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Abstract

Background: Development of robust and efficient methods for analyzing and interpreting high dimension
gene expression profiles continues to be a focus in computational biology. The accumulated experiment
evidence supports the assumption that genes express and perform their functions in modular fashions in
cells. Therefore, there is an open space for development of the timely and relevant computational
algorithms that use robust functional expression profiles towards precise classification of complex human
diseases at the modular level.

Results: Inspired by the insight that genes act as a module to carry out a highly integrated cellular function,
we thus define a low dimension functional expression profile for data reduction. After annotating each
individual gene to functional categories defined in a proper gene function classification system such as Gene
Ontology applied in this study, we identify those functional categories enriched with differentially
expressed genes. For each functional category or functional module, we compute a summary measure (s)
for the raw expression values of the annotated genes to capture the overall activity level of the module.
In this way, we can treat the gene expressions within a functional module as an integrative data point to
replace the multiple values of individual genes. We compare the classification performance of decision
trees based on functional expression profiles with the conventional gene expression profiles using four
publicly available datasets, which indicates that precise classification of tumour types and improved
interpretation can be achieved with the reduced functional expression profiles.

Conclusion: This modular approach is demonstrated to be a powerful alternative approach to analyzing
high dimension microarray data and is robust to high measurement noise and intrinsic biological variance
inherent in microarray data. Furthermore, efficient integration with current biological knowledge has
facilitated the interpretation of the underlying molecular mechanisms for complex human diseases at the
modular level.
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Background

Gene expression profile (GEP) has been widely used to
address the relationship between disease phenotypes and
the cellular expression patterns. Numerous data mining
methods have been proposed for precise classification of
disease phenotypes (subtypes) using high dimension
GEPs [1-5]. Although much progress in applying microar-
ray technology to versatile biological kingdoms has been
witnessed in recent time, further advancing its efficiency
and power in elucidating complex biological mechanisms
would very likely rely on our ability to handle the high
dimension genetic information mixed with measurement
noises [6,7], intrinsic biological variance [8,9], and a large
number of irrelevant genes [10,11]. However, lack of
coherence in biological interpretations often occurring in
analysis of gene expression profiling can be remedied par-
tially by integrating with a knowledge-mining tool such as
Onto-Express developed by Draghici et al. [12,13].

Cellular biology is essentially to study an interacting net-
work of various functional gene modules that coordi-
nately carry out highly integrated cellular functions in
somewhat isolated fashions [14-16]. The assumption that
genes express and perform their functions in modular
fashions in cells has been supported by accumulated mul-
tiple lines of evidence from, among others, gene expres-
sion and protein-protein interaction studies [17-19].
Inspired by the insight that genes often interplay as a
module to realize a highly integrated cellular function, we
propose an alternative approach to analyzing the high
dimension microarray data by formulating the disease
classification problem from a perspective of modularity.
In this study, we map genes to their categories in Gene
Ontology (GO) [20,21], which provides a unified gene
function classification system across genomes. After anno-
tating each individual gene to a GO functional category,
we identify gene functional categories enriched with dif-
ferentially expressed genes. These categories, defined as
differentially expressed functional modules, are very likely
to be relevant with experimental conditions, or specifi-
cally, with the disease type discrimination. For each func-
tional module, we construct a representative functional
feature, and then employ a traditional data mining tool-
box to train the rule(s) for classifying disease types based
on the newly built functional expression profiles (FEPs).
Instead of analyzing raw expressions of single genes, we
consider the gene expressions within a functional module
as an integrative data point to shrink the feature dimen-
sion. This modular approach is flexible and also statisti-
cally robust to high measurement noise and intrinsic
biological variance inherent in microarray data. Further-
more, efficient integration with current biological knowl-
edge support provided in the GO database has facilitated
the interpretation of the underlying molecular mecha-
nisms at the modular level. We apply the alternative
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approach to analyze four publicly available datasets to
demonstrate its performance and statistical properties.
The results from analysis of two datasets (NCI60 dataset
[1] and the lymphoma dataset [2]) are described in the
main text. To obtain a robust and convincing comparison
of FEP and GEP, we have undertaken analysis of two addi-
tional large-scale datasets and have described the detailed
results in the supplement [see Additional file 1].

