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Abstract

Background: Good statistical models for analyzing and simulating multilocus recombination data
exist but are not accessible to many biologists because their use requires reasonably sophisticated
mathematical and computational implementation. While some labs have direct access to
statisticians or programmers competent to carry out such analyses, many labs do not. We have
created a platform independent application with an easy-to-use graphical user interface that will
carry out such analyses including the simulations needed to bootstrap confidence intervals for the
parameters of interest. This software should make multi-locus techniques accessible to labs that
previously relied on less powerful and potentially statistically confounded single interval or double
interval techniques.

Results: We introduce InterferenceAnalyzer, an implementation with a user-friendly graphical
interface incorporating previously developed algorithms for the analysis and simulation of
multilocus recombination data. We demonstrate the use and features of the program with an
example of multilocus tetrad data from the mustard plant, Arabidopsis thaliana, and the yeast,
Saccharomyces cerevisiae.

Conclusion: InterferenceAnalyzer provides easy access to the powerful and appropriate statistical
tools for the multi-locus analysis of genetic data.

Background

One type of data collected and used by geneticists involves
the scoring of markers in a genetic cross of two parents
whose markers are known. Such data are used to create
genetic maps, associate markers with traits of interest, and
to study recombination. For some organisms such as yeast
and Arabidopsis, all four products of meiosis can be
scored giving rise to tetrad data. Assuming the order of the
markers is known or has been inferred, the geneticist can
look at adjacent marker patterns and determine if the tet-
rad has parental ditype, tetratype, or non-parental ditype

configuration for the interval. See Figure 1. The simplest
explanation for parental ditype is that there are no crosso-
vers in the interval. Similarly, the simplest explanation for
tetratype and non-parental ditype patterns are one and
two crossovers in the interval, respectively. However, two
crossovers in an interval can lead to any of the three pos-
sible patterns (parental ditype, tetratype, and non-paren-
tal ditype). Under the assumption that the pair of parental
strands involved in the crossover is chosen independently
for each of the two crossovers (the no chromatid interfer-
ence assumption), the respective probabilities of these
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Parcntal Ditype:
(AB AB ab ab)

Tetratype:
(BC Be bC be)

NonParental Ditype:
({CdCdcD D)

Two crossovers leading to tetratype:
(DE De dE de)

Figure |

Geneticist's Data. The figure demonstrates the three pos-
sible tetrad types between pairs of markers, parental ditype,
tetratype, and nonparental ditype, with example of how they
might arise under specific crossover patterns.

three outcomes are 1/4, 1/2, and 1/4. The no chromatid
interference assumption has been supported statistically
in most of the experiments where the matter was consid-
ered [1,2] and the general formula for the conditional
probability of observing any particular tetrad pattern
(parental ditype, tetratype, or nonparental ditype) in an
interval given the number of crossovers was worked out
by Mather in 1935 [3].

The placement of crossovers along the tetrad, however,
often does show crossover interference; that is, a crossover
discourages another one from occurring nearby. Crosso-
ver interference has been observed in many organisms
including fruit flies [4-7], yeast [2,8,9], bread mold [4,10],
mice [11], humans [12,13], and green plants such as Ara-
bidopsis [14,15]. The only successful statistical model for
crossover interference is the counting or Chi-Square
model whose mathematical formulation dates back to
Payne in 1956 [16] and which was given an elegant for-
mulation in a text of Bailey as the segmental calculus in
1961 [17]. If the crossovers were distributed at random,
the spacing between them would be exponential, which is

1 2
equivalent to the scaled Chi-Square distribution 2X2 CIf

the spacing between crossovers is the sum of two expo-

nential random variables, then the distribution is the
1 2
scaled Chi-Square distribution 4x4. In general, if the

spacing between crossovers is the sum of m + 1 exponen-
tial random variables, then the distribution is
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1

2(m+1)
when Foss et al. [4] proposed that the double strand
breaks that initiate recombination events were distributed
at random but only every m + 15t one was resolved as a
crossover, the intervening ones being resolved with non-
crossovers (i.e., simple gene conversions unaccompanied
by crossing over.) The number of noncrossovers between
pairs of crossovers, m, is known as the interference param-
eter. The counting model has been shown repeatedly to fit
genetic data well, both statistically and graphically, and
provides a substantially better fit than other statistical
models of interference [4,6,7,11,12].

x%(m +1) - The model gained biological credibility

The mathematical details of the use of the segmental cal-
culus for analyzing tetrad data under the counting model
and for the extension of the counting model to include an
independent subset of crossovers not subject to interfer-
ence, which provides a better fit to data from Arabidopsis,
humans, and yeast, can be found in [7,14]. The basic idea
is to use matrices to keep track of the number of noncross-
overs to the left (rows) and to the right (columns) of the
first and last crossovers in the interval, respectively. The
dimensions of the matrices required in the analysis are (m
+ 1) x (m + 1) where m is the interference parameter. The
estimate of m is chosen to maximize the statistical likeli-
hood function the data.

