@,

BiolVled Central

BIVIC Bioinformatics

Methodology article

Critical evaluation of the JDO API for the persistence and
portability requirements of complex biological databases
Marko Srdanovic!, Ulf Schenk?, Michael Schwieger? and Fabien Campagne*!

Address: 'Weill Cornell Medical College, 1300 York Ave, New York, NY 10021 USA and 2FastObjects, Inc. 165 North Redwood Drive, Suite 200,
San Rafael, CA 94903, USA

Email: Marko Srdanovic - mas2062 @med.cornell.edu; Ulf Schenk - ulf.schenk@fastobjects.com; Michael Schwieger - fac2003 @med.cornell.edu;
Fabien Campagne* - fac2003 @med.cornell.edu

* Corresponding author

Published: 10 January 2005
BMC Bioinformatics 2005, 6:5 doi:10.1186/1471-2105-6-5

Received: || June 2004
Accepted: 10 January 2005

This article is available from: http://www.biomedcentral.com/1471-2105/6/5

© 2005 Srdanovic et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Complex biological database systems have become key computational tools used
daily by scientists and researchers. Many of these systems must be capable of executing on multiple
different hardware and software configurations and are also often made available to users via the
Internet. We have used the Java Data Object (JDO) persistence technology to develop the database
layer of such a system known as the SigPath information management system. SigPath is an example
of a complex biological database that needs to store various types of information connected by
many relationships.

Results: Using this system as an example, we perform a critical evaluation of current DO
technology; discuss the suitability of the JDO standard to achieve portability, scalability and
performance. We show that |DO supports portability of the SigPath system from a relational
database backend to an object database backend and achieves acceptable scalability. To answer the
performance question, we have created the SigPath JDO application benchmark that we distribute
under the Gnu General Public License. This benchmark can be used as an example of using JDO
technology to create a complex biological database and makes it possible for vendors and users of
the technology to evaluate the performance of other JDO implementations for similar applications.

Conclusions: The SigPath JDO benchmark and our discussion of JDO technology in the context
of biological databases will be useful to bioinformaticians who design new complex biological
databases and aim to create systems that can be ported easily to a variety of database backends.

Background browse, search and view information. These user needs

Biological databases are key computational tools used
daily by biologists. Such a large number of biological
databases have been developed for biology that the
Nucleic Acids Research Journal has published an annual
database issue since 1996. From the point of view of the
user, these resources are most useful when they are regu-
larly updated and when they provide user-friendly ways to

are generally recognized as important requirements by the
designers and developers of biological databases. To cope
with these requirements, bioinformaticians who develop
the biological databases have typically responded by
developing increasingly customized software to manage
the data and the information (e.g., [1-4]). In doing so, and
to facilitate the software development effort needed to

Page 1 of 15

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642112
http://www.biomedcentral.com/1471-2105/6/5
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2005, 6:5

create a biological database, bioinformaticians have used
a variety of information technologies. These technologies
range from the ones that make it possible to create
dynamic web applications (e.g., Common Gateway Inter-
face/CGlI, Java Servlets, web application frameworks), to
technologies needed to store the data and the information
in a persistent manner (i.e., text files [5,6], relational data-
bases [7], frame representation systems [8-10], object-ori-
ented databases [11]).

In this article, we report on our experience with the Java
Data Objects persistence technology and take a critical
view at the advantages and drawbacks of this emerging
Java persistence standard for the development of
advanced biological databases. We have ported the Sig-
Path information management system (see below) to the
JDO API and have defined an application-specific bench-
mark. We used this benchmark to evaluate the perform-
ance of two JDO implementations that target either a
relational or an object database backend. This article sum-
marizes the performance results that we obtained,
announces the availability of the SigPath JDO benchmark
(available under the GPL license), and identifies areas
where the JDO API could be refined to facilitate portabil-
ity and scalability of applications.

Data persistence

Biological databases are built with software that executes
on computers. Most biological databases are of a size that
could fit entirely in the central memory of modern com-
puters. However, because computers may need to be shut-
down for maintenance - or may crash inadvertently - data
for a given database cannot be kept in computer memory
for the life of a biological database. This problem is not
specific to biological databases so that a variety of data
persistence approaches and technologies are available.
The key role of these technologies is to guarantee that data
persists safely between the invocations of the programs
that may modify the data.