Results

Description of the two datasets

NCI60 dataset consists of 9,703 cDNAs whose expression
levels were measured in 60 cancer cell lines derived from
avariety of tissues and organs. A subset of NCI60 (31 sam-
ples of four cancer types) is used in this study, including 8
samples from renal cancer (RE), 7 samples from colon
cancer (CO), 8 samples from leukaemia (LE), 8 samples
from melanoma (ME), respectively. The same criterion as
in [1] is used to identify the differentially expressed genes
(i.e., log, (ratio) > 2.8 or log, (ratio) < -2.8 in at least four
cell lines). A total of 1160 genes are filtered. The lym-
phoma dataset contains the expression profiles of 18,000
cDNAs for 42 samples of the diffuse large B-cell lym-
phoma (DLBCL), 9 samples from follicular lymphoma
(FL), 11 samples from chronic lymphocyte leukaemia
(CLL) and 24 samples from the healthy sources (NOR-
MAL) prepared from activated human blood B cells and
resting/activated blood T cells, respectively. The 4,026
genes, originally filtered by Alizadeh et al. [2], is used in
this study. As suggested by Alizadeh et al. [2], we exclude
9 samples (eight NORMAL samples and one DLBCL sam-
ple). Using the criterion "log, (ratio) > 1 or log, (ratio) < -
1 in at least eight cell lines" [2], we identify a total of 705
differentially expressed genes.

FEP based analysis of NCI60 dataset

Based on NCI60 dataset, 114 differentially expressed GO
modules are identified according to a statistical test
described in the Methods section and their functional
expression profiles, a 114 x 31 matrix, are denoted with
FEP114A or FEP114M when arithmetic mean or median
is used to summarize the overall activity of a module,
respectively. The 114 differentially expressed GO catego-
ries are annotated with a total of 617 differentially
expressed genes. For comparison, we also perform classi-
fication analysis using the expression profiles of the 617
differentially expressed and annotated genes (GEP617) or
the 1160 differentially expressed genes (GEP1160).

Recursive partition analysis of the 114 functional features
using median as the summary measure identify three sig-
nificant functional signatures for multiple cancer sub-
types. Figure 1A depicts the decision tree trained on the
FEP114M. The internal nodes of the tree are denoted with
the functional modules from Gene Ontology. The leaf
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Figure |

Training classification rules for four cancer types based on functional expression profiles of | 14 modules. A —
Decision tree trained with the NCI60 FEP median measure. The internal nodes of the tree are denoted with the functional
modules from Gene Ontology. The leaf nodes give the classification results for the cancer types. The numbers in the leaf nodes
are the total number of samples contained over the number of the incorrectly predicted samples. B — Functional expression
profiles of the three identified modules. For the identified GO modules from decision analysis, their functional expression pro-
files are demonstrated with a colouring spectrum of their medians. Each GO module corresponds to a row, and the column
denotes the functional expression for each cell line. At the top are names of cell lines (renal cancer (RE), colon cancer (CO),
leukaemia (LE), melanoma (ME)). Samples with a missing value or the null value are coded with black colour, a positive with red
colour and a negative with green colour. C — numbers of genes annotated and differentially expressed in the three identified

modules.
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nodes give the classification results for different cancer
types: the total number of samples contained over the
number of the incorrectly predicted samples. Figure 1B
depicts the functional expression profiles of the three
modules (GO:0005923, GO:0007345 and GO:0009887).
The three modules are annotated with 9, 41 and 148 genes
(figure 1C), respectively. We identify 4, 11 and 35 genes
that are differentially expressed between four cancer types,
respectively. Hypergeometric tests indicate that all the
three modules are significantly (or highly significantly, p-
value < 0.01) enriched with differentially expressed genes,
with the probability of observing a more extreme of
0.0150, 0.0322 and 0.0079, respectively.

