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Abstract
Background: Determination and quantification of nucleic acid components in a mixture is usually
accomplished by microarray approaches, where the mixtures are hybridized against specific probes.
As an alternative, we propose here that a single sequencing reaction from a mixture of nucleic acids
holds enough information to potentially distinguish the different components, provided it is known
which components can occur in the mixture.

Results: We describe an algorithm that is based on a set of linear equations which can be solved
when the sequencing profiles of the individual components are known and when the number of
sequenced nucleotides is larger than the number of components in the mixture. We have
implemented the procedure for one type of sequencing approach, pyrosequencing, which produces
a stepwise output of peaks that is particularly suitable for the procedure. As an example we use
signature sequences from ribosomal RNA to distinguish and quantify several different species in a
mixture. Using simulations, we show that the procedure may also be applicable for dideoxy
sequencing on capillary sequencers, requiring only some instrument specific adaptations of
protocols and software.

Conclusion: The parallel sequencing approach described here may become a simple and cheap
alternative to microarray experiments which aim at routine re-determination and quantification of
known nucleic acid components from environmental samples or tissue samples.

Background
The identification of individual components from a mix-
ture of nucleic acid sequences relies currently on molecu-
lar hybridization approaches, such as microarrays.
Technically, these make use of the inherent combinatorial
complexity of strings of nucleotides, as well as the base
pairing reaction between single stranded molecules. These

allow to potentially resolve vast numbers of different
sequences, provided one knows which sequences can
occur in the mixture. In contrast, DNA sequencing reac-
tions do not require a priori knowledge of the sequence
that is to be determined, but they can only identify one
sequence at a time. However, the patterns produced in
sequencing reactions have also an inherent combinatorial
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complexity with respect to the order and height of peaks.
Accordingly, mixtures of sequencing reactions should also
produce characteristic patterns which reflect the compo-
nents of the mixture. Thus, it should be possible to decon-
volute a mixture pattern into its individual components,
provided the components that can potentially occur in the
mixture are known. We propose here an algorithm that is
based on solving a system of linear equations which
describe the peak patterns that can theoretically be
obtained. The number of sequences that can be resolved
with this algorithm depends on the number of sequencing
steps that can be recorded. Thus, the procedure can not
resolve the very large number of sequences that can poten-
tially be resolved by microarrays, but applications where
this high resolution potential is not necessary could be
done more efficiently with the parallel sequencing proce-
dure described here.

One particular application, which we use here to exem-
plify the procedure, would be species identification
through DNA taxonomy [1-5]. It has been proposed that
the identification of organisms could be based on short
characteristic strings of nucleotides from universally
occurring genes, such as the mitochondrial cytochrome
oxidase gene [3] or ribosomal RNAs [5]. This requires on
the one hand to build a database of such sequences and
on the other hand to re-sequence given samples and to
compare them with the database. The re-sequencing could
become more efficient, when several samples could be
pooled and determined in a single sequencing reaction.
Also, environmental samples of small organisms are usu-
ally obtained as mixtures and it would be highly advanta-
geous, if the species within them could be determined
without separation. We use here the example of ribosomal
RNA signature sequences to show that this approach is
indeed promising. For this we employed the pyrosequenc-
ing procedure [6], because of its inherent property to sep-
arate each sequencing step. However, using simulations,
we suggest that dideoxy sequencing procedures [7] might

work as well, provided some technical adjustments can be
done.

Results
Conventional dideoxy sequencing procedures require sin-
gle templates from which labeled DNA fragments are pro-
duced, which are then resolved by electrophoresis [7]. In
the pyrosequencing procedure, each individual nucle-
otide in a template sequence is probed for incorporation
of all possible nucleotides and a light signal is generated
when the incorporation is successful [6]. In both proce-
dures, the signal intensity depends on the concentration
of the template and the sequence context of the nucle-
otide that is being determined. The latter depends on the
enzyme that is used, as well as on the reaction conditions.
However, for a given enzyme and condition, each tem-
plate will produce a reproducible pattern of signals.