Calculating the likelihood function involves summing
over all possible patterns for the relative positions of the
crossovers among the noncrossovers, which is accom-
plished by the multiplication of matrices that are deter-
mined for each interval and each tetrad pattern (parental
ditype, tetratype, and nonparental ditype). In the case of
the extended model, we also have to sum over all the pos-
sibilities for the number of crossovers that are non-inter-
fering. The estimates of m (the interference parameter)
and p (the proportion of crossovers not subject to interfer-
ence) are chosen jointly to maximize the likelihood func-
tion of the data. Since the interference parameters in some
organisms can be quite large, the numerical optimization
for either model can be quite time-consuming. We save
some computational time by using the formula of Perkins
[10] for estimating the intermarker distances rather than
using maximum likelihood to estimate these values. For
most practical applications, the maximum likelihood esti-
mates and the Perkins estimates will be close.

Implementation

InterferenceAnalyzer is written in Java. The original source
code and executable jar files are available for Windows,
Linux, and MacOS. The application is also available as a
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Table I: Sample Data. The first 6 lines of two possible formats for the sample data file including the parental marker values and the
scoring of the first tetrad. In the second data set, the first tetrad could not be properly scored at the second marker. Any tetrad with
any mis-scored marker or any gene conversion at a marker is discarded from the analysis.

Sample Data Sample Data
Parent |: - - + - Parent I: ade5,7 URA3 KAN lys5
Parent 2: + + - + Parent 2: ADES5,7 ura3 kan LYS5
+ + - ADES5,7 XXX kan LYS5
First Tetrad - - - + First Tetrad ade5,7 XXX KAN lys5
- + + - ade5,7 XXX KAN lys5
+ + + ADES,7 XXX kan LYS5

Windows executable. The source code, executables, sam-
ple data sets, and sample results are available at [18].

Results

We demonstrate how to use the software to analyze a spe-
cific dataset, use simulations to give confidence intervals
for parameter estimates and assess the significance of the
fit of the extended counting model, and discuss the rela-
tive speed of our software compared to comparable SAS
code.

Raw data analysis

Genetic data must be in tab-delimited format and stored
as a text file. The first two lines specify the parental marker
values. The next four lines specify the values for the first
tetrad, the four lines after that specify the values for the
second tetrad, etc... The file must end with one (and only
one) carriage return after the last line of data. Any symbol

Analyze Raw Data  Run Simulations  About

Load File
¥ Analyze using counting model
+/ Analyze using extended counting model

Analyze

Results  counting__ counting__ exended__ extended___ extended
Sample Si.. m negative L. m ® negative L.
57 3 22001578 14 02041386 21548438

Export Results ) ( Export Distances

Figure 2

Analyze Raw Data Panel. The figure demonstrates the
panel for the initial analysis of raw tetrad data. The data file
can be uploaded by selecting the "Load File" button. The user
can choose the models for the analysis. Then the results are
printed on the panel and can be exported to a file. The
genetic distances between markers can also be stored for
use in the simulations needed to test significance and give
confidence intervals.

may be used to specify the parental values for the markers.
Common possibilities include the use of the numbers 0
and 1, the use of the symbols + and -, or marker names
such as URA and ura. An example of the first 6 lines of two
of the common types of codings is provided in Table 1.
Note that the first tetrad in the second data set contains
entries indicating that the second marker could not be
properly scored. Tetrads with entries that match neither
parental type or with entries that indicate that a gene con-
version occurred at a marker (that is, with 3 or 4 entries for
a marker in the tetrad corresponding to the genotype of
just one parent) are discarded from the analysis.

The file containing the data is uploaded to the software
using the "Load File" button on the "Analyze Raw Data"
tab of the software. The user may decide to analyze the
data only under the original counting model, only under
the extended model which allows for a portion of the
crossovers to be free from interference, or under both
models by checking the appropriate buttons. After the
user clicks on the "Analyze" button, a progress bar dis-
plays. The progress bar allows the user to know that the
program is running but is not a good measure of the time
remaining because it is linked to the current value of the
interference parameter, m, which is allowed to run from 0
to 20. It takes much longer to calculate the likelihood for
larger values of m than for smaller ones but the program
terminates as soon as the peak of the likelihood function
has been reached and so often does not reach the larger
values allowed for m. There is no linear measure available
for the time remaining to complete the calculation of the
maximum likelihood estimator.