One advantage for FEP based analysis is to allow us to
interpret our findings at the modular level. Based on the
trained tree, we observe that RE is distinct from the
remaining cancer types and is characterized with the up-
regulation of GO:0007345 (termed with embryogenesis
and morphogenesis), suggesting that the abnormal up-
regulation (possibly over-expression) of the genes that
determine embryogenesis and morphogenesis may con-
tribute to development of RE, too. To look for knowledge
support, we search G2D database [22,23]. Interestingly,
significant association of GO:0007345 with RE has been
documented previously. PUBMED searching provides fur-
ther evidence to support the trained hypothesis. Gene F2R
(thrombin receptor), which is differentially expressed
between the investigated cancers and is also annotated in
the module, is pivotal in proliferation and motility of
prostate cancer cells [24], colon cancer cells [25] and
breast carcinoma cells [26]. We thus propose that
GO:0007345 may be an important functional target for
the molecular pathogenesis of RE. Further distinction
between the remaining three cancers can be made by
looking at the module GO:0009887, which acts for orga-
nogenesis and is down-regulated in ME, but is up-regu-
lated in both LE and CO. G2D database indicates that
G0:0009887 is indeed significantly associated with both
LE and CO. By searching PUBMED, we find that CYP1B1
(a member of cytochrome P450 enzyme), a differentially
expressed gene annotated in this module, was reported to
be associated with high risk for developing several forms
of cancers [27], which is again consistent with our finding.
The third module, GO:0005923, contains a cluster of
genes for tight junction and is identified for distinguish-
ing between caners LE and CO. Its association with LE has
been documented in G2D. In addition, experiment stud-
ies agree with our finding that three of the four differen-
tially expressed genes (CLDN1, CLDN4 and CLDN5)
annotated in the module are members of the claudin fam-
ily, which were demonstrated to be related to the invasive-
ness and metastatic phenotype of pancreatic and
colorectal cancers [28,29]. In short, the above biological
knowledge mining supports our analysis. Intuitively, the
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functional expression patterns, as demonstrated in figure
1B, are clearly distinguishable between the four cancers.
RE samples have the highest expressions in all three mod-
ules and ME samples have the lowest. Nevertheless, two
outliers (RE:SN12C and ME:LOXIMVT) have marked devi-
ations from their respective groups and thus not surpris-
ingly they have been misclassified.

To provide an unbiased evaluation on the utility of the
trained three modules for multi-class cancer diagnosis, we
perform a five-fold cross validation procedure, as
described in the Methods section, to verify the trained
classifier in terms of accuracy, precision and recall. As
shown in figure 2A, the classification accuracies for four
gene expression measures (FEP114A, FEP114M, GEP617
and GEP1160) are 51.6%, 67.7%, 71.0% and 64.5%,
respectively. Comparing the two summary measures,
median (FEP114M) generally perform better than mean
(FEP114A), evaluated in terms of the three criteria. Using
the low dimension function profile and median measure,
we have achieved comparable results to those using the
high dimension gene expression profiles (GEP617 and
GEP1160). However, this application implicates that
there is a space for further improvement in multi-class
cancer diagnosis using tumour gene expression signatures
or functional signatures, perhaps by combining with the
other  contributed clinical risk factors and
histopathological information, to some extent which has
reflected the complex nature of cancers.

FEP based analysis of the lymphoma dataset

For the lymphoma dataset, 44 differentially expressed GO
modules are identified and their functional expression
profiles make up a 44 x 77 matrix, called FEP44A or
FEP44M when arithmetic mean or median is used to be
the summary measure, respectively. The 44 differentially
expressed GO modules are annotated with a total of 383
differentially expressed genes. Again for comparison, we
also perform classification analysis using the raw expres-
sion profiles of the 383 differentially expressed and anno-
tated genes (GEP383) or the 705 differentially expressed
genes (GEP705).

By a coincidence, we also identify three functional mod-
ules for distinguishing lymphoma subtypes. Figure 3A dis-
plays the decision tree trained on FEP44M of the
lymphoma dataset. Figure 3B gives the expression patterns
of the three functional modules (GO:0006875,
GO:0009611 and GO:0019865) for 77 tissue samples.
Over half of annotated genes in all the modules are differ-
entially expressed between the tissue samples (figure 3C),
i.e., 5, 28 and 4 out of 8, 49 and 5 genes measured in the
three modules, respectively. Hypergeometric tests indicate
that all the three modules are significantly (or highly
significantly, p-value < 0.01) enriched with differentially
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Comparison of different gene expression measures for classification of cancer types in terms of accuracy (A), precision (B) and
recall (C).

