaining three SNPs. Therefore, all hap-
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The robust tag SNPs. A set of robust tag SNPs for tolerating one missing tag SNP.

lotype samples with one missing SNP can still be
identified unambiguously. We refer to these SNPs as
"robust tag SNPs," which are able to tolerate a number of
missing data. The important feature of robust tag SNPs is
that although they consume more SNPs than the "tag
SNPs" defined in previous studies, they guarantee that all
haplotype samples with a number of missing data can be
distinguished unambiguously. When the occurrence of
missing data is frequent, the cost of re-genotyping proc-
esses can be reduced by robust tag SNPs.

This paper focuses on the problem of finding robust tag
SNPs to tolerate a number of missing data. Throughout
this paper, we denote m as the maximum number of miss-
ing SNPs to be tolerated, which corresponds to different
missing rates in different genotyping experiments. And we
wish to find a minimum set of robust tag SNPs which can
distinguish each pair of haplotypes even when up to m
SNPs are missing. We assume that the haplotype phases
and block partition are available as the input. Numerous
methods have been developed to infer haplotypes from
genotype data [12,14,15]. Several algorithms have also
been proposed to find the block partition [4,13,17]. The
problem of finding minimum robust tag SNPs is shown to
be NP-hard (See Theorem 1). To find robust tag SNPs effi-
ciently, we propose two greedy algorithms and one linear
programming (LP) relaxation algorithm. The proposed
algorithms have been implemented and tested on a vari-
ety of simulated and empirical data. We also analyze the
efficiency and solutions of these algorithms. An algorithm
for finding auxiliary tag SNPs is described assuming
robust tag SNPs have been computed in advance.

Results

We propose two greedy algorithms which select the robust
tag SNPs one by one in different greedy manners. In addi-
tion, we reformulate this problem as an integer program-
ming problem and design an LP-relaxation algorithm to

solve this problem. The greedy and LP-relaxation algo-
rithms are able to find solutions within factors of (m + 1)

K(K-1 K(K-1
ln%, ln((m+1)(T)), and O(m In K) of the
optimal solution respectively, where m is the maximum
number of missing SNPs allowed and K is the number of
haplotype patterns in the block.

We have implemented the first and second greedy algo-
rithms in JAVA [see Additional files 1 and 2]. The LP-relax-
ation algorithm has been implemented in Perl [see
Additional file 3], where the LP problem is solved via a
program called "lp_solve" [11]. The LP-relaxation algo-
rithm is a randomized method. Thus, this program is
repeated for 10 times to explore different solutions and
the best solution among them is chosen as the output.

In order to evaluate the solutions and efficiency of our
algorithms, we also implement a program in JAVA
(referred to as "OPT") which uses a brute force method to
find the optimal solution. For a given data set of N SNPs,
the OPT program examines all possible solutions (i.e., all

N N N ..
subsets of , , .., and ). The minimum
1 2 N

subset of SNPs that can tolerate m missing SNPs is chosen
as the output. Due to the NP-hardness of this problem,
the OPT program fails to output the optimal solution
within a reasonable period of time in many data sets. As a
consequence, we skip some impossible solution space to
speed up this program by the following two observations:
(1) the solutions with less than or equal to m SNPs are the
impossible ones since m SNPs might be missing; and (2)
for a data set containing K haplotype patterns, the mini-
mum number of SNPs required to distinguish each of
them is at least log K (see Lemma 2). As a result, we can
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(b) Random data (40 SNPs)

Experimental results on random data. (a) Results from data sets containing |0 haplotypes and 20 SNPs. (b) Results from

data sets containing |0 haplotypes and 40 SNPs.

examine the possible solutions only for subsets of

N N N
, ..., and . By search-
m+log K m+log K+1 N

ing possible solutions from small subsets to large ones,
the OPT program can stop and output the optimal solu-
tion immediately when a subset that can tolerate m miss-
ing SNPs is found.
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(c) Hudson’s data (20 SNPs)
Figure 4

Results on simulated data

Theoretically, all SNPs will reach complete linkage equi-
librium after sufficient chromosome recombination takes
place. We first generate 100 data sets containing short
haplotypes which simulate this bottleneck model
[12,14,15]. Each data set consists of 10 haplotypes with
20 SNPs. These haplotypes are created by randomly
assigning the major or minor alleles at each SNP locus. Let
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(d) Hudson’s data (40 SNPs)

Experimental results on Hudson's data. (a) Results from data sets containing 10 haplotypes and 20 SNPs. (b) Results from

data sets containing |0 haplotypes and 40 SNPs.
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Experimental results on real data. (a) Results from Patil's Chromosome 21 data, (b) Results from Daly's Chromosome

5q31 data.

m be the number of missing SNPs allowed and S, be the
average number of robust tag SNPs over 100 data sets. Fig-
ure 3 (a) plots S, with respect to m (roughly correspond-
ing to SNP missing rates from 0% to 33%). When m = 0,
all programs find the same number of SNPs as the optimal
solution. The iterative LP-relaxation algorithm slightly
outperforms the others as m increases. When m > 6, more
than 20 SNPs are required to tolerate missing data. Thus,
no data sets contain enough SNPs for solutions.

We then generate 100 data sets containing long haplo-
types. Each data set is composed of 10 haplotypes with 40
SNPs. Figure 3 (b) illustrates the experimental results on
these long data sets (corresponding to SNP missing rates
from 0% to 37%). The optimal solutions for m > 2 can not
be found by the OPT program within a reasonable period
of time (after one week computation) and are not shown
in this figure. It is because the possible solutions in long
data sets are too large to enumerate. On the other hand,
both greedy and iterative LP-relaxation algorithms run in
polynomial time and always output a solution efficiently.
In this experiment, both greedy algorithms slightly out-
performs the iterative LP-relaxation algorithm. In addi-
tion, the number of missing SNPs allowed is larger than
those in short data sets. For example, to tolerate 10 miss-
ing SNPs (i.e., m = 10), all programs output less than 28
SNPs. The remaining SNPs in each data set are still suffi-
cient to tolerate more missing SNPs.

