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Abstract

Background: Wise et al. introduced a rank-based statistical technique for meta-analysis of
genome scans, the Genome Scan Meta-Analysis (GSMA) method. Levinson et al. recently described
two generalizations of the GSMA statistic: (i) a weighted version of the GSMA statistic, so that
different studies could be ascribed different weights for analysis; and (ii) an order statistic approach,
reflecting the fact that a GSMA statistic can be computed for each chromosomal region or bin
width across the various genome scan studies.

Results: We provide an Edgeworth approximation to the null distribution of the weighted GSMA
statistic, and, we examine the limiting distribution of the GSMA statistics under the order statistic
formulation, and quantify the relevance of the pairwise correlations of the GSMA statistics across
different bins on this limiting distribution. We also remark on aggregate criteria and multiple testing
for determining significance of GSMA results.

Conclusion: Theoretical considerations detailed herein can lead to clarification and simplification

of testing criteria for generalizations of the GSMA statistic.

Background

Wise, Lanchbury and Lewis [1] introduced a rank-based
statistical technique for meta-analysis of genome scans,
the Genome Scan Meta-Analysis (GSMA) method, and
derived its exact null distribution using a clever inclusion/
exclusion argument. Koziol and Feng [2] provided an
alternative derivation of the null distribution of the GSMA
statistic via a combinatoric approach involving probabil-
ity generating functions, and suggested an Edgeworth
series approximation to its exact null distribution that
improves upon the Wise [1] normal approximation.

Levinson [3] described two generalizations to the GSMA
statistic: (i) a weighted version of the GSMA statistic, so
that different studies could be ascribed different weights

for analysis; and (ii) an order statistic approach, reflecting
the fact that a GSMA statistic can be computed for each
chromosomal region or bin across the various genome
scan studies. Wise [1] had suggested that each chromo-
somal region (bin) be about 30 cM, leading to a total of
about n = 120 bins spanning the entire genome, and cor-
respondingly 120 GSMA statistics. Wise [1] and Koziol
and Feng [2] had investigated the marginal distribution of
any of these (exchangeable) GSMA statistics, whereas
under the order statistic formulation of Levinson [3], the
joint distribution of the entire set of GSMA statistics is
taken into account. In this note, we consider both gener-
alizations in turn. In particular, (i) we provide an Edge-
worth approximation to the null distribution of the
weighted GSMA statistic, analogous to that in Koziol and
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Feng [2]; and (ii) we examine the limiting distribution of
the GSMA statistics under the order statistic formulation,
and quantify the relevance of the pairwise correlations of
the GSMA statistics across different bins on this limiting
distribution. We conclude with remarks concerning the
Levinson [3] aggregate criteria and multiple testing for
determining significance of GSMA results.

Results

The GSMA statistics

We first introduce some notation. Let Xij, i=1,..mj=1,
..., , denote the rank of any particular linkage test statistic
(e.g., LOD score) in the j* chromosomal region (bin)
from the i study, with each study being ranked sepa-
rately. Levinson [3] rank the bins from 1 = "best" to n =
"worst" on the basis of, say, maximum LOD score or low-
est p value observed within each bin, but the reverse rank-
ing from 1 = "worst" to n = "best" is also feasible. In
practice, m can be as few as 4 (e.g., [4,5]); and, following
Wise [1], n is generally about 120. The GSMA statistics are

m
then Sy, .., S, where S; =ZX1-]-,j=1,...,n. The exact
i=1

(marginal) null distribution of each S;was derived in Wise
[1]; in the notation of Levinson [3], Pyyep,y the "pointwise
probability" of any S, is obtained from its marginal null
distribution. The normal approximation to the exact dis-
tribution of the §; is straightforward: the §; are identically
distributed, and each S; has an approximate normal distri-

1
bution with mean u= Em( 1+n) and variance

1
o? = Em( n? — 1) under the null hypothesis that ranks

are randomly assigned within each study. Koziol and Feng
[2] provided an Edgeworth correction to this approxima-
tion, and recommended that the correction be used, at
least for m < 12.