The pros and cons- of persistence technologies for
biological databases

Data can be stored in text files with limited structure and
important information can be stored in unstructured text
files expressed in English. Unstructured flat-files do not
help perform large-scale analyses, structured queries or
integrate data across multiple sources, all of which are
important requirements for biological databases. There-
fore, unstructured files are now widely recognized
throughout the field as inadequate for the management of
biological information.

Highly structured data formats, such as ASN.1 [12] and
more recently XML, are a more favored alternative. They
can support structured queries, large scale analyses and

http://www.biomedcentral.com/1471-2105/6/5

data federation. Structured file formats, however, do not
provide support for concurrent manipulation of the infor-
mation by several users (e.g., several curators interacting
with a submission tool to input new data about one pro-
tein in the database). As such, they are adequate for data
exchange among systems, but not for concurrent access.
Since the file format offers no support for synchroniza-
tion, locking or complex domain-dependent data valida-
tion rules (for XML, XML Schemas are limited to simple
validation rules), using structured data formats for biolog-
ical information storage forces system developers to
implement these services explicitly as a layer between the
business code and the data storage. For instance, since
XML Schemas are not capable of validating XML data with
respect to information outside of the scope of the file
being validated (such as data in other files or in a data-
base), developers must implement custom validation
code. XML Schema focus on syntactic validation, while
most applications require semantic validation [13].

Database management systems (DBMS) have been his-
torically developed to abstract the services (such as syn-
chronization, business domain constraints) needed by
systems that need to support large number of users access-
ing a shared storage of data. A few types of DBMS exist that
differ in the way they represent data. Relational DBMS
represent data as tables that contain rows and columns of
various types, while Object DBMS support the concept of
object classes and object instances directly.

Relational DBMS such as Postgres, MySQL or Oracle have
been used to store biological information in many labora-
tories, including ours [14,15]. A short introduction to
using RDBMS for biological information storage was
recently offered in [16]. Briefly, complex relationships
among elements of information are stored in relational
databases by expressing relations among records in several
tables. The technology is useful for a variety of biological
databases, where the mapping between the biological
data and the relational data model is simple.

However, the technology has two major drawbacks for
advanced biological databases. The first problem is
because of a mismatch between the object-oriented pro-
gramming style and the relational data model. Advanced
biological databases often require programs that manipu-
late tens or hundreds of object classes. Data in the
instances of these classes needs to be made persistent, and
this requires writing mapping code. The mapping code
takes a graph of objects and transfers the data in this graph
into records in the various tables of the relational data-
base. Mapping code needs to be developed for the recip-
rocal operation, from the relational records to the object
instance graph. Depending on the complexity of the rela-
tionships among objects in the graph, the development of

Page 2 of 15

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:5

the mapping code may represent a significant part of the
code developed for the overall database.

Object DBMS such as O2 [17] and FastObjects have been
developed to eliminate the need to write mapping code,
and to store objects directly in native form in the database.
This approach was reported to offer substantial perform-
ance improvements and reduced development and main-
tenance costs for data organized in an object graph with
complex relationships.

Java Data Objects Technology

The Java Data Objects Technology (JDO) is a Java applica-
tion programming interface (API). This API was devel-
oped as a Java Specification Request [18] to offer: "a
standard way to store Java objects persistently in transac-
tional data stores..., a standard way to treat relational data-
base data as Java objects, and a standard way to define
transactional semantics associated with those objects."

JDO appears as an attractive technology for the develop-
ment of biological databases for the following main
reasons:

1. It is designed to offer portability across a wide range of
transactional stores or database backends, from open-
source relational databases to native object oriented
databases.

2. It transparently handles object persistence when rela-
tional or object persistence backends are used (the devel-
oper only manipulates objects and classes and does not
need to write mapping code).

3. JDO also handles persistence transparently for object
oriented databases, where mapping code is not needed.

4. It is a Java technology that integrates seamlessly with
web application servers (e.g., Tomcat, JBoss, etc.) often
used to create the web front-ends of a biological database.

A critical evaluation of the JDO technology

Given the stated advantages of the technology we decided
to carry out a critical evaluation of JDO to determine if the
technology can routinely be used for the development of
advanced biological databases. Our evaluation focused on
the following questions:

Portability: Is JDO a mature API that can guarantee port-
ability of the application across database backends?