Hudson (2002) [10] provides a program which can simu-
late a set of haplotypes under the assumption of neutral
evolution and uniformly distributed recombination rate

using the coalescent model. We use Hudson's program to
generate 100 short data sets with 10 haplotypes and 20
SNPs and 100 long data sets with 10 haplotypes and 40
SNPs. Figure 4 (a) shows the experimental results on Hud-
son's short data sets (corresponding to SNP missing rates
from 0% to 23%). The number of missing SNPs allowed
are less than that of random data. It is because Hudson's
program generates coalescent haplotypes which are simi-
lar to each other. As a result, many SNPs can not be used
to distinguish haplotypes and the amount of tag SNPs is
inadequate to tolerate larger missing SNPs. In this experi-
ment, we observe that the iterative LP-relaxation algo-
rithm finds solutions quite close to the optimal solutions
and slightly outperforms the other two algorithms.

Figure 4 (b) illustrates the experimental results on long
data sets generated by Hudson's program (corresponding
to SNP missing rates from 0% to 29%). The optimal solu-
tions for m > 2 again can not be found by the OPT pro-
gram within a reasonable period of time. In this
experiment, the performance of the first greedy and itera-
tive LP-relaxation algorithms are similar, and they slightly
outperform the second greedy algorithm as m becomes
large.

Results on real data

We also test these programs on two real data sets: (1) pub-
lic haplotype data of human Chromosome 21 released by
Patil et al. [13]; and (2) a 500 KB region on human Chro-
mosome 5q31 which may contain a genetic variant
related to the Crohn disease by Daly et al. [4]. Patil's data
include 20 haplotypes of 24,047 SNPs spanning over
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Table I: The detailed result of first greedy algorithm on Daly's | | blocks.

Block ID | 2 3 4 5 6 7 8 9 10 ¥ s,
m=0 [ [ 2 3 3 2 3 2 2 2 2 23/11 = 2.09
m=1 2 2 f 5 f 3 5 4 f 3 3 27/8 = 3.375
m=2 3 3 f 8 f f f f f 5 f 19/4 = 4.75
m=3 4 4 f f f f f f f f f 8/12=4
m=4 5 5 f f f f f f f f f 10/2=5
m=5 6 f f f f f f f f f f 6/1 =6
m=6 7 f f f f f f f f f f =17

f: fail to contain enough SNPs for tolerating m missing SNPs

about 32.4 MB, which are partitioned into 4,135 haplo-
type blocks. By genotyping 103 SNPs with minor allele
frequency at least 5%, Daly et al. partition the 500 KB
region into 11 haplotype blocks. Each haplotype block in
these real data sets contains different numbers of SNPs
and haplotypes (e.g., from several SNPs to hundreds of
SNPs). When m increases, some short blocks may not
contain enough SNPs for tolerating missing data (e.g., m
> the number of SNPs in a block). As a consequence, S,
here stands for the average number of robust tag SNPs
over those blocks still containing solutions.

Figure 5 (a) shows the experimental results on Patil's
4,135 blocks. Because there are many long blocks in
Patil's data (e.g., more than one hundred SNPs), the opti-
mal solution for m > 2 can not be found within a reason-
able period of time. The experimental result indicates that
all algorithms find similar number of robust tag SNPs
when m is small. The LP-relaxation algorithm slightly out-
performs the others as m increases.

Figure 5 (b) illustrates the experimental results on Daly's
11 blocks. Because the haplotype blocks partitioned by
Daly et al. are very short (e.g., most blocks contain less
than 12 SNPs), all optimal solutions still can be found.
The solutions found by each algorithm is almost the same
as optimal solutions. Theoretically, S, should grow
monotonically as m increases. But due to the small
number of blocks in Daly's data set, S, does not grow
smoothly when m increases from 2 to 3. To explain this

phenomenon, we report the detailed result of the first
greedy algorithm in Table 1. For each of the 11 blocks, the
number of robust tag SNPs found with respect to different
values of m is listed in the table. Note that as mentioned
before, some blocks may not contain enough SNPs for tol-
erating large missing data as m increases. When m
increases from 2 to 3, Blocks 4 and 10 (which consumes 8
and 5 SNPs) do not contain enough SNPs for a solution
and are discarded. As a result, S, (for m = 3) is computed
only using Blocks 1 and 2 and the value is lower than the
previous one (i.e., from 4.75 to 4). This phenomenon is
not shown in Figure 5 (a) because it is amortized by thou-
sands of blocks in Patil's data set.

Discussion

In terms of efficiency, the first and second greedy algo-
rithms are faster than the LP-relaxation algorithm. The
greedy algorithms usually returns a solution in seconds
and the LP-relaxation algorithm requires about half
minute for a solution. It is because the running time of LP-
relaxation algorithm is bounded by the time of solving the
LP problem. Furthermore, this LP-relaxation algorithm is
repeated for 10 times to explore 10 different solutions.
The OPT program for searching the optimal solution is
apparently slower than the others. The optimal solution
usually can not be found within a reasonable period of
time if the size of the block becomes large. ;From our
empirical study, the optimal solution can be found in rea-
sonable time by the OPT program if the block contains
less than 20 SNPs (e.g., the short random data sets). But

Table 2: The number of total tag SNPs found by each algorithm. The percentage of tag SNPs with respect to total SNPs is shown in

parentheses.