The system of linear equations that is used for the decon-
volution algorithm (see methods) can be solved when the
number of equations is at least equal to the number of
components in the mix. Each equation reflects one
sequencing step, i.e. the recorded sequence length deter-
mines the complexity of the mixture that can be analysed.
In practice, one will require more steps than the theoreti-
cal minimum, to compensate for non-informative (i.e.
conserved) positions and experimental noise. Since the
pyrosequencing procedure produces a stepwise output for
each nucleotide position probed, it can be directly
employed to test whether the algorithm works under prac-
tical conditions.

Implementation for pyrosequencing
The ribosomal RNA sequences that were used for the test
were derived from meiobenthos organisms. A special fea-
ture of rRNA sequences is the fact that they are composed
of a patchwork of highly conserved and highly divergent
regions. Hence it is possible to use a single primer for the
sequencing reaction next to a region with high diversity

Sequence alignments for the seven taxa used in this study covering the region that is probed by the pyrosequencing procedure with 60 dispensation steps (dispensation order: A-T-G-C)Figure 1
Sequence alignments for the seven taxa used in this study covering the region that is probed by the pyrosequencing procedure 
with 60 dispensation steps (dispensation order: A-T-G-C). The underlined part represents the primer that was used for the 
sequencing reaction. The length of the sequence recorded by the pyrosequencing procedure depends on the exact order of 
the nucleotides and the order of the dispensation steps. Hence, it is slightly different for the different sequences.
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Results from the mixture experimentsFigure 2
Results from the mixture experiments. Observed and expected values are plotted for each mixture. The observed values are 
averages from four replicates, each evaluated with four replicates of the library of profiles. The actual values of the replicates, 
as well as the standard deviations are listed in supplementary Table 1.
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which is particularly informative with respect to species
discrimination. Figure 1 shows the relevant sequence
alignments for the organisms used in this study. The
respective fragments were previously cloned [5,8], allow-
ing to determine the individual sequence profiles and to
generate defined mixtures. Four different mixes were gen-
erated and sequenced in parallel to the single sequences to
obtain the respective profiles. Each mix was done in four
replicates and the solutions were calculated for each of the
four libraries. The estimated standard deviations for each
solution (see Methods), as well as for the replicates were
low in most cases (data listed in suppl. Table 1). Figure 2

displays the observed and expected values for each mix
(note that "Algae" was always used as a negative control
and not added to the mix). This shows that the different
components were indeed always identified, although not
always at their expected concentration. The Nematode
and the Tardigrade showed consistent downward biases,
which are compensated by slight upward biases for the
other components. The reasons for these biases are not yet
clear. Still, the results demonstrate that the algorithm
works in principle, although systematic under- or over-
estimations of the relative concentration of the compo-
nent might occur (see discussion).

(A) Distribution of the simulated abundance profile of the components in the mix used for assessing the influence of noise in Figure 3Figure 3
(A) Distribution of the simulated abundance profile of the components in the mix used for assessing the influence of noise in 
Figure 3. The concentrations were randomly assigned to 99 samples. The 0th sample had concentration 0 as a negative control. 
(B) Section of a simulated peak profile of the mix with the abscissa depicted as a time line measured in scan numbers and the 
ordinate in arbitrary intensity units.
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Simulation of dideoxy sequencing
Because the pyrosequencing procedure is more restricted
with respect to the number of nucleotides that can be
sequenced than dideoxy sequencing, it could be useful to
adapt the procedure to dideoxy sequencing as well. How-
ever, the capillary sequencers that are nowadays used for
resolving the DNA fragments are highly tuned towards the
specific task of sequence determination, which interferes
with the requirement of peak synchronization for the par-
allel sequencing procedure. Since this is a technical prob-
lem that can not be easily solved without interfering with
the basic function of the respective instruments, we have
simulated the results of dideoxy sequencing, to test the
parallel sequencing procedure and to assess at the same
time the influence of noise in the system.