Performance: If portability is achieved, how do relational
and pure object oriented backends compare in term of
performance?

http://www.biomedcentral.com/1471-2105/6/5

Biological database specific requirements: Do complex
biological databases have specific requirements that JDO
1.0.1 does not address?

To answer these questions, we have ported a biological
information management system (the SigPath system, see
below) to the JDO 1.0.1 API. (The SigPath system was
originally implemented with the ODMG API [19]). In the
first step of the port, we compiled the new code with the
FastObjects JDO implementation [20] FastObjects JDO is
an implementation of the JDO API that connects to the
native FastObjects object database. In a second step, we
have adapted the existing code to support exchanging the
JDO implementation and database backend between the
FastObjects implementation and the Solarmetric Kodo
implementation of JDO [21]. Kodo is an implementation
of JDO 1.0.1 that connects to a variety of relational data-
base backends. The aim of the second development was to
modify the code to make it possible to switch from FastO-
bjects JDO to Kodo JDO by changing a configuration
property, and then simply recompiling. Our aim was to
create a code-base that was fully portable from a relational
database backend to an object-oriented database backend
to address the portability question.

The SigPath Information Management System
SigPath is an open-source project aimed to develop an
Information Management System (IMS) to foster mode-
ling and simulation of cell signaling pathways and net-
works (see the SigPath project [22]) [23]. The SigPath IMS
appears to the end-user as a web application that provides
search, browsing and visualization capabilities. The
project home page provides tutorials that explain how the
system is typically used.

Most traditional biological databases focus on one type of
database entry (e.g., gene, mRNA, protein, protein motif,
protein domain, etc.) and store information in database
entries. This approach has been very useful to create
detailed catalogs of biological parts and is a critical and
essential element of the bioinformatics resources that sup-
port modern biological research. However, certain inte-
grative studies, such as systems biology and modeling and
simulation of biochemical pathways call for databases
that integrate several types of information.

The SigPath IMS is an example of an advanced biological
database that encodes information through a number of
information types and a set of relationships among them.
Figure 1 illustrates how SigPath encodes information
about a biochemical reaction: the reaction is represented
as a graph of object instances.

Page 3 of 15

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:5 http://www.biomedcentral.com/1471-2105/6/5

]

Parameterimpl
.
Reactionimpl
s +setValue:void
+convertToUnit:double
+addToRight:void ISValue:double
+addToLeft:void value: 23 Unit
+sites:InteractionSites unit:Unit Imol/sec
unitName:String
right Collection ISUnit:Unit ——/
left: Collection
substrates: null
spontaneous:true I:':I
Parameterimpl

KBackward:Parameter
KForward:Parameter

+setValue:void
+convert ToUnit:double

|SValue:double
left-collection right-collection value: 4
unit:Unit Unit
i i -Stri Isec
becomes-collection unitName:String
ISUnit:Unit —

=]] =

Chemicallmpl Chemicallmpl Chemicallmpl

+contains:boolean
+involvedin:Set
+setinvolvedin:void
+setinvolvedin:void

+contains:boolean
+involved|In:Set
+setInvolvedin:void
+setinvolvedin:void

+contains:boolean
+involvedin:Set
+setinvolvedin:void
+setinvolvedin:void

—— organism:Organism

comesFrom:Collection
becomes:Collection
backgroundinformation: false

organism:Organism ———— ~— organism:Organism
comesFrom:Collection comesFrom:Collection
becomes:Collection becomes:Collection
backgroundinformation:|false backgroundIinformation:true

comes-from-collection

Organismimpl

species: 'Homo sapiens’
commonName:'human'

Figure |

Instance graph for representation of a reaction between three chemicals (e.g., A <> B + C). Some of the relation-
ships that support navigation from reactions to chemicals are shown, as well as links between chemicals. The three chemicals
are produced by the "human" organism. Quantitative kinetic parameters are also shown for the reaction (backward and for-
ward rate of the reaction). The figure illustrates how a graph of object instances is used to represent biological information
corresponding to a biochemical reaction.

Page 4 of 15

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:5

Introduction to the SigPath ontology/database schema

A fragment of the SigPath ontology is given on Figure 2 as
a UML diagram. The description of the complete set of
persistent classes used in SigPath is given on the project
web site ([22], see the "for developers" tab).