Random data Hudson's data Patil's data Daly's data

Total blocks 100 100 100 100 4135 I

Total SNPs 2000 4000 2000 4000 24047 103
Ist Greedy 400 (20%) 400 (10%) 509 (25.5%) 472 (11.8%) 4610 (19.2%) 23 (22.3%)
2nd Greedy 400 (20%) 400 (10%) 509 (25.5%) 472 (11.8%) 4610 (19.2%) 23 (22.3%)
LP-relaxation 400 (20%) 400 (10%) 509 (25.5%) 471 (11.8%) 4657 (19.4%) 23 (22.3%)
OPT 400 (20%) 400 (10%) 492 (24.6%) 443 (11.1%) 4595 (19.1%) 23 (22.3%)
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Table 3: The tradeoffs between additional tag SNPs required and maximum missing rates allowed. These results come from the first
greedy algorithm applied on random and Hudson's data sets with 40 SNPs.

m 0 | 2 3 4 5
Random data (40 SNPs) average number of robust tag SNPs 4 6 851 10.47 12.89 14.92
corresponding SNP missing rate 0 16.7% 23.5% 28.6% 31.0% 33.5%
average number of extra tag SNPs 0 2 4.51 6.47 8.89 10.92
Hudson's data (40 SNPs) average number of robust tag SNPs 4.72 7.71 11.28 14.67 18.23 21.67
corresponding SNP missing rate 0 13.0% 17.7% 20.4% 21.9% 23.1%
average number of extra tag SNPs 0 2.99 6.56 9.95 13.51 16.95

for those large data sets with more than 40 SNPs, the OPT
program is significantly outperformed by the approxima-
tion algorithms (e.g., fail to output a solution within one
week computation).

Assuming no missing data (i.e., m = 0), we compare the
solutions found by each algorithm with the optimal solu-
tion. Table 2 lists the numbers of total tag SNPs found by
each algorithm in previous experiments. In the experi-
ments on random and Daly's data, the solution found by
each algorithm is as good as the optimal solution. In the
experiments on Hudson's and Patil's data, these algo-
rithms still find solutions quite close to the optimal solu-
tion. For example, the approximation ratios of these

472 4
algorithms are only 472 1.07 and 4657 =1.01, respec-
443 4595

tively.

We then analyze the genotyping cost that can be saved by
using tag SNPs. In Table 2, the percentage of tag SNPs in
each data set is shown in parentheses. The experimental
results indicate that the cost of genotyping tag SNPs is sig-
nificantly reduced in comparison with genotyping all
SNPs in a block. For example, in Patil's data, we only need
to genotype about 19% of tag SNPs in each block, which
saves about 81% genotyping cost.

The tradeoffs between the number of additional tag SNPs
required and the number of missing SNPs allowed are dis-
cussed in the following. In practice, missing data in the
genotyping experiment are usually limited to certain miss-
ing rate. We transform the maximum number of missing
SNPs allowed into maximum missing rates allowed by
calculating the percentage of m with respect to the number
of robust tag SNPs. Table 3 lists the results of the first
greedy algorithm applied on random and Hudson's long
data sets. The number of additional tag SNPs grows with
respect to m linearly. However, we observe that the maxi-
mum missing rate allowed grows slowly as m becomes
large. This is because more additional tag SNPs are

required in order to tolerate more missing SNPs. But
under the same SNP missing rate, genotyping these addi-
tional tag SNPs may also increase the number of missing
SNPs, which reduces the power of robust tag SNPs. On the
positive side, when m is small, the corresponding maxi-
mum missing rate allowed is sufficient for most genotyp-
ing experiments since their missing rates are usually less
than 10%. For example, the robust tag SNPs with m = 1 are
sufficient to tolerate 10% missing SNPs, and they only
requires at most 3 additional SNPs. As a result, genotyping
additional tag SNPs for tolerating missing data is cost-
effective under the current genotyping environment.

In reality, not all haplotypes are of equal importance or
confidence. When selecting robust tag SNPs, it might be
desirable to weight them according to their population
frequency. To incorporate the frequency of haplotypes
into this problem, there are two possible ways:

1. It can be easily done by discarding the rare haplotypes
and retain the common haplotypes as the input of our
algorithms. This approach would not require modifica-
tion to our algorithms. But the retained common haplo-
types will be processed as equally weighted.

2. Our algorithms try to find a set of SNPs such that each
pair of haplotypes are distinguished by a threshold of at
least (m + 1) SNPs. A simplest way to weight the haplo-
types is choosing different thresholds for each pair of hap-
lotypes according to their population frequency. The
haplotype pairs with higher frequency can then be
assigned with more tag SNPs than the lower ones by our
algorithms.

Conclusion

In this paper, we show there exists a set of robust tag SNPs
which is able to tolerate a number of missing data. Our
study indicates that genotyping robust tag SNPs is more
practical than genotyping minimum tag SNPs for associa-
tion studies if we can not avoid the occurrence of missing
data. We describe two greedy and one LP-relaxation
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Figure 6
Reformulation of the MRTS problem. (A) The haplotype matrix M, containing N SNPs and K haplotype patterns. (B) The
bipartite graph corresponding to M,.

approximation algorithms for finding robust tag SNPs.
Our experimental results and theoretical analysis show
that these algorithms are not only efficient but the solu-
tions found are also close to the optimal solution. In
terms of genotyping cost, we observe that the genotyping
cost saved by using robust tag SNPs is significant, and gen-
otyping additional tag SNPs to tolerate missing data is still
cost-effective. One future direction is to assign weights to
different types of SNPs (e.g., SNPs in coding or non-cod-
ing regions), and design algorithms for the selection of
weighted tag SNPs.

Software availability
Project name: efficient algorithms for utilizing SNP infor-
mation.

Project home page: http://www.csie.ntu.edu.tw/
~kmchao/tools/Robust_Tag SNP

Operating system: the implemented greedy algorithms
are platform independent, and the implemented LP-relax-
ation algorithm runs on the Windows operating system.