The weighted GSMA statistic
Levinson [3] proposed a weighted version of the GSMA

m
statistic, namely, S, = ZwiX,- , with the weight w;
i=1
ascribed to the ih study reflecting the relative linkage
information from that study. (We are temporarily omit-
ting the j subscript for clarity.) The normal approximation
to the marginal null distribution of S, is straightforward,
and depends on the two parameters

E(Sw):%[gwi J(l+n) and
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m
Var(S, )= %[ Zwlz (n2 - 1) . The combinatorial
i=1

argument utilized by Koziol and Feng [2] to derive the
exact distribution of the unweighted GSMA statistic
(which relies on probability generating functions) is gen-
erally no longer applicable in the weighted setting. Never-
theless, as in Koziol and Feng [2], we here provide an
Edgeworth correction that may be applied to the weighted
GSMA statistic. To this end, we equivalently consider the
where

linear transform

m
i=1
1
n+1 n? -1 2
Y, = [Xi _ :l . We then have E[R,]| = 0,

2 12

m
Var[R, ] =Y w?, EI:RS,]z 0, and

4] <o 4 4 o, 24,2
E| Ry |= Y wiE| Y |+6) Y, wiwjE| Y7Y;

i=1 i=1 j=i+1

m
= 3wt
i=1

2 m+l m
21-9n 2 2
PEEE +6-E E w; wj
5(1—11 ) i=1 j=i+l

(We have used Koziol and Feng [2], eqn. 11, for E[Yi4 ] J)

The Edgeworth Type A series approximation to the density
1

m 2

of Z=R, Zwlz up to 4t order terms, is f (z) = ¢
i=1

(2)[1 + ¢,H, (2)], where ¢( -) is the standard normal den-

. . 1 1 .
sity function, ¢(z)= Eexp(—;f J, H, (-) is the 4th

degree Hermite-Chebyshev polynomial, H, (z) = z*- 622 +
3, and the constant ¢, given by

E[R,‘}J] [gwf r -3

24
6.42). Furthermore, the cumulative distribution function
of the Edgeworth series is given simply by

Cy = (Stuart and Ord [6], eqn.

F(z)=["_f(t)dt
=®(2)-c4H;3(2)¢(2),

where @( - ) denotes the cumulative distribution function
of the standard normal distribution, ¢, and ¢(-) are as
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above, and H,(-) is the 3t degree Hermite-Chebyshev
polynomial, H; (z) = 23 - 3z (Stuart and Ord [6], eqn.
6.43).

In practice, we would expect the Edgeworth series approx-
imation to provide an adequate representation of the
exact distribution of the weighted GSMA statistic, in a
manner analogous to the unweighted case [2]. Here, we
briefly investigate the adequacy of the Edgeworth approx-
imation, using an example from Lewis et al. [7]. They had
applied the GSMA methodology to data from m = 20
schizophrenia genome scans, and found strong evidence
for linkage on chromosome 2q, as well as suggestive evi-
dence for linkage at several other chromosomal locations.
The rank data for each scan are available online at D.F.
Levinson's website (accessed July 14, 2004) [8], and we
use these data to reconstruct first the unweighted GSMA
statistics §;, j = 1, 2, ..., 120, corresponding to the 120 bins
spanning the entire genome, then their preferred
weighted versions. Lewis [7] had recommended weights
for each individual study proportional to the square root
of the number of affected cases for that study. From Lev-
inson's website [8], the individual weights w;, i =1, 2, ...,
20, are2.32,1.77,1.20,1.17,1.17, 1.16, 1.15, 1.08, 1.03,
1.01, 0.95, 0.88, 0.80, 0.80, 0.68, 0.67, 0.59, 0.54, 0.53,
0.51, greater than a four-fold range.

We simulated the null distribution of the weighted GSMA

statistic where

m
Ry =2inir
i=1
1
n+1 n? -1 |2
Y, =| X; - with m = 20, n = 120, by

2 12

drawing each X; as an independent random integer from 1
to 120 (that is, a uniform distribution of the integers from
1 to 120), then forming R,, with the Levinson [8] weights.
We used the random number generator in R [9], to pro-
duce 10,000 values for R,. We then formed

w*

mo |2
Z=R, / lwa] , and compared the empirical distri-
i=1

bution of the 10,000 Z values with the Edgeworth approx-
imation as described above; for comparative purposes, we
also computed the normal approximation, which is based
on matching the first two moments rather than the first
four moments with Edgeworth. Figure 1 shows the result-
ing quantile-quantile plot of the empirical distribution of
the weighted GSMA Z values with both a normal approx-
imation, panel A, and the Edgeworth approximation,
panel B. Note that, even in this setting of the weighted
combination of m = 20 individual GSMA statistics, the
normal approximation is particularly ill-fitting in the tails.