The SigPath system supports several types of biological
information, ranging from information to represent small
molecules and proteins to the interactions between these
molecules. The main information types supported by Sig-
Path are listed on Table 1. In SigPath, information is rep-
resented in an object-oriented manner, with information
types often associated with classes. The SigPath object-ori-
ented database schema was adapted from the EcoCyc
ontology [9]. Several classes presented on Table 1 have an
equivalent in the EcoCyc ontology. In the rest of this arti-
cle, we will use the terms ontology and JDO database
schema indistinctively, as they represent very similar con-
cepts: a class in the object-oriented schema of SigPath is
equivalent to a frame in the EcoCyc ontology, and an
attribute of an object class is similar to the slot of a frame.

This multiplicity of SigPath information types and the
variety of relationships among them makes it important
to clearly define what type of information can be repre-
sented by the system (i.e., the set of object graphs that
could potentially be created and stored in the database).
This information is formalized in the SigPath ontology.
This ontology is implemented in a JDO database schema.
(In the SigPath system, the set of allowed object graphs
may be further reduced by adding semantic constraints to
the validation mechanism used during information sub-
mission). The JDO schema consists of the set of SigPath
Java classes that are persistent and of meta-data about
these classes. Meta-data is expressed in JDO files and pro-
vides information about the classes that cannot be
expressed directly in the Java language, for instance, type
of the elements for the collection field of the persistent
classes. Figure 5 shows a small JDO file and illustrates the
type of information that it provides. A thorough presenta-
tion of the structure of JDO files is given in [24], vendor-
specific extensions are documented in each JDO
implementation.

The SigPath code base has specific characteristic that make
it a useful resource for evaluating JDO technology:

e SigPath is an open-source project released under the
GPL, so that the benchmark code is freely available for
others to study, reproduce our results, or extend the
benchmark to other JDO implementations or database
backends.

e SigPath is both a web-based application and a batch-ori-
ented application.

http://www.biomedcentral.com/1471-2105/6/5

¢ The SigPath code-base includes unit tests [25] that help
verify that the application behaves correctly against two
different database backends.

¢ The SigPath system provides varied use cases that exer-
cise different behaviors of the database backend and JDO
implementation (see use cases below).

In the next section, we present the methods that we used
to evaluate JDO technology for the creation of advanced
biological databases.

Results

This section describes the results of the SigPath JDO
benchmark and addresses the portability and perform-
ance questions described in the introduction.

SigPath: porting from one JDO implementation to another
We modified the FastObjects JDO version of SigPath to
compile indifferently with the FastObjects and Kodo
implementations of JDO. The modifications that we had
to make to the project were (i) modifications to the JDO
file, (ii) modifications of the code base and (iii) modifica-
tion of the code base and application data.

Modifications to the JDO file

The Kodo enhancer tool performs stricter semantic valida-
tions on the JDO files than the FastObjects enhancer.
Modifications needed to pass the validation tests were:

1. Added persistence-capable-superclass attribute to
classes that have a persistence capable superclass. This
attribute is optional for FastObjects, which uses Java
reflection by default, but is strictly required by the Kodo
implementation (in agreement with the JDO
specification).

2. Removed all interfaces from the JDO file. Enhancing
with Kodo failed when interfaces were listed in this file.
Since FastObjects requires interfaces to be listed as persist-
ent classes, the SigPath build script conditionally includes
such statements in the JDO file when FastObjects is con-
figured. The JDO specification does not mention inter-
faces, so that the behaviour of JDO implementation is left
undefined.

3. (As a result of 2.) Replaced references to interfaces with
references to implementation (e.g., replaced Protein by
ProteinImpl) throughout the JDO file.

4. Added collection element types to all persistent collec-
tions. FastObjects requires the type to be specified when
the collection is used in a query. Kodo requires the type to
be defined for each collection, otherwise Kodo will try to
serialize the collection and store it as a binary object. If the

Page 5 of 15

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:5 http://www.biomedcentral.com/1471-2105/6/5

I:I:l interface
Aliases
(s Collectable (] interface
interface ConcentrationMeasurement
+addAlias:void SiGeERIY.
+changeAlias:boolean ;
+NAME MAX LENGTH:int
+removeAlias:boolean <
+clearAliases:void . "
+aliases:Aliases ian:
: concentration:Parameter
B SH e +er:ExternalReferences chemical:Chemical
eS| tarateT +"2{ ;;f{emtumtzef IENCES measurementMethod:String
y +addReview:voi ion:Stri
asCollection:Collection ?amplirgpamt|on.81rlng
issue:String
exportable:boolean comments:String
has aliases description:String reference:LiteratureReference ('
name:String buffered:boolean
spid:String SmallMolecule
changelLog:Changelog 1 of

reviews:Collection
combinedStringl ength:int

0.:*
- I;‘:I interface
l:':l interface Chemical
Reaction
I;':I interface
EnzymaticReaction
T Rl +contains:boolean
+DIRECTION REVERSIBLE:int sl +involvedin:Set
+addTolLeft:void 2%