The results are displayed and buttons that allow exporting
the results and the intermarker distances to files for use
later are displayed. Exporting the intermarker distances is
highly recommended in order to be able to use the simu-
lations panel to give confidence intervals for the parame-
ters and assess the significance of the extended model over
the original counting model.

A picture of this panel of the software is given in Figure 2.

The data used for this analysis are the raw tetrad patterns
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for Arabidopsis chromosome 3 originally analyzed in
[14]. Under the original counting model the results show
that the estimate of the interference parameter is m = 3.
Under the extended model, the interference parameter
estimate can only increase because the extended model
removes a portion of non-interfering crossovers. For the
extended model, the results are that the interference
parameter is m = 14 and the proportion of non-interfering
crossovers is p = 0.204. The log likelihood ratio, used
below to calculate the significance of the increase in fit
provided by the extended model, can be calculated as the
difference in the log likelihoods provided: 224.0 - 215.5 =
8.5.

Use of simulations

The analysis of the original tetrad data discussed in the
previous section gives point estimates for the interference
parameter, m, in the counting model and the interference
parameter, m, and the proportion of crossovers that are
free of interference, p, in the extended model. Interval esti-
mates can come from using the asymptotic normality of
the maximum likelihood estimators and Fisher's Informa-
tion function or via simulations. Simulations are more
appropriate with small datasets and with large estimates
of m because the distribution of the maximum likelihood
estimators tend not to be close to normally distributed.
Also, while we can form the standard likelihood ratio test
statistic for determining how much better the extended
model fits the data than the original counting model, the
null hypothesis that the original counting model is an
adequate model for the data is on the boundary of the
parameter space (p = 0). Thus, the distribution of the
usual likelihood ratio test statistic need not be approxi-
mately Chi-Square and simulations are needed to accu-
rately assess the significance of the hypothesis that the
extended model fits the data better.

Confidence intervals for parameter estimates

For the Arabidopsis data, the extended model estimate of
the interference parameter was m = 14 and the estimate of
the proportion of crossovers free from interference was p
= 0.20. To place confidence intervals around these esti-
mates, we use these parameter estimates from the original
data analysis and the estimates of the intermarker genetic
distances obtained from the original data using Perkins's
formula to simulate new data sets. In each simulated data
set, we re-estimate the model parameters m and p. The var-
iation we see in these estimates reflect our uncertainty in
the original parameter estimates. If, for each parameter,
we place the simulated values in order and extract the 2.5
and 97.5 percentiles, we obtain the 95% percentile boot-
strap confidence interval.

To use the Simulations panel for this purpose, we would
load the file containing our intermarker distances, enter

http://www.biomedcentral.com/1471-2105/6/297

the number of tetrads in our original data set (57) in the
"Sample Size" textbox, choose m = 14 and enter 0.20 in
the textbox for p, and uncheck the box for analyzing the
data using the original counting model since we are not
interested in those results.

We give the results for 5 simulations in Table 2. These
results demonstrate the limitations of simulations to pro-
vide confidence intervals for the interference parameter
when that parameter is large and the sample size is small.
The largest value for m allowed in the program is 20 and
the analysis of the data when m is large takes an extremely
long time. These 5 simulations took approximately 35
minutes on a Dell LATITUDE C840 (Intel Pentium 4 proc-
essor) with 1.60 GHz CPU and 1 GB Ram. Also, the max-
imum likelihood estimate for m for the simulated data
reached and was truncated at 20 twice in these five simu-
lations. Thus, it is not computationally feasible to place
accurate, bounded, confidence intervals around the inter-
ference parameter when m is large and the sample size is
relatively small. Further, the confidence intervals around
the proportion of non-interfering crossovers, p, is likely to
be slightly biased due to the truncation of the interference
parameter at m = 20.