Sequencing profiles were simulated with variations of
position specific peak heights (see Methods). From these
profiles we generated mixtures of one hundred sequences,
with concentration differences of three orders of magni-
tude. A typical abundance profile is shown in Figure 3
together with the simulated composite sequence profile.
In the absence of noise, this profile can be unequivocally
solved for each component, based on 200 sequenced
positions. However, real experiments would include
experimental noise. We have simulated this noise at three
different levels, 1%, 5% and 10% noise in each of the
peaks of the mixture. Note that the noise level is deter-
mined by the ratio of the noise to the highest peak of the
electropherogram (see Methods). By calculating detection
limits defined as three times standard deviation of the
solution for the negative control, one can assess the level
at which faithful determination is still possible. We found
that for the 1% noise level, components present at
approximately 0.06% or lower would not be faithfully
recovered. This threshold would rise to about 0.3% at the
5% noise level and about 0.6% at the 10% noise level
(Figure 3). In our experience, the actual noise levels in
peak determinations for identical sequences are currently
about 5% on an ABI capillary sequencer. Thus, with the
currently available procedures, one would already be able
to resolve a dynamic range of 30-fold concentration dif-
ferences in hundreds of components.

Discussion
Our results show that although the experimental proce-
dures will have to be optimized, it is evident that parallel
sequencing can in principle be applied to determine the
components of mixtures of nucleic acids. The approach
will have a particular power for applications where rou-
tine re-determination of a limited number of sequence
components is required. In such cases it will be possible
to experimentally determine correction factors for cases
where systematic under- or over-representations of com-
ponents are observed, as it was the case for two of the

components in our experiments. Although we do not yet
know the reasons for these deviations, it appears that they
are highly reproducible, implying that correction factors
would solve this problem.

The most immediate application for our procedure would
be in the field of DNA taxonomy or DNA barcoding.
There are currently ongoing efforts to obtain DNA bar-
codes for a large diversity of organisms, including those
from soil [1] or benthos [5] samples. These samples
include a mixture of small organisms that might be suita-
ble indicators for ecological quality, i.e. a routine determi-
nation may become relevant for environmental
monitoring. The use of ribosomal rRNA signature
sequences would be particularly relevant for such sam-
ples, since the rRNA molecules occur in high concentra-
tions in each cell, which could potentially allow using
them directly as templates for the sequencing reaction.
Furthermore, since the pyrosequencing procedure does
not require resolving the reaction products by electro-
phoresis, it would seem feasible that relatively simple
instruments can be constructed to determine the compos-
ite sequence profiles, even under outdoor conditions.

However, our procedure may also be useful for medical
diagnostic approaches, which aim at routine determina-
tions of limited numbers of components. It seems possi-
ble that certain diseases or cancers are characterized by the
misexpression of a small set of genes. There are ongoing
efforts to develop dedicated microarray assays for diag-
nosing these on a routine basis. Instead, one could envi-
sion using the parallel sequencing procedure to achieve
the same goal. In this case one would have to preamplify
the samples with a set of primers that are specific for the
respective genes and which carry a universal priming site
for the sequencing primer. This mixture could then be
directly sequenced and the relative concentrations of the
components would a measure of the level of expression in
the original sample. The parallel sequencing procedure
could thus at least partially substitute diagnostic microar-
rays in the future.