Programming language: the greedy algorithms are imple-
mented in JAVA, and the LP-relaxation algorithm is imple-
mented in Perl.

Methods

Assume we are given a haplotype block containing N
SNPs and K haplotype patterns. This block is denoted by
an N x K binary matrix M, (see Figure 6 (A)). Define
M,lij] € {1,2} foreachi € [1, N] and j € [1, K], where 1
and 2 represent the major and minor alleles, respectively.
In reality, the haplotype block may also contain missing
data. This formulation can be easily extended to handle
missing data by treating them as wild card symbols. To
simplify the presentation of this paper, we will assume no

missing data in the block. Let C be the set of all SNPs in
M,,. The robust tag SNPs C' ¢ C are a subset of SNPs which
is able to distinguish each pair of haplotype patterns
unambiguously when at most m SNPs are missing. Note
that the missing data may occur at any SNP locus and thus
create different missing patterns (see Figure 2). For any
haplotype pattern with up to m missing SNPs, the set of
robust tag SNPs C' is required to distinguish all of them
unambiguously.

To distinguish a haplotype pattern unambiguously, each
pair of patterns must be distinguished by at least one SNP
in C'. For example (see Figure 6 (A)), we say patterns P,
and P, can be distinguished by SNP S, since M,[2,1] #
M,[2,2]. A formal definition of this problem is given
below.

Problem: Minimum Robust Tag SNPs (MRTS)
Input: An N x K matrix M, and an integer m.

Output: The minimum subset of SNPs C' = C which sat-
isfies:

(1) for each pair of patterns P;and P, these is a SNP S, €
C'such that My [k, i] # M, [k, j];

(2) when at most m SNPs are discarded from C' arbitrarily,
(1) still holds.

We then reformulate MRTS to a variant of the set covering
problem [6]. Each SNP S, € C (i.e., the k-th row in M,) is

reformulated to a set S;e = {(i, j) | M[k, i] # M|k, j] and i
<j}. For example, suppose the k-th row in M, is {1,1,1,2}.

The corresponding set S;e = {(1,4), (2,4), (3,4)}. In other
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An example of the first greedy algorithm. The SNPs S, S, S,, and S; are selected by the first greedy algorithm. (A) The

table that stores each selected SNP.

words, S,k stores the pairs of patterns distinguished by
SNP §,,. Define P as the set that contains all pairs of pat-
terns (i.e, P={(ij) | 1 <i<j <K} = {(1,2), (1,3), ..., (K-
LK)}).

Consider each element in P and each reformulated set of
C as nodes in an undirected bipartite graph (see Figure 6
(B). If SNP S, can distinguish patterns P;and P; (i.e., (ij) €

S;g ), there is an edge connecting the nodes (i, j) and S;g.

The following lemma implies that each pair of patterns
must be distinguished by at least (m + 1) SNPs to tolerate
m missing SNPs.

Lemma 1. C' < C is the set of robust tag SNPs which allows
at most m missing SNPs iff each node in P has at least (m + 1)
edges connecting to each node in C'.

Proof. Let C' be the set of robust tag SNPs which allows at
most m missing SNPs. Suppose patterns P; and P, are dis-
tinguished by only m SNPs in C' (i.e., (i, j) has only m
edges connecting to nodes in C'). However, if these m
SNPs are all missing, no other SNPs in C' are able to dis-
tinguish patterns P; and P}, which is a contradiction. Thus,
each pair of patterns must be distinguished by at least (m
+ 1) SNPs, which implies that each node in P must have
at least (m + 1) edges connecting to nodes in C'. The proof
of the other direction is similar.

In the following, we give a lower bound regarding the
minimum number of robust tag SNPs required, which is
used to skip some solution space by the OPT program.

Lemma 2. Given K haplotype patterns, the minimum number
of robust tag SNPs required is at least log K.

Proof. Recall that the value of a SNP is binary. The maxi-
mum number of distinct haplotypes which can be distin-
guished by N SNPs is at most 2N. As a result, for a given

data set containing K haplotype patterns, the minimum
number of SNPs required is at least log K.

The following theorem shows the NP-hardness of the
MRTS problem, which implies there is no polynomial
time algorithm to find the optimal solution of MRTS.

Theorem 1. The MRTS problem is NP-hard.

Proof. When m = 0, MRTS is the same as the original prob-
lem of finding minimum tag SNPs, which is known as the
minimum test set problem [6,17]. Since the minimum test
set problem is NP-hard and can be reduced to a special
case of MRTS, MRTS is NP-hard.

The first greedy algorithm

To solve MRTS efficiently, we propose a greedy algorithm
which returns a solution not too larger than the optimal
solution. By Lemma 1, to tolerate m missing tag SNPs, we
need to find a subset of SNPs C' < C such that each pair of
patterns in P is distinguished by at least (m + 1) SNPs in
C'. Assume that the SNPs selected by this algorithm are
stored in a (m + 1) x |P| table (see Figure 7 (A)). Initially,
each grid in the table is empty. Once a SNP §,, (that can
distinguish patterns P; and P;) is selected, one grid of the
column (i, j) is filled in with S, and we say that this grid
is covered by S,.

This greedy algorithm works by covering the grids from
the first row to the (m + 1)-th row, and greedily selects a
SNP which covers most uncovered grids in the i-th row at
each iteration. In other words, while working on the i-th
row, a SNP is selected if its reformulated set S' maximizes
|S' N R; |, where R; is the set of uncovered grids at the i-th
TowW.

Figure 7 illustrates an example for this algorithm to toler-
ate one missing tag SNP (i.e.,, m = 1). The SNPs S;, S, S,,
and S, are selected in order. When all grids in this table are
covered, each pair of patterns is distinguished by (m + 1)
SNPs in the corresponding column. Thus, the SNPs in this
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table are the robust tag SNPs which can tolerate up to m
missing SNPs. The pseudo code of this greedy algorithm is
given below.