+setinvolvedIn:void

+DIRECTION IRREVERSIBLE:i 2 S
:I +sites:InteractionSites

+DIRECTION PHYSIOLOGICA transforms substrate/product of +setinvolvedIn:void
1 ight: i . .
+setVMaxMeasurement:void B :'|gr>1t‘clclnlle<‘:t|on organism:Organism
performs sftCollection comesFrom:Collection

substrates:Collection
spontaneous:boolean

becomes:Collection
backgroundinformation:boolean

reaction:Reaction
enzyme:MacroMolecule

i ecNumber:String
r :Chemical
i oductq o deltaG0:Parameter
substrate:Chemical KB &P 1 | produced by
reactionDirection:int KFaCkW:r.P. aramteter
VMax_EnzymeConcentration:Pa OWaIgIRarameier
VMax:Parameter affected sites
KMichaelis:Parameter
KProduct:Parameter - .
KBKP:Parameter l:':l interface 1.* | synthetizes
Parameter) e
affected during 5
catalyzed by l;':l Organism
interface
+setValue:void InteractionSites
+convert ToUnit:double
1
interface ISValue:double +addResidueRange:void species:String
Protein value:double +removeResidueRange:boolean commonName:String
unit:Unit +clearResiduesRanges:void
unitName: String
ISUnit:Unit residueRanges: ResidueRange(]
MacroMolecule
BioPolymer =>

Figure 2

Fragment of the UML diagram for the SigPath ontology/database schema. The Figure shows how instances of cer-
tain classes are related and how the relationships among classes can be used to represent information. The link between Reac-
tion and Chemical expresses the information that reactions transforms chemicals, and that chemical can be substrate or
products of reactions. The classes and attribute marked in orange are specific to the SigPath ontology and have no equivalent
in the EcoCyc ontology.

Page 6 of 15

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:5

http://www.biomedcentral.com/1471-2105/6/5

Table I: Selected information types supported in SigPath.

Classes Description
SmallMolecule A small molecule, such as ATP
Complex A binding complex between two or more molecules
Protein A protein molecule
Chemical A small molecule, protein or complex
Reaction Reaction between molecules: has substrates and products
EnzymaticReaction Associates a reaction to the enzyme that catalyze it
Unit Represents a unit, such as mol/l or /sec
Parameter Associates a value to its unit

ConcentrationMeasurement
Pathway

Associates a concentration to a molecule and the conditions of the measurement
A set of reactions and enzymatic reactions

Model A quantitative biochemical model, a set of reactions (or enzymatic reactions), initial concentrations for
molecules in the model, rates of the reaction, kinetic parameters of the enzymatic reactions.

<?xml version="1.0" encoding="UTF-8"7?>
<IDOCTYPE jdo SYSTEM "jdo.dtd">
<jdo>
<package name="org.sigpath.user">
<class name="Address"/>
<class name="Affiliation"/>
<class name="User" requires-extent="true">
<field name="username">
<extension vendor-name="kodo" key="column-index" value="true"/>
<[field>
<extension key="index" value="UserNamelndex" vendor-name="FastObjects">
<extension key="member" value="username" vendor-name="FastObjects"/>
</extension>
<field name="userRoles">
<collection element-type="org.sigpath.user.UserRole"/>
<ffield>
</class>
<class name="UserRole"/>
</package>
</jdo> JDO file example: org.sigpath.user package

Figure 5

Example of JDO file. This file is used to define the persistent classes that are used in SigPath to represent end-users. Four
persistent classes are shown: Address, Affiliation, User and UserRole. The <field> element can be used to refer to specific
fields of persistent classes (such as the username field of class User on this example). The userRoles field is described to be a
collection that contains elements of type UserRole. Elements called <extension> make it possible to provide vendor specific
directives, such as to define indices on a persistent field.

persistent class is not serializable, this mechanism will 5. Removed field definitions from sub-classes when they
fail. Therefore, for this benchmark, we explicitly defined refer to fields of a super-class. (e.g., the field "reactions" in
the collection types for each collection. Model was specified twice in the Model sub-class and in

Page 7 of 15

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:5

the Pathway super-class). Removing these duplicate decla-
rations is consistent with the JDO specification.