http://www.biomedcentral.com/1471-2105/6/32

Agreement in the tails would be of particular relevance in
practical applications, as these represent the areas of
potentially significant findings (p-values). The noticeable
disagreement in the tails between the weighted GSMA sta-
tistic and its normal approximation is largely ameliorated
with the Edgeworth approximation. With attendant com-
putational savings, the Edgeworth approximation pro-
vides a practical means of determining significance of
weighted GSMA results compared to simulation; tail
probabilities derived from the normal approximation
should only be used with extreme caution.

The GSMA order statistics
We turn next to order statistic considerations (and reintro-
duce the subscript j). The Levinson [3] order statistic
approach to inference relating to the GSMA statistics takes
into account the inherent ordering of the §;: their P,
refers to the probability of any observed S, given the kt
bin's place in the ordering of all of the S;. We here derive
o o (Si-u)
approximations to this distribution. Let Tj = e j

=1,.., n,and T(;,<Ty) < ... T, denote the order statistics.
We note first that the T; have (approximately) a singular
symmetric multivariate normal distribution, with means

0, variances 1, and correlations

—1 . That the joint
(n-1)
distribution is singular follows from the observation that
1 n(n+1) , noo ]
2 Xjj = ——— foralli, hence, z T; is identically 0. If
j=1 j=1
we dismiss the correlations as negligible (of absolute mag-
nitude < 0.01 for n > 100), then the T;are (approximately)
independent, identically distributed N(0,1) (standard
normal) random variates, and the cumulative distribution
function (cdf) F, of the k" order statistic T, is given by

Fk<x)=i[’?)ﬂ”(x)[l—q»(x)]”‘k, (1)

j=k\J
with @(-) as above (David [10], eqn. 2.1.3).

We briefly examine whether correlations can be ignored
when determining the distributions of the T(;. Numerical
computation of the distributions of the order statistics
from a symmetric multivariate normal distribution is fea-
sible in a number of cases; we here examine perhaps the
most relevant case, concerning the extreme T, Note that
Prob (T(,y<x) =Prob (T, <x,T,<x, ... T,<x); (2)

this latter probability may be calculated in R using the
mvtnorm package [9], based on methodology by Genz
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A. Normal Approximation
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B. Edgeworth Approximation
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Quantile-quantile plots of the weighted GSMA statistic vs. a normal approximation and an Edgeworth approx-
imation. A. Quantile-quantile plot of the null distribution of the weighted GSMA statistic, x-axis, versus the Edgeworth
approximation, y-axis. B. Quantile-quantile plot of the empirical null distribution of the weighted GSMA statistic, x-axis, versus
the Edgeworth approximation, y-axis. The empirical null distribution of the weighted GSMA statistic was obtained from 10,000
simulations, with m = 20 scans, n = 120 bins per scan, and weights for the 20 scans taken from Lewis [7]. The normal approxi-
mation shares the first two moments as the weighted GSMA statistic; the Edgeworth approximation shares the first four
moments as the weighted GSMA statistic. Quantiles are depicted from the .0001 percentage point to the .9999 percentage

point.

[11,12]. With n = 120, we depict in Figure 2 a Q-Q plot of
the (approximate) distribution of T(,, under independ-
ence, eqn. (1), compared tot" = '~ “bution from eqn. (2)
with pairwise correlations . The independence
model tends to agree quit (n-1) y to the correlation
model in this particular case, especially in the critical right
tail, and has the virtue of numerical simplicity. We remark
that one might improve slightly on the normal independ-
ence model by incorporating the Edgeworth correction
into the individual cumulative distribution functions in
equation (1).