Algorithm: FIRST-GREEDY-ALGORITHM (C, P, m)
1R« P Vie[l,m+1]

2C' « ¢

3fori=1tom+1do

4 while R;# ¢ do

5 select and remove a SNP S from C that maximizes
|S' Ry

6 C'«<Cus

7 j«i

8 whileS'#¢gandj<m+1do

9 Sump < S' N R; /[S,y, is a temporary variable for
holding the result of S' N R,

10 R«<R-S

tmp

11 S'«S§'-S

tmp
12 jej+1

13 endwhile

14 endwhile

15 endfor

16 return C'

The time complexity of this algorithm is analyzed as fol-
lows. At Line 4, the number of iterations of the intermedi-
ate loop is bounded by |R;| < |P|. Within the loop body
(Lines 5-13), Line 5 takes O(|C||P|) because we need to
check all SNPs in C and examine the uncovered grids of R;.
The inner loop (Lines 8-13) takes only O(|S'|). Thus, the
entire program runs in O(m|C||P|?).

We now show the solution C' returned by the first greedy
algorithm is not too larger than the optimal solution C*.
Suppose the algorithm selects the k-th SNP when working

on the i-th row. Let | S}, | be the number of grids in the i-th

row covered by the k-th selected SNP (i.e., | S, | = [S' " R,[;

http://www.biomedcentral.com/1471-2105/6/263

see Line 5 in FIRST-GREEDY-ALGORITHM). For example

(see Figure 7), S5 = 2 since the second selected SNP (i.e.,
S,) covers two grids in the first row. We incur 1 unit of cost

to each selected SNP, and spread this cost among the grids

in S, [3]. In other words, each grid at the i-th row and j-th

column is assigned a cost C; (see Figure 8), where

) ﬁ if the algorithm selects the k-th SNP when covering the i-th row;
ci=11S%
]
0 otherwise.

Since each selected SNP is assigned 1 unit of cost, the sum

of C;'- for each grid in the table is equal to |C'|,

ie.,
K(K-1)
m+1 2 i
cl=2 > G (1)
i=1 j=1

Let R;iz be the number of uncovered grids in the i-th row

before the k-th iteration (i.e., (k - 1) SNPs have been
selected by the algorithm). For example (see Figure 8),

R} =2 since two grids in the first row are still uncovered
before the second SNP is selected. Define C; as the set of
iterations used by the algorithm when working on the i-th

row. For example (see Figure 8), C;_ ={3,4} since this

algorithm works on the second row in the third and
fourth iterations. We can rewrite (1) as

K(K-1)

m+l— 5 ; m+1 ; ; 1
Y Y =X X (R R )— (2)
=1 j=1 i=1 keC, | Sk |

i
> Rp
*

Lemma 3. The k-th selected SNP has C] .

St

Proof. Suppose the algorithm is working on the i-th row at

the beginning of the k-th iteration. Let C;: be the set of

SNPs in C* (the optimal solution) that has been selected
by the algorithm before the k-th iteration, and the set of
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Figure 8
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Analysis of the first greedy algorithm. This figure shows the cost Cj- of each grid for the first greedy algorithm.

remaining SNPs in C* be C% . We claim that there exists a

Rl
<

row. Otherwise (i.e., each SNP in Ci covers less than

SNP in Ci which can cover at least grids in the i-th

i

R *
’f grids), all SNPs in C; will cover less than
k
R}le * i . . . .
(—*X‘CE‘=Rk) grids in the i-th row. But since
C,
k

C;*z U Ci = C*, this implies that C* can not cover all grids

in R;i, which is a contradiction. Because all SNPs in C%

are candidates to the greedy algorithm, the k-th selected

Rl
SNP must cover at least — grids in the i-th row, which
[l
e s Rt . ;
implies |Sj; |2 | since |C*| > | C;; | and ‘Rk‘ < | Ry ‘
U

Theorem 2. The first greedy algorithm gives a solution of (m

K(K-1)
2

+1) In approximation.

Proof. Define the d-th harmonic number as

H(d) = 2:'1:1% and H(0) = 0. By (2) and Lemma 3,

m+1 Ry ‘C*‘

=X 2(X

i=1 keC 1R,+1Rk1

oSy S 7

i=1 keC = Rk+1

SEp Z(Z"Z

llkeCIl Il

<l 2 Y, (H(Ri1) - H(R}))

i=1 keC,
m+1 )

<101 (HR)~ H( )
i=1 B

<|C*|(m+1)max{H(R))} (RfC" =0 and H(0) = 0)

<|C*|@m+1)In|P|. (H(RG) < H(| P 1)) (3)
By (1) and (3), we get
! K(K-1
|C|S(m+1)ln|P| =(m+1)ln—( )
|C| 2

The second greedy algorithm

This section describes the second greedy algorithm which
returns a solution of better approximation than that of the
first greedy algorithm. Let R; be the set of uncovered grids
at the i-th row. Unlike the row-by-row manner of the first
greedy algorithm, this algorithm greedily selects a SNP
that covers most uncovered grids in the table (i.e., its
reformulated set S' maximizing |S' N (R, U ... U R.,1)|)-
Let T be the collection of R, (i.e., T is the set of all uncov-
ered grids in the table). If the grids in the i-th row are all
covered (i.e., R;= ¢), R;is removed from T. This algorithm
runs until T = ¢ (i.e., all grids in the table are covered).