Page 5 of 12

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:58

http://www.biomedcentral.com/1471-2105/6/58

A
GO:0006875
GO:0019865 GO0:0009611
<0.76 >0.76 <-0.21 >—0.21
FL CLL NORMAL DLBCL
(7:0) (11:0) (16:1) (432)
B

DLCL-0006
DLCL-004%
DLCL-0041
DLCL-0042
DLCL-0039
DLCL-0026
DLCL-0031
DLCL-0014
DLCL-0040
DLCL-0017
DLCL-0002

O l

60 -
o 50
4]
S 40
8 |
‘6 30 -
S
8
€ 20 ~
=
=z 10 A
0

DLCL-0011
DLCL-0005
DLCL-0033
DLCL-0051
DLCL-0020
DLCL-0029
DLCL-0001
DLCL-0037
DLCL-0052
DLCL-0032
DLCL-0018
DLCL-0034
DLCL-0030

[

DLCL-0012

FL-9;CD19+
FL-12;CD19+
FL-10:CD19+

CLL-52

CLL-39
FL-9

Blood B cell
Blood B cell
Blood B cell
Blood B cell
Blood B cell
Blood B cell
Blood B cell
Blood B cell
Blood T cells
Blood T cells
Blood T cells
Blood T cells
Thymic T cells
Thymic T cells

Blood B cell
Blood B cell

GO: 0006875
GO: 0009611
GO: 0019865

[

GO: 0006875

GO: 0009611
Module

GO: 0019865

@ No. Genes Annotated B No. Genes Annotated and Differentially Expressed

Figure 3

Training classification rules for lymphoma subtypes based on functional expression profiles of 44 GO modules.
A — Decision tree trained with the lymphoma FEP median measure. The internal nodes of the tree are denoted with the func-
tional modules from Gene Ontology. The leaf nodes give the classification results for the lymphoma subtypes. The numbers in
the leaf nodes are the total number of samples contained over the number of the incorrectly predicted samples. B — Functional
expression profiles of the three identified modules. For the identified GO modules from decision analysis, their functional
expression profiles are demonstrated with a colouring spectrum of their medians. Each GO module corresponds to a row, and
the column denotes the functional expression for each cell line. At the top are names of cell lines (diffuse large B-cell lym-
phoma (DLBCL), follicular lymphoma (FL), chronic lymphocyte leukaemia (CLL), and the healthy sources (NORMAL)). Samples
with a missing value or the null value are coded with black colour, a positive with red colour and a negative with green colour.
C — Numbers of genes annotated and differentially expressed in the three identified modules.
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expressed genes, with the probability of observing a more
extreme of 0.0396, 0.0008 and 0.0205, respectively.

Because G2D database lacks the data for DLBCL and FL,
we resort to PUBMED for knowledge support. The first
identified module, GO:0006875 (metal ion homeostasis)
is a parental category of GO:0006874 (calcium ion home-
ostasis). Three genes (Hs.241392, Hs.73817 and
Hs.237356) in the small size module are differentially
expressed between the lymphoma tissue types. Anghileri
et al. [30] showed that calcium-overload can lead to pro-
liferation and neoplastic transformation of lymphocytes
in mice and suggested the involvement of the calcium
homeostasis change in lymphoma induction. At the sec-
ond layer of the trained tree, GO:0009611 (response to
wounding) distinguishes DLBCL (up-regulated, clearly
visible in figure 3B) from normal samples. One differen-
tially expressed gene annotated in this GO module, BCL6
(zinc finger protein 51), was found to be frequently trans-
located and hypermutated in diffuse large-cell lymphoma
(DLBCL), and it thus may be involved in the pathogenesis
of DLBCL [31]. The functional module labelled immu-
noglobulin binding (GO:0019865) may be an important
modular marker for separating the two lymphoma sub-
types (FL and CLL). One differentially expressed gene
annotated in this GO module, CD23 (Fc fragment of IgE,
low affinity II), was identified to be associated with
chronic lymphocytic leukaemia (CLL) [32], which is again
consistent with our data. Median measure FEP44M
achieves the highest accuracy (88.31%) for classification
of lymphoma tissue types (figure 4A). Again, as we
expected, median perform better than mean (FEP44A) in
terms of accuracy, precision and recall. Of special note,
FEP44M attains a nearly perfect precision or recall rate
(98%) to distinguish DLBCL from others (figures 4B and
4C), implicating its utility to clinically isolate this particu-
lar lymphoma using the identified modular signatures.