The pyrosequencing procedure that we have employed
here can produce only a limited number of reliable
sequencing steps, i.e. only a small number of components
could be experimentally resolved. However, optimized
procedures [9] can yield reading lengths of up to 200 nt,
which would expand the applicability to more complex
mixtures. Even longer sequence reads can be achieved
with the dideoxy sequencing procedure on capillary
sequencers. With these, one should be able to assess in the
order of hundreds of components in parallel, depending
on the level of experimental noise. The greatest problem
for implementing the parallel sequencing procedure
directly to currently available sequencers is the lack of syn-
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chronization between the peaks in different capillaries,
i.e. the profile libraries can not be easily matched with the
experimental runs which provide a complex picture of
composite peaks. However, this problem may be solved
by including size standards in each capillary and adjusting
the recording software for peaks to these standards, a task
that has to be solved in an instrument specific manner.

Conclusion
The parallel sequencing procedure has the capacity to sub-
stitute many applications where dedicated microarrays
would currently be the only solution. Although further
experimental optimizations will be required, these are
expected to be solvable in principle. The immediate appli-
cability lies in the field of DNA barcoding and DNA tax-
onomy, but applications in the field of medical
diagnostics would also seem feasible.

Methods
Templates and pyrosequencing
The ribosomal rRNA templates that were used for the
implementation of the pyrosequencing procedure were
derived from a project where the D3–D5 expansion seg-
ment region of the LSU was cloned from organisms that
are present in meiobenthos samples [5,8]. The seven
sequences that were chosen represent an algae (A), a nem-
atode (N), a tardigrade (T), three crustaceans (C = cyclops,
H = harpacticoid, O = ostracod) and an insect (E =
ephemeroptera). The fragments were amplified from the
clones using primers designed with the software PROBE
http://jakob.genetik.uni-koeln.de/bioinformatik/soft
ware/probedesign/[10]: forward primer 5'-GAC-CCG-
TCT-TGA-AAC-ACG-G-3' and a biotinylated reverse
primer 5'-ATC-GAT-TTG-CAC-GTC-AGA-A-3'. Pyrose-
quencing was performed with 5'-GAA-ACA-CGG-ACC-
AAG-GAG-T-3' as sequencing primer according to the
instructions of the supplier (Biotage, Uppsala) and on the
PSQ96 MA instrument (Biotage). The pyrograms for sixty
dispensation cycles were recorded and exported into Excel
(Microsoft Inc.) for the further calculation steps.

Deconvolution of the mixture for the pyrosequencing procedure
Each component of the mixture contributes to the final
pattern recorded for this mixture. Determination of the
pattern contributions, i.e. quantification of the compo-
nents in the mix, can be achieved by solving a system of
linear equations. In theory the following system of equa-
tions describes the pyrosequencing process:

Sj – is the peak intensity at j-th step of a specified nucle-
otide; kji(Z) – the linear coefficient between signal inten-
sity and incorporation event of a specified nucleotide Z
(A,T,G,C) at the j-th step of sequencing for the i-th organ-
ism; nji(Z) – number of available incorporation events for
the nucleotide at the j-th step for the i-th organism
(0,1,2,3...) since polynucleotide sequence can have suc-
cessive repetitions of the same nucleotide several times; xi
– the sought concentration of the i-th organism; N – total
number of organisms.

In practice the coefficients kji(Z) are unknown, hence it is
necessary to record pyrosequencing profiles for each
expected component prior to solving the linear system.
Pre-recorded profiles represent a set of kji(Z)nji(Z) which
is then used to deconvolute a mix. Needless to say that the
dispensation order of dNTPs determines pyrograms,
therefore it must be consistent throughout individual
components and the sample (in our case: A-T-G-C).

In a matrix form the system can be re-written as:

N·X = S

where N – matrix of nji multiplied by kji(Z), actually the
pre-recorded profiles; X vector of xi; S – vector of peak
intensities. This system can analytically be solved by the
"least squares" solution which minimizes the square of
the norm of the residual difference [11]:

X = (NT·N)-1·NT·S

To obtain an estimator for the standard deviations of the
solutions one has to assume that the values in the matrices
N and S, being physical measurements of light intensity,
are distributed normally. This assumption allows to calcu-
late errors associated with each solution using the follow-
ing procedure (according to[11]): a non-scaled covariance
matrix for the vector of solutions (X) can be computed as:

C = (NT·N)-1

This matrix needs to be scaled by a factor that can be deter-
mined as follows:

where X is the solution of the above equation, r – number
of rows and p – number of columns in N respectively [12].