Figure 9 illustrates an example for this algorithm with m
set to 1. The SNPs S, S,, S,, and S are selected in order.
Since this algorithm runs until all grids are covered, the set
of SNPs in this table is able to tolerate m missing tag SNPs.
The pseudo code of this algorithm is given below.
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P, P,P; P,
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<> S;={(1.4), (2.4), (3.4)}
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Figure 9
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r

(S1, Sz, S4, Ssare selected in order)

An example of the second greedy algorithm. The SNPs §|, S,, S,, and S; are selected by the second greedy algorithm. (A)

The table that stores each selected SNP.

Algorithm: SECOND-GREEDY-ALGORITHM (C, P, m)
1R <P Vie[l, m+1]

2T« {Ry, Ry... Ry}

3C'« ¢

4 while T # ¢ do

5 select and remove a SNP S from C that maximizes
[S'N (RyU ... UR,. )]

6 C«CuUS
7 foreachR;e Tand S'#¢do

8 Sy« S'NR;// S,y is atemporary variable for hold-
ing the result of S' " R;
9 Ri«R;-S

tmp

10 §$'«S'-S

tmp

11  ifR;=¢thenT <« T-R,
12 endfor

13 end while

14 return C'

The time complexity of this algorithm is analyzed as fol-
lows. At Line 4, the number of iterations of the loop is
bounded by O(|T|) = O(m|P|). Within the loop, Line 5
takes O(|C||P|) time because we need to check each SNP
in C and examine if it can cover any uncovered grid in
each column. The inner loop (Lines 7-12) is bounded by
O(]S']) <O(|P]). Thus, the running time of this program is
O(m|CI[P2).

We now evaluate the solution returned by the second
greedy algorithm. Let C' and C* be the set of SNPs selected
by this algorithm and the optimal solution, respectively.

Let | Sj; | be the number of grids in the table covered by the

k-th selected SNP. For example (see Figure 9), |S5| = 4
since the second selected SNP (i.e., S,) covers four grids in
the table. Define T, as the number of uncovered grids in

the table before the k-th iteration. We have the following
lemma similar to Lemma 3.

> Ty

Lemma 4. The k-th selected SNP has | .

Si

Proof. The proof is similar to that of Lemma 3. Let Ci be

the set of remaining SNPs in C* which has not been
selected before the k-th iteration. We claim that there

. L . T S
exists a SNP in C;; which can cover at least —k grids in

il
the table. Otherwise, we can get the same contradiction
(i.e., C* fails to cover all grids) as in Lemma 3. Since |C*|

s> L

> | Cy, | and T, < T}, we have 2o

Si

Theorem 3. The second greedy algorithm gives a solution of

In((m+1) @) approximation.

Proof. Each grid at the i-th row and j-th column is assigned
1
&

selected SNP. The sum of Cj- for each grid is

a cost C;- = (see Figure 10) if it is covered by the k-th
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Analysis of the second greedy algorithm. This figure shows the cost Cj- of each grid for the second greedy algorithm.

K(K-1)

m+l= 3 . ‘C'l 1
IC1=3% X ¢ = X0a-T) (see (1) and (2))
=1 j=1 k=1 ‘Sk‘
@ 1ol
< Y (T —-T) (by Lemma 4)
k=1 T

| C*| (H(Ty) - H(Tjc1)) (see the proof in Theorem 2)

<
< |Cf|In((m+1)|P]).

By (4), we have

<l
|C|

<In((m+1)|P|)= ln((m+1)@).

The iterative LP-relaxation algorithm

In practice, a probabilistic approach is sometimes more
useful since the randomization can explore different solu-
tions. In this section, we reformulate the MRTS problem
to an Integer Programming (IP) problem. Based on the IP
problem, we propose an iterative Linear Programming
(LP)-relaxation algorithm. The iterative LP-relaxation
algorithm is described below.

Step 1. Given a haplotype block containing N SNPs and K
haplotype patterns. Let {x;,x,, ....xy} be the set of integer
variables for the N SNPs, where x, = 1 if the SNP §,, is
selected and x; = 0 otherwise. Define D(P;, P}) as the set of
SNPs which are able to distinguish P; and P, patterns. By
Lemma 1, to allow at most m missing SNPs, each pair of
patterns must be distinguished by at least (m + 1) SNDPs.
Therefore, for each set D(P;, P;), at least (m + 1) SNPs have
to be selected to distinguish P;and P; patterns. As a conse-
quence, the MRTS problem can be formulated as the fol-
lowing IP problem:

N
Minimize 2 Xy
k=1
Subject to X, 2m+1,
keD(D; 7))

x,=0or 1.

forall1<i<j<K,

Step 2. Since solving the IP problem is NP-hard [6], we
relax the integer constraint of x;, and the IP problem
becomes an LP problem defined as follows:

N
Minimize Yy,
k=1
Subject to Ve 2m+1, forall1<i<j<K, (6)
ke D(.P,)
0<y, <1

The above LP problem can be solved in polynomial time
by efficient algorithms such as the interior point method
(Forsgren et al., 2002) [5].

Step 3. Let {y;, V5, ..., Yy} be the set of linear solutions
obtained from (6), where 0 <y, < 1. We construct the cor-
responding integer solutions {x;, x,, ..., xy} by the follow-
ing randomized rounding method:

x;, =1 with probability y;,,

Assign
& {xk = 0 with probability 1-yj,.

Note that the constructed integer solutions do not neces-
sary satisfy all inequalities in (5). The randomized round-
ing method simply assigns x, to 1 or 0 using the value of
Y. as the likelihood, regardless of the inequalities in (5).

Step 4. We check whether the integer solutions con-
structed in Step 3 satisfy all inequalities in (5) or not.

Case 1. If some inequalities in (5) are still unsatisfied, we
repeat Steps 1, 2, and 3 only for those unsatisfied inequal-
ities until all of them are satisfied.

Case 2. If all inequalities in (5) are satisfied, we construct
a final solution by setting x;, = 1 if x, is assigned to 1 in any
one of the iterations and setting x;, = 0 otherwise.