We present in Additional file 1 the detailed numeric
results for further comparison of different gene expression
measures using four datasets (plus two additional large-
scale datasets). In all the four datasets, FEPs have achieved
comparable or better classification performance than
those GEPs do. In short, we have provided convincing evi-
dence to support FEP as a robust gene expression measure,
as a useful summary index for efficient data reduction and
as a way towards precise classification of biological phe-
notypes at the modular levels.

Discussion

With the rapid accumulation of gene functional knowl-
edge, GO functional modules have been widely applied in
inferring the unknown functions of genes based on their
expression profiles (e.g. [33-35]), but there is an open
space for development of the timely and relevant compu-
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tational algorithms that use robust functional expression
profiles towards precise classification of complex human
diseases at the modular level. In this paper, we have pre-
sented an alternative approach to analyzing microarray
data. The central idea is to transform the gene expressions
to modular level to achieve both robustness and precise
classification with better biological interpretation. We
first map genes onto their functional modules according
to GO hierarchy, and then consider the newly built mod-
ules as the features for learning. Because the modules are
evaluated with a summary measure(s), its variance is con-
siderably reduced. For this reason, function expression
profiling is robust to measurement or biological noises,
outliers and distribution assumptions underlying some
approaches.

Recent time has witnessed the attempts to study human
diseases at the modular levels. Hanczar et al. [36] grouped
the whole set of genes with k-means clustering of the aver-
aged expression values in each cluster and then trained a
SVM classifier based on these integrated values. Huang et
al. [37,38] chose a Bayesian formalism of singular value
decompositions (SVD) coupled with binary regression
and stochastic regularization. Our approach differs from
these methods in at least three aspects. First, we construct
a module based on the well established GO categories in
order to achieve better biological interpretation. Second,
we identify statistically significant modules enriched with
differentially expressed genes to avoid inclusion of some
noise modules. Third, we can easily procure biological
knowledge (e.g., GO in this study) because of the very
nature of the proposed methodology.

Traditional methods for reducing dimension of gene
expression profiles are feature selection [39], for exam-
ples, wrappers, filters and embedded algorithms. How-
ever, if only an optimal gene subset is extracted, many
genes of the same (or similar) function(s) would be
excluded due to redundancy. We have thus proposed an
ensemble approach to mining disease-relevant genes by
constructing a gene forest [40,41]. Alternatively, one may
consider analyzing the gene expression profiles at the
modular level to avoid unnecessary loss of important
information. The proposed modular approach can
achieve both goals simultaneously: reducing the dimen-
sion of microarray data by transforming the single gene
expressions into modular expressions and improving the
interpretability on the data mining results. The trained
functional modules can be presented graphically and are
easily understood by biologists. In fact, a trained tree
implicates a decision rule(s) that determine the interac-
tions of modules and can be used to elucidate the com-
plex cellular processes that lead to distinct biological
types. Our approach could be regarded as a way of identi-
fying disease-relevant functional modules (selected by
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decision trees) guided by precise classification of cancers.
Compared with many tools (e.g. Onto-Express, FatiGO,
GoMiner [42] and GOAL [43]) developed mainly for gene
function annotation using the data acquired from micro-
arrays or other high-throughput techniques, our approach
focuses on identification of the modules of high disease
discriminating power, thus implicating stronger evidence
of their relevancy with the studied disease. However, cau-
tion should be taken in interpretation of the module
selection for refinement of the biological phenotypes
investigated, especially when normal controls are not
included. In this case, the modules relevant to disease
subtypes should be considered as important molecular
signatures which may also be the disease-causing
modules.