Furthermore, the Kodo enhancer expects classes to be
listed in the JDO file in a specific order. The enhancer fails
if a class appears in the JDO file before another class that
the first class references. Therefore, we reordered the class
definitions in the JDO file. (We verified that this is no
longer an issue with version 3.0 of Kodo, but keep this
description as other JDO implementations may share the
same limitation).

Finally, we added Kodo extensions to the JDO file to cre-
ate indexes on the tables that were used extensively in que-
ries. All changes to the JDO file were consistent with the
JDO specification. Index tuning was performed by run-
ning the boot and test part of the benchmark and the
small molecule import with various indexes choices.

Modifications to the code base

We modified the code base to work-around a limitation of
the Kodo implementation. With Kodo, instances of
classes that contain java.lang.Object fields are made per-
sistent with the object field stored as a BLOB in the data-
base. Storing objects as BLOBs puts strong limitations on
their use. For instance, it is impractical to query for these
objects by their fields (e.g., querying directly for a User
instance by the id of the user is not possible if the instance
is stored as a BLOB). Storing such fields as BLOBS was
therefore not acceptable for certain types of persistence
objects, and we implemented the work-around shown on
Figure 3.

Another code modification was required to work-around
a problem with the database backend that did not handle
appropriately empty strings (“”). The database backend
used for this benchmark stored empty strings as null.
Reading these strings back from the database resulted in
null being obtained from Kodo instead of empty strings.
This resulted in several unexpected NullPointerException
being thrown during the JUnit tests. Figure 4 illustrates the
approach that we used to work-around this problem.

Maodification to the code base and benchmark/application data

Finally, we had to modify the code base to put a limit on
the length of long strings. Using a relational database
backends imposes to define the maximum length of each
string attribute defined in the persistent classes of the
application. For instance, a limit must be set on the name
attribute of the SigPathEntitylmpl shown on Figure 2. We
initially used the default maximum length for all fields
and found that certain fields could be longer than this
limit when running the test and the benchmark. For
instance, description fields of Proteinlmpl are imported
into SigPath from the DE line of SwissProt and TrEMBL

http://www.biomedcentral.com/1471-2105/6/5

entries. Some entries have long descriptions (that can
exceed 1,000 characters). To test the impact of this limit
on the code of the application, we arbitrarily choose to
use a maximum length of 1,000 characters. We excluded
from the benchmark input data proteins and small mole-
cules that had aliases or descriptions longer than 1,000
characters, and other entries that would exceed any String
field limit. This was done to make sure that the same input
data was used for both the FastObjects and the JDO rela-
tional benchmarks.

Performance measurements

A brief summary of the performance measurements
obtained with the SigPath benchmark is given in Table 3.
The table presents time measurements for each use case of
the benchmark. The measurements are listed both for the
FastObjects JDO implementation (columns marked FO)
and for the Kodo implementation. Columns marked
%FO/KODO indicate the percentage of the time running
the benchmark with FastObjects takes compared to run-
ning the benchmark with Kodo. The last column of the
table FO/KODO CV indicates the coefficient of variation
of the total time across four independent measurements.
Small values of CV (1-5%) indicate consistency between
the four measurements. However, some use cases showed
higher variations (10,11,12,36%), so we report as well the
minimum value of the four time measurements for both
FO and KODO (in columns marked Min).

The raw data used for the calculation of these performance
measures is provided in the supplementary material and
on the SigPath J]DO benchmark pages. These pages also
provide the logs from which the raw data has been
collected.