We now evaluate the solution returned by the iterative LP-
relaxation algorithm. The selection of each SNP is consid-
ered as a Bernoulli random variable x; taking values 1 (or
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An example of finding auxiliary tag SNPs. The SNP S, is missing and SNP S, is the auxiliary tag SNP for h,. (A) The table

that stores the set of robust tag SNPs.

0) with probability y; (or 1 -y;). Let X;; be the sum of ran-
dom variables in one inequality of (5), i.e.,

Xi,j = Z Xp, -
keD{P.P;}

By (6), the expected value of X; ; (after randomized round-
ing) is

EX; ;] = 2 E[x,] = 2 Vi
ke D{P, P;} ke D{P; P;}
> m+1. (7)

Lemma 5. The probability that an inequality in (5) is not sat-

1
isfied after randomized rounding is less than e *™

Proof. The probability that an inequality in (5) is not sat-
isfied is P[X;; <m + 1] = P[X;; < m]. By the Chernoff bound

1,] —

02E[X]

(e, PIX<(1-60)E[X]]<e 2 ), wehave

(BLX,jl-m)?

PIX;;<m]<e 1N (8)
By (7), we know E[X; ;] <m + 1. Since the right-hand side
of (8) decreases when E[X;;] > m, we can replace E[X;,]

with (m + 1) to obtain an upper bound, i.e.,

(E[Xi,j]-m)2 )
T2E[X; ] _ (m+1-m)
P[Xi,j < m] < H <e 2(m+1)
1
< e_2(m+1)-

Theorem 4. The iterative LP-relaxation algorithm gives a solu-
tion of O(m In K) approximation.

Proof. Suppose this algorithm runs for ¢ iterations. The

(K-1)

K
probability that all > inequalities in (5) are satis-

fied after t iterations is

K(K-1)

(1_(6—1/2(m+1))t) ]

= (1- o t/2(m+1) )K(iil)

_K(K-1) -t/ 2(m+1)
= e 2

K(K-1)

When t = 2(m + 1) In , the algorithm stops and

returns a solution with probability e!. Define OPT(IP)
and OPT(LP) as the optimal solutions of the IP problem
and the LP problem, respectively. Since the solution space
of LP includes that of IP,

OPT(LP) < OPT(IP).

Let the set of solutions returned in t iterations be {Z;,
AAY

N N
E[Z]= E[Y, %] = Y, v = OPT(LP).
k=1 k=1
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Note that we repeat this algorithm only for those unsatis-
fied inequalities. Thus, E[Z,] 2 E[Z,] = ... 2 E[Z]]. Let x,
denote the final solution obtained in Step 4. The expected
final solution is

N t
EY x| < EY 7]
p=1 p=1
< txEZ]
< (xOPT(LP)
< 2Am+1)In @ x OPT(IP)
= O(m In K)xOPT(IP).

With a high probability, the iterative LP-relaxation algo-
rithm stops after O(m In K) iterations and finds a solution
of O(m In K) approximation.

An algorithm for finding auxiliary tag SNPs

This section describes an algorithm for finding auxiliary
tag SNPs assuming robust tag SNPs have been computed
in advance. Given a haplotype block M, containing N
SNPs and K haplotypes, we define C,,, = C as the set of tag
SNPs genotyped from a haplotype sample with some
missing data. This haplotype sample may fail to be distin-
guished because of the ambiguity caused by missing data.
We wish to find the minimum number of auxiliary tag
SNPs from the remaining SNPs in the block to resolve the
ambiguity. A formal definition of this problem is given
below.

Problem: Minimum Auxiliary Tag SNPs (MATS)
Input: An N x K matrix My, and a set of SNPs C,,; geno-
typed from a sample with missing data.

Output: The minimum subset of SNPs C,,,c C - C,,, such
that each pair of ambiguous patterns can be distinguished
by SNPs in C,,,.

The following theorem shows the NP-hardness of the
MATS problem.

Theorem 5. The MATS problem is NP-hard.

Proof. Consider that all SNPs in C,,, are missing. This spe-
cial case of the MATS problem becomes finding the mini-
mum tag SNPs from C - C,,,, which is already known to be
NP-hard [17]. Therefore, MATS is also NP-hard.

Although the MATS problem is NP-hard, we show that
auxiliary tag SNPs can be found efficiently when robust
tag SNPs have been computed in advance. Without loss of

http://www.biomedcentral.com/1471-2105/6/263

generality, assume that these robust tag SNPs are stored in
an (m + 1) x |P| table T, (see Figure 11 (A)).

Step 1. The patterns that match the haplotype sample are
stored into a set A. For example (see Figure 11), if we gen-
otype SNPs S;, S,, and S, for the sample h, and the SNP S,
is missing, patterns P, and P; both match h,. Thus, A =

{Py, Ps}

Step 2. If |A| = 1, the sample is identified unambiguously
and we are done (e.g., h, in Figure 11). If |A| > 1 (e.g., h,),
for each pair of ambiguous patterns in A (e.g., P; and P;),
traverse the corresponding column in T,, find the next
unused SNP (e.g., S,), and add the SNP to C,,,,. As a result,
the SNPs in C,,, can distinguish each pair of ambiguous
patterns, which are the auxiliary tag SNPs for the haplo-

type sample.