In the study, genes are annotated to the modular terms in
GO as granted. Nevertheless, the classification system
with modules hierarchically structured is neither the most
efficient nor the optimal for pursuing specific biological
tasks, for example, classifying cancer types using modular
signatures. In the context of microarray experiments, a
large number of cDNA sequences often remain not being
annotated by GO because of either their unknown func-
tions or ambiguous annotations. To extract maximal
information from microarray data, one may consider per-
forming computational function assignments of gene
products using the strategy proposed by Vinayagam et al.
[44]. Therefore, further investigations on an alternative
classification system(s) or an extension of the GO system
and choices of more efficient indices for functional
expression profiling are warranted.

Conclusion

In summary, we have proposed an alternative approach to
analyzing gene expression profiles at the modular levels,
where the functional expression profiles replace the tradi-
tional gene expression profiles. We have applied the alter-
native approach to four large-scale microarray datasets,
and have achieved comparable or better classification per-
formance by using the functional expression profiles. It
should be recognized that median or other modular
measures are generally robust to noises because they are
less sensitive to any single individual gene expression
value. However, for the same reason, they are conservative
in using full information of microarray experiments, so it
cannot be vouched that FEP always has better perform-
ance than GEP does. Despite this fact, the improved bio-
logical interpretability and the advantages of robustness
to measurement noise and intrinsic biological variance of
gene expression data would promote its application in
biomedical research.
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Methods

Gene annotation and definition of the differentially
expressed functional modules

In GO database, gene functional categories are tagged
with functional terms and organized in three directed acy-
clic graphs where the root nodes are tagged with "biolog-
ical process" (BP), "molecular function" (MF) and
"cellular component" (CC), respectively. There are two
kinds of relationships between a child category and its
parent categories in GO: 'Is-a', where the child category is
an instance of its parents, and 'Part-of', where the child
category is a part of its parents. Up to the present, GO con-
tains a total of over 17,000 categories (or called modules),
with 8625 categories in the BP ontology, 1407 categories
in the CC ontology, and 7336 categories in the MF ontol-
ogy. All the information in GO can be downloaded in a
relational database file format to local computers. With
the existing gene function knowledge, known genes can
be annotated to certain GO categories corresponding to
their most specific function(s). As implied by the ontol-
ogy structure, one gene annotated to a category is also
within the ancestor categories on the same path.

During the annotation step, a gene can be annotated with
multiple GO categories. Not all of these categories, how-
ever, are to be used in this study. Only the categories that
contain significantly larger number of differentially
expressed genes than by random are kept for the following
analysis. As Khatri et al. [45] and Al-Shahrour at al.
[46,47] did, we perform a statistical test to decide whether
a GO category is significantly enriched with differentially
expressed genes that are aroused (induced or repressed)
by the experiment conditions. Suppose that a total of N
genes (set A) for the analyzed data are annotated in GO in
which a set of C genes (set B) are differentially expressed.
For a given GO category, a gene is either in the category or
not in the category. Suppose further that n genes out of set
A and k genes out of set B are in the category. If the k dif-
ferentially expressed genes are effectively a random sam-
ple uniformly selected from set B, the expected value of
is (n/N) C. As a gene can be selected only once, this is the
sampling without replacement and can therefore be
appropriately modelled by a hypergeometric distribution
[45]. The probability of observing at least k differentially
expressed genes in the GO category of n genes can be com-
puted as follows:

CYN-C
2§ | n—i
:l—
p 2 N
=0
n

The p-value calculated above corresponds to a one-sided
test and a smaller p-value relates to a higher likelihood of
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a GO category's enrichment with differentially expressed
genes. Only the categories that contain significantly (p <
0.05) larger number of differentially expressed genes than
that by random are kept for the following analysis. In this
study, to avoid the possible loss of the true positives, we
do not perform a multiple-tests correction for multiple
GO categories evaluated. Therefore, the p-value quoted
should be considered as a heuristic measure, useful as an
indicator of roughly rating of the relative enrichment of
differentially expressed genes for each GO category. We
remove a redundant category if all the genes annotated to
a category are also annotated to one of its child categories.
In this case, we retain one of the child categories because
its function(s) is more specifically defined. In the follow-
ing text, we refer to a GO category significantly enriched
with differentially expressed genes as a 'gene functional
module’, or a 'module’ for short.