Aggregate criteria and multiple testing

Levinson [3] had proposed an aggregate criterion for
detecting linkage based on both the marginal distribu-
tions and the order statistic distributions of the GSMA sta-
tistics. In particular, they argued that bins that have
achieved both Py, < 0.05 and P,,; < 0.05 "are the most
likely to contain linked loci or to be adjacent to linked
bins". Note that their criterion entails both the marginal

distribution of the T, through P, and the (joint)
order statistic distribution of the T, through P, We
remark that there is some redundancy to the aggregate cri-
terion {P,,.z,, < 0.05 and P,; < 0.05}, as can be seen
through consideration of critical values relating to their
aggregate criterion. With the normal approximation to the
distribution of each normalized GSMA statistic T}, the cri-
terion {Py,ep,, < 0.05} is equivalent to the criterion {T;>
1.645}. The criterion {ford < 0.05} may be computed
from eqn. (1), and depends on the ordering of the indi-
vidual T;. With n = 120, then for the ten largest order sta-
tistics T(120) T(119) - T(111) the criterion {Py,p,, < 0.05
and P, ;< 0.05} reduces to {P,;< 0.05}, since their 95th
percentiles under their joint order statistic distribution
exceed 1.645 [implying that, if {P, ;< 0.05} obtains, then
{PAvgRnk < 0.05} will automatically be satisfied]; and, for
the remaining order statistics T(;10), T(109) - (1), the cri-
terion {Py,ep,, < 0.05 and P,,; < 0.05} reduces to {Py,ep,,
< 0.05}, equivalently, {T(;)> 1.645}, as their 95t percen-
tiles under the order distribution, eqn. (1), are less than
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Figure 2

Quantile-quantile Plot of T(n) Distribution. Quantile-
quantile plot of the approximate normal distribution of T,
the largest (order) GSMA statistic, under the correlation

model (eqn. 2, with pairwise correlations ), X-axis,

-1
(n-1)
versus the independence model (eqn.l), y-axis. Following
Wise [1], we chose n = 120. Quantiles are depicted from the
.001 percentage point to the .999 percentage point.

1.645 [implying that, if {Ps,e. < 0.05} obtains, then
{P,;a< 0.05} will automatically be satisfied|.

We conclude with a remark concerning multiple testing.
Levinson [3] suggested a simple Bonferroni correction for
multiple testing when determining the significance of
GSMA results. In particular, they used the criterion {P,,.
grnie < 0.000417} (0.05 corrected for 120 tests) for evi-
dence that a bin is likely to contain a linked locus or loci.
One can improve on this procedure by using Holm's [13]
paradigm for multiple testing rather than Bonferroni. We
illustrate Holm's [13] procedure by returning to the Lewis
[7] study with m = 20 schizophrenia genome scans. As
noted above, we used the online data to reconstruct the
normalized unweighted GSMA statistics T]-,j =1,2,...,120,
corresponding to the 120 bins spanning the entire
genome. With m = 20 studies, we shall invoke the normal
approximation to the distributions of the individual T;.

http://www.biomedcentral.com/1471-2105/6/32

Lewis [7] had extensively investigated various criteria for
linkage from the 20 schizophrenia genome scans, and we
shall not reproduce their analyses. Rather, we here
illustrate a graphical procedure for the simultaneous eval-
uation of p-values from tests on the same data; this proce-
dure is immediately applicable to the simultaneous
consideration of the 120 GSMA statistics. The procedure,
originally suggested by Schweder and Spjotvoll [14], con-
sists of a probability plot of the p-values versus the uni-
form distribution. Koziol [15] subsequently suggested
that Holm's [13] paradigm for multiple testing be applied
to Schweder and Spjatvoll's [14] scenario, for a graphical
determination of the number of true hypotheses.

Let us briefly review the Holm [13] method, which is an
extension of the Bonferroni method for multiple compar-
isons. Suppose we compare the smallest p-value Py,
among n p-values with ¢/n and we find that the p-value is
less than ¢/n. Then our multiple testing problem has been
reduced by one test, and we should compare the next

smallest p-value P, to . In general, we would

compare P; with . Holm's [13] step-down test

(n—i+1)

begins with i = 1, comparing P(; with , and

(n—i+1)

stops as soon as P; exceeds , Tejecting at over-

_*
(n—i+1)
all level ¢ all prior tests with smaller p-values. The Holm
[13] method, like Bonferroni, makes no assumption on
the dependence of tests, but beyond Py, is less conserva-

tive than Bonferroni.