The worst case of this algorithm is that all SNPs in C,,, are
missing data, and we need to traverse each column in T..
Thus, the running time of this algorithm is O(|T,|) =
O(m|PY).
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Additional material

Additional File 1

The program for the first greedy algorithm. The Greedyl.zip file is com-
pressed using WinZip and contains the JAVA source code for the first
greedy algorithm.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-6-263-S1.zip|

Additional File 2

The program for the second greedy algorithm. The Greedy2.zip file is
compressed using WinZip and contains the JAVA source code for the sec-
ond greedy algorithm.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-6-263-S2.zip]

Additional File 3

The program for the iterative LP-relaxation algorithm. The ILP.zip file
is compressed using WinZip and contains the Perl script for the iterative
LP-relaxation algorithm.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-263-S3.zip]

Page 15 of 16

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2105-6-263-S1.zip
http://www.biomedcentral.com/content/supplementary/1471-2105-6-263-S2.zip
http://www.biomedcentral.com/content/supplementary/1471-2105-6-263-S3.zip

BMC Bioinformatics 2005, 6:263

Acknowledgements

We thank the referees for their valuable comments that resulted in numer-
ous improvements in the presentation. Yao-Ting Huang and Kun-Mao Chao
were supported in part by NSC grants 93-2213-E-002-029 and 94-2213-E-
002-091 from the National Science Council, Taiwan. Ting Chen was sup-
ported in part by NIH CEGS: Implications of Haplotype Structure in the
Human Genome, Grant No. P50 HG002790.

References

1. Bafna V, Halldérsson BV, Schwartz R, Clark AG, Istrail S: Haplotypes
and informative SNP selection algorithms: don't block out informa-
tion. Proc RECOMB'03 2003:19-27.

2. Carlson CS, Eberle MA, Rieder M, Yi Q, Kruglyak L, Nickerson DA:
Selecting a maximally informative set of single-nucleotide
polymorphisms for association analyses using linkage dise-
quilibrium. Am | Hum Genet 2004, 74:106-120.

3.  Cormen TH, Leiserson CE, Rivest RL, Stein C: Introduction to algo-
rithms The MIT Press; 2001.

4.  Daly M), Rioux D, Schaffner SF, Hudson T, Lander ES: High-resolu-
tion haplotype structure in the human genome. Nat Genet
2001, 29(2):229-232.

5. Forsgren A, Gill PE, Wright MH: Interior methods for nonlinear
optimization. SIAM Rev 2002, 44:525-597.

6. Garey MR, Johnson DS: Computers and intractability Freeman, New
York; 1979.

7.  Halldérsson BV, Bafna V, Lippert R, Schwartz R, Vega FM, Clark AG,
Istrail S: Optimal haplotype block-free selection of tagging
SNPs for genome-wide association studies. Genome Research
2004:1633-1640.

8. Halperin E, Eskin E: Haplotype reconstruction from genotype
data using imperfect phylogeny. Bioinformatics 2004.

9. Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG,
Frazer KA, Cox DR: Whole-genome patterns of common DNA
variation in three human populations. Science 2005,
307:1072-1079.

10. Hudson RR: Generating samples under a Wright-Fisher neu-
tral model of genetic variation. Bioinformatics 2002, 18:337-338.

I1. LP Solve [http://www.cs.sunysb.edu/~algorith/implement/Ipsolve/
implement.shtml]

12. Niu T, Qin Z, Xu X, Liu |JS: Bayesian haplotype inference for
multiple linked single-nucleotide polymorphisms. Am | Hum
Genet 2002, 70:157-159.

13. Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR,
Kautzer CR, Lee DH, Marjoribanks C, McDonough DP, Nguyen BT,
Norris MC, Sheehan JB, Shen N, Stern D, Stokowski RP, Thomas D),
Trulson MO, Vyas KR, Frazer KA, Fodor SP, Cox DR: Blocks of lim-
ited haplotype diversity revealed by high-resolution scanning
of human chromosome 21. Science 2001, 294:1719-1723.

14.  Stephens M, Donnelly P: A comparison of bayesian methods for
haplotype reconstruction from population genotype data.
Am | Hum Genet 2003, 73:1162-1169.

15. Wang L, Xu Y: Haplotype inference by maximum parsimony.
Bioinformatics 2003, 19(14):1773-1780.

16. Yang Y, Zhang ], Hoh J, Matsuda F, Xu P, Lathrop M, Ott |: Efficiency
of single-nucleotide polymorphism haplotype estimation
from pooled DNA. Proc Nat Acad Set 2003, 100(12):7225-7230.

17.  Zhang K, Deng M, Chen T, Waterman MS, Sun F: A dynamic pro-
gramming algorithm for haplotype partitioning. Proc Nat Acad
Sci 2002, 99(11):7335-7339.

18.  Zhang K, Sun F, Waterman MS, Chen T: Haplotype block parti-
tion with limited resources and applications to human chro-
mosome 21 haplotype data. Am | Hum Genet 2003, 73:63-73.

19. Zhang K, Qin ZS, Liu JS, Chen T, Waterman MS, Sun F: Haplotype
block partition and tag SNP selection using genotype data
and their applications to association studies. Genome Research
2004, 14:908-916.

20. Zhao JH, Lissarrague S, Essioux L, Sham PC: GENECOUNTING:
haplotype analysis with missing genotypes. Bioinformatics 2002,
18:1694-1695.

http://www.biomedcentral.com/1471-2105/6/263

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 16 of 16

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11586305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11586305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15718463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15718463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11847089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11847089
http://www.cs.sunysb.edu/~algorith/implement/lpsolve/implement.shtml
http://www.cs.sunysb.edu/~algorith/implement/lpsolve/implement.shtml
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11741196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11741196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11721056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11721056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11721056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14574645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14574645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14512348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12032283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12032283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12802783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12802783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12802783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15078859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15078859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15078859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490459
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Results on simulated data
	Results on real data

	Discussion
	Conclusion
	Software availability
	Methods
	Problem: Minimum Robust Tag SNPs (MRTS)
	The first greedy algorithm
	The second greedy algorithm
	The iterative LP-relaxation algorithm
	An algorithm for finding auxiliary tag SNPs
	Problem: Minimum Auxiliary Tag SNPs (MATS)

	Authors' contributions
	Additional material
	Acknowledgements
	References