Construction of the functional expression profiles

After extracting the differentially expressed functional
modules, we compute two summary measures: arithmetic
mean and median (the 50% quantile) of all the gene
expression values in each module to capture the activity of
the module. The modular measure(s) can have multiple
sources of variations including systematic experiment var-
iation, treatment effects, chip variation and biological var-
iation [6-9]. The distributions for individual (raw) gene
expression are usually not known in prior and could be
contaminated with outliers and possibly distorted due to
heteroscedasticity [48]. Therefore, mean or median meas-
ure for the modular activity can be good remedy statistics
for the location parameter. When the data are Gaussian or
symmetrically distributed, sample mean has a higher sta-
tistical efficiency compared to sample median. If there are
outliers, however, sample median is a robust measure for
the modular activity [49].

Evaluation of the functional profiles based on a decision
tree

Based on the functional expression profiles computed
with the two summary measures, we can now apply a
proper classification algorithm as do traditionally for the
individual measures of gene expressions. In this study, we
chose a decision tree model (e.g., C4.5 [50,51]) to train
the classification rule. Since there often are only limited
numbers of instances in microarray experiments, we
adopt a k-fold (k = 5 in this study) cross-validation proce-
dure. In the k-fold cross-validation, we divide the data
into k subsets of approximately equal size. We train the
classifier on the k-1 subset and use the remaining subset
to test the performance of the classifiers. The performance
for each classifier is evaluated in terms of three measures:
accuracy, precision and recall rate, which are defined as
follows:

http://www.biomedcentral.com/1471-2105/6/58

TP+ TN - TP P
——————, precision = ————and recall = ,
TP +TN + FN + FP TP + FP TP+ FN
where TP, TN, FP and FN denote true positive, true nega-
tive, false positive and false negative, respectively. Each
sample in the test set can be categorized in one of the four
outcomes. True positives are class members according to
both the classifier and sample label (disease type). True
negatives are non-members according to both. False posi-
tives are samples that the classifier places within the given
class, but sample labels are non-members. False negatives
are samples that the classifier places outside the class, but
sample labels are members. Accuracy is a percentage
quantity for the number of times that the classifier is cor-
rect in its classification and it conveys the right intuition
when the positive and negative populations are roughly
equal in size. Precision is the percentage of times that the
classifier is correct in its classification of positive samples.
Recall is the percentage of known positive samples that
the classifier would classify as being positive.

accuracy =

Biological knowledge support

We apply G2D (Candidate Genes to Inherited Diseases)
database [22,23] to associate a phenotype (disease) to a
GO module trained using a decision tree. G2D database is
built by text-mining approach. First, the number of papers
in MEDLINE that contain a MeSH-C term (describing a
phenotypic feature) and a MeSH-D term (describing a
chemical object) are counted, and then the corresponding
phenotypic term and the chemical term are judged as
associated if they occur together in many abstracts. Sec-
ond, a chemical term is judged as associated to a GO term
corresponding to a functional module appearing on the
decision tree if they appear to be related by many
sequences from RefSeq. Third, if a phenotypic term is
associated to a chemical term that has a functional coun-
terpart, then the phenotypic term is associated to the func-
tional term. We search PUBMED manually to get further
supporting evidence. If one or several differentially
expressed genes, which are annotated to one functional
module in the decision tree, are suggested by existing lit-
erature to be functionally related to one disease type, the
investigated functional module is then deemed to be
functionally relevant to the disease type.

List of abbreviations used

Gene expression profile (GEP), function expression pro-
file (FEP), Gene Ontology (GO), renal cancer (RE), colon
cancer (CO), leukaemia (LE), melanoma (ME), diffuse
large B-cell lymphoma (DLBCL), follicular lymphoma
(FL), chronic lymphocyte leukaemia (CLL), healthy
sources (NORMAL), arithmetic mean (A), median (M),
Candidate Genes to Inherited Diseases (G2D), biological
process (BP), molecular function (MF), cellular compo-
nent (CC).
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