In Figure 3A we present a probability plot of the 120 p-val-
ues corresponding to the 120 individual T; statistics,
which we have recomputed from the online Levinson
dataset [8]. On this plot, the points corresponding to the
"true" hypotheses of no linkage in individual bins should
roughly fall along a straight line passing through the ori-
gin. We have also superimposed the Bonferroni and Holm
boundaries for overall alpha level 0.05 and n = 120 p-val-
ues; but, the two boundaries are virtually indistinguisha-
ble. There is little indication of large departures from the
global null hypothesis of no linkage.

In Figure 3B we rescale the y-axis, and focus solely on the
Bonferroni and Holm boundaries. Differences are most
readily apparent for the largest ordered p-values. On the
other hand, with a large number of hypotheses (here
120), the improvement of Holm over Bonferroni at the
smallest ordered p-values is marginal at best. As a reviewer
has presciently remarked, the Holm procedure generally is
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A. Overall B. Comparison of Boundaries C. The 12 smallest observed P-values
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Figure 3

Probability plot of GSMA schizophrenia statistics. A. Probability plot of the 120 p-values corresponding to the 120

GSMA statistics T, ..., |, from the 20 schizophrenia genome scans reported in Lewis [7], versus the (expected) uniform dis-
tribution. Also depicted are the Bonferroni (solid line) and Holm (dotted line) boundaries at overall alpha level 0.05. B. Inset of
Figure 3A, in which we display solely the Bonferroni and Holm boundaries. We have rescaled the y-axis so as to emphasize the
differences in the boundaries, and have relabeled the x-axis to correspond to the fact that we here have n = 120 ordered p-val-
ues. C. Inset of Figure 3A, illustrating the 12 smallest ordered p-values (circles), along with a Holm [13] boundary (solid line) at
overall alpha level 0.05. [We are using the integer ordering of the x-axis as in Figure 3B.] Only the first p-value, corresponding
to bin 2.5, falls outside this boundary. The bins depicted here, from left to right, are: 2.5, 3.2, 11.5, 5.5, 20.2, 8.2, 6.1, 2.6, 22.1,

1.6, 1.7,and 5.3.

most helpful (advantageous) relative to Bonferroni with
only a small number of hypotheses.

In Figure 3C we zoom in on the part of the probability
plot nearest the origin; we here have superimposed the
Holm [13] boundary. In accord with Lewis [7], we find
that only one GSMA statistic achieves statistical signifi-
cance at overall alpha level 0.05, namely, the statistic cor-
responding to bin 2.5. [Recall that the Holm and
Bonferroni boundaries coincide at the smallest p-value,
P(;).] That is, in this particular instance, the unweighted
GSMA statistics with either Bonferroni or Holm [13] cor-
rection for multiple testing identify statistically evidence
for linkage on chromosme 2q.

Conclusion

For practitioners utilizing GSMA statistics, the question
arises as to whether the methods proposed here as well as
in Koziol and Feng [2] are merely of theoretical interest, or
have practical import. If one utilizes solely the
unweighted GSMA statistic, and chooses to consider its
marginal distribution (corresponding to the Py, for-
mulation of Levinson [2]), then the exact null distribution
of the GSMA statistic is available from Wise [1] or Koziol
and Feng [2], and should be preferred over any approxi-
mate methods. If the exact null distribution is computa-

tionally intractable for practitioners, then the Edgeworth
approximation of Koziol and Feng [2] provides a simple
and accurate means of assessing significance; we would
argue that the Edgeworth approximation is preferable to a
normal approximation in this instance. When weights are
introduced into the GSMA statistic, then the combinatoric
arguments of Wise [1] and Koziol and Feng [2] will typi-
cally be insufficient to derive the exact null distribution
[though we remark that a moment generating function
approach patterned after the probability generating func-
tion formulation of Koziol and Feng [2] can be brought to
bear on this problem.] One can either simulate the null
distribution or derive an Edgeworth approximation: we
do not believe either method enjoys global advantages
over the other. We caution against simple reliance on a
normal approximation: in the situation investigated here,
Figure 1, the weighted combination of m = 20 individual
GSMS statistics, the normal approximation is particularly
ill-fitting in the tails. [Agreement in the tails is of particu-
lar relevance to practitioners, as these represent the areas
of potentially significant findings (p-values).] As for the
order statistic formulation and the aggregate criteria of
Levinson [3], we believe that the theoretical considera-
tions given in this paper can lead to clarification and sim-
plification of testing criteria.
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