The diagonal elements of the scaled covariance matrix are
variances (squared standard deviations) of each solution
in the vector X. Therefore, these diagonal elements can be
used as a measure of an error associated with each solu-
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tion. Note that values in the covariance matrix as well as
the solution are only meaningful if there is a good corre-
lation between S and NX, where X is the computed solu-
tion. Correlating S and NX allows determining how well
the pyrogram of the unknown sample can be explained in
terms of the pyrograms of individual components. If the
correlation is poor, the design matrix N is not adequate to
the sample (i.e. there are too many unknown RNAs in the
sample) and the solution as well as covariance matrix are
meaningless.

The number of steps required for an unambiguous solu-
tion must be at least as many as the number of compo-
nents to be identified plus possible additional steps to
provide non-singularity of the matrix N. Any further addi-
tional steps provide an overdefinition of the system that
makes its resolution more robust. For a given set of antic-
ipated components it is possible to determine a minimal
number of sequencing steps beforehand assuming all
kji(Z) = 1 and nji(Z) taken from the sequences of these
components. A simple algorithm simulating pyrose-
quencing evaluates singularity of the matrix N at each step
until N is no more singular. The solution of the linear
equations was carried out with the MathCad (Math Soft
Inc.).

Implementation for dideoxy sequencing
A mixture electropherogram from a capillary sequencer
can be represented as follows:

where fi(t) is the electropherogram of i-th component, t –
the scan number or time after the start of electrophoresis,
ai – the quantity of the i-th component and N – number
of components. Thus, the problem can be converged to
finding ai, which is the best linear fit given that fi(t) is
known beforehand – again from the set of pre-recorded
electropherograms of expected components. One solves a
system of linear equations:

FA = Y

where A is a {ai}T vector, F – matrix, which k-th row is
{fi(tk)} and Y – vector {y(tk)}T. The index k runs from 0 to
at least N-1. The tk is a subset of scans from the entire elec-
tropherogram. The solution is found as shown above

The functions {fi(t)} are determined by sequencing the
individual components and storing the electrophero-
grams in the profile library.

y t a f ti i
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Simulation of the effect of noise on the recovery of the cor-rect concentrations of the components in a mix of 99 sam-ples with different concentrationsFigure 4
Simulation of the effect of noise on the recovery of the cor-
rect concentrations of the components in a mix of 99 sam-
ples with different concentrations. The distribution of the 
concentrations is shown in Figure 3. From top to bottom: 1, 
5 and 10 % noise level. The graphs represent a direct com-
parison of given (X axis) and found (Y axis) values. A solid 
line indicates detection limit calculated as 3 times standard 
deviation of the negative control. Solutions below this line 
are not reliable.
Page 7 of 8
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:281 http://www.biomedcentral.com/1471-2105/6/281
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Simulation of Dideoxy sequencing results
Gauss-shaped peaks were simulated for random
sequences, with unequal assignment of peak height at
each position to mimic the known differential incorpora-
tion effects. A component library was build from these
simulated electropherograms. Concentrations of each
component of the library were chosen to be 1.

A mixture was composed from randomized amounts of
components adding up to 1. This way of mixture simula-
tion reflects a realistic case where the total amount of
DNA or RNA of the mix would be the same as that used to
record the library. The distribution of the components
was chosen to represent abundant and rare components
(compare Fig. 3). The system was solved as described
above. Solutions represent fractions of each component of
the library in the sample mixture. To estimate the influ-
ence of noise, normally distributed random numbers
were used to change each peak in the simulated electroph-
erogram of the sample and the library at a specified noise
level. The noise level was determined as a fraction of the
maximal peak of an electropherogram.
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