Since data sets from yeast avoid these problems, we
include a set of yeast data generated in the Stahl Lab and
analyzed in [2]. The sample size is large (1783 tetrads)
and the interference parameter estimates are relatively
small (m = 3 for the extended model). The estimates for
the model parameters for the extended model for the orig-
inal data set were m = 3 and p = 0.088. Two hundred sim-
ulations of data sets of 1783 tetrads using these parameter
estimates for m and p took approximately eight hours on
a Macintosh 1.5 GHz PowerPC G4 laptop computer with
1 GB DDR SDRAM. After exporting the results, opening
them in a spreadsheet program, and sorting the data by
the interference parameter estimate under the extended
model, pulling off the 5% and 195t values gives a 95%
percentile bootstrap confidence intervals for m of [3,4].
Similarly, sorting the data by the proportion of non-inter-
fering crossovers, p, and pulling off the 5% and 195% values
gives a 95% percentile bootstrap confidence interval for p
of (0.058, 0.135).

Assessment of the significance of the fit of the extended model

For the Arabidopsis data set, we assess the significance of
the fit of the extended model by simulating data under the
best fitting original counting model (the null hypothesis
of the test of whether the extended model fits better or
not). Since the estimate of the interference parameter for
the original counting model is m = 3, the simulations are
feasible. We then analyze the simulated data sets under
both models. Figure 3 shows the output and the "Export
Results" button located at the bottom of the results panel.
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Table 2: Sample Simulation Results. An example of the simulation results

Simulation Results

Results counting_... counting_... extended_model extended_model extended_model
Simulation m negative... m p negative_log_likelihood
| 14 0.337 231.22

2 20 0.324 232.92

3 5 0.212 230.34

4 19 0.157 197.78

5 20 0.204 21551

To determine the significance of the fit of the extended
model to these data, the researcher would calculate the
difference between the likelihoods of the counting model
and extended model for the original data: 224.0 - 215.5 =
8.5. The researcher would then open the simulation
results in a spreadsheet program, calculate a column of
such differences (one for every simulation), sort that col-
umn, and determine what proportion of the differences
are greater than that of the observed data (in this case,
8.5). In our 200 simulations, no difference was greater, so
our best estimate of the significance is 0/200. This signifi-
cance level indicates that the extended model provides a
much better fit to the original data than the original
counting model does.

Performance

The intermarker distances for the Arabidopsis data used in
our worked example are [0.149, 0.228, 0.132, 0.061,
0.167,0.219, 0.175]. For 200 simulations with m = 3 and

Analyze Raw Data_ Run Simulations  About

LLoad distances
Number of Simulations 200
Sample Size: 57
Parameters for the model for the simulation
Interference parameter (m): '3 3
Proportion of norvinterfering crossovers (p): 0

¥ Analyze using counting model
+ Analyze using extended counting model

Analyze
22830441 4 1] 22830
21261467 4 00 212861,
22273275... 4 00 22273

198 4
199
200 4

Export Results

Figure 3

Run Simulation Panel. The figure demonstrates the panel
for running the simulations needed to assess significance and
give confidence intervals. The results are printed at the bot-
tom of the panel. Scrolling to the bottom of the results
reveals the button for exporting the results to a file.

p = 0 analyzed under both the original counting model
and its extension to include a proportion of noninterfer-
ing crossovers, InterferenceAnalyzer took approximately 1
hour on a Dell LATITUDE C840 (Intel Pentium 4 proces-
sor) with 1.60 GHz CPU and 1 GB Ram whereas the
equivalent code in SAS took approximately 16 hours.
Thus, the Java program seems to be approximately 16
times faster than similar code in SAS on the same compu-
ter.

Discussion

The development of InferferenceAnalyzer should make
the powerful multilocus techniques for assessing interfer-
ence accessible to geneticists. Future development
planned includes allowing for the analysis of spore data
where only one product of meiosis is observed, allowing
for analysis when positions of the crossovers along a tet-
rad or spore are known using the algorithms in [12,13],
and the inclusion of the ability to simulate data under the
mechanical stress model for crossover interference [19].
While the mechanical model does a good job approximat-
ing the observed interference patterns in real data, it is not
a statistical model and its best fitting parameter values
cannot be obtained feasibly from data. Thus our software
will not be able to fit the mechanical model to data but
only allow the simulation of such data.

Conclusion

We recognize the need for easy-to-use software in order to
make sophisticated and powerful multilocus statistical
techniques readily available to all geneticists. Interfer-
enceAnalyzer is our attempt at this goal.

Availability and requirements
Project name: InterferenceAnalyzer

Project home page: http://mypage.iu.edu/~ehouswor/
InterferenceAnalyzer/

Operating syatems(s): Platform independent
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Programming language: Java

Other requirements: Java 1.4.1 or higher
License: Open source

Any restrictions to use by non-academics: None
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