Discussion

Portability

Our port of SigPath confirms that JDO greatly facilitates
the porting of a bioinformatics application from one data-
base backend to another. However, we report here several
modifications that we had to make to the SigPath system
to achieve this level of portability. This suggests that there
is a need to develop JDO compliance tests that could be
used to test that a specific implementation of a JDO-aware
database is really compliant with the standard. This test
suite would validate that JDO enhancers accept correct
JDO files and correctly reject JDO files that break the spec-
ification. The differences in the interpretation of JDO files
that we noticed between FastObjects and Kodo (see
Results section) practically limit the portability of JDO
applications. This article has presented techniques that
can be used to work around these limitations until a JDO
compliance test is developed and used. We note that the
work arounds that we described may be specific to the two
JDO implementations that we tested, and that other work

Page 8 of 15

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:5 http://www.biomedcentral.com/1471-2105/6/5

public class NamedObject { public class NamedObject {
private String name; private String name;
private Object object; << used to store /{ work-around is to have one field per type of persistent
persistent instances of various classes instance:
private Unit unit;
public Object getObject() { private KeywordInvertedindex kii;
return object; private PLong plong;
} private LargeSetOfObject Isoo;
private ModifiedEntityList mel;
public void setObject(Object object) { private User user;
this.object = object;
} public Object getObject() {
} if (unit!'=null) {
return unit;
}else if (kii '= null) {
return kii;

}else if (plong = null) {
return plong;

}else if (Isoo = null) {
return lsoo;

}else if (mel != null) {
return mel;

}else if (user = null) {
return user;

}else{
return null;

}

}

public void setObject(Object object) throws
SigPathDatabaseException {

if (object instanceof Unit) {
this.unit = (Unit)object;

} else if (object instanceof Keywordinvertedindex) {
this.kii = (KeywordInvertedindex)object;

} else if (object instanceof PLong) {
this.plong = (PLong)object;

} else if (object instanceof LargeSetOfSigPathEntity) {
this.Isoo = (LargeSetOfObject)object;

} else if (object instanceof LargeSetOfObject) {
this.Isoo = (LargeSetOfObject)object;

} else if (object instanceof ModifiedEntityList) {
this.mel = (ModifiedEntityList)object;

} else if (object instanceof User) {
this.user = (User)object;

}else {
throw new SigPathDatabaseException("Object of type

"+object.getClass().getName()+" cannot be made persistent.”);
}
}

Original NamedObject persistent class Work-around for compatibility with Kodo

Figure 3
Work-around for classes that contain an object field.

Page 9 of 15

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:5

http://www.biomedcentral.com/1471-2105/6/5

/**

* Returns the name of this Chemical.

* two chemicals can have the same

* names in the same database.

*/

public String getName() { return name; }

/**
* Sets the name of this Chemical. */
public void setName(String name) {
this.name = name;
}

Original getter and setter for Name
attribute of SigPathEntitylmpl

* Names of chemicals are not unique, ie.

/**
* Returns the name of this Chemical. Names of
* chemicals are not unique, ie. two chemicals can have the same
* names in the same database.
¥/
public String getName() {
// Do not modify the attribute inside the getter method!!
// Simply return the value the user expects outside of this method.
if (name == null)
return "";
else
return name;

/**
* Sets the name of this Chemical. */
public void setName(String name) {
// Here you can change the name to a value you want, because your
// intention is to change it anyway.
// But because the relational backend returns empty strings
// as null string, we change it to that null value to optimize later
// reads.

if ((nhame != null) && (name.length() == 0)) {
this.name = null;
}else {

this.name = name: Work-around for relational backend

with Kodo

Figure 4

Work around for classes that have String getter and setters, when empty strings can be made persistent.

arounds may be needed to achieve portability with other

JDO compliant backends.

ally indexes cannot be used on those fields). Whichever
solution is chosen, this issue must be considered early
during the design of the application. It would be useful if

Surprisingly, we found that an outstanding portability
problem is in the way the different JDO back-ends store
long strings of characters. While the FastObjects backend
put no limitation of the length of long strings, the rela-
tional back-end used with Kodo limited the length of long
strings to 4,000 characters. This limit had to be chosen
and set for each persistent string field used in the applica-
tion (when the default value was not appropriate).
Although 4,000 characters may appear a large limit, it is
likely to be reached in bioinformatics application either
with textual or with sequence data. When this happens,
the application will have to be re-engineered to work
around the fixed limit. A work-around could be to use a
data type that does not have a length limitation, but these
data types also have other limitations (for instance, usu-

the JDO standard offered a mechanism for the application
developers to specify which string length their application
requires to function properly with JDO backends. Each
enhancer could then check that the application is request-
ing a maximum string length that is compatible with the
database backend and fail early if it does not. (As of now,
these types of error will most likely be detected when test-
ing the application.)

Performance

The SigPath benchmark provides precise measurements of
the performance of one biological database application
against two JDO compliant database backends. The
measurements were performed on use cases that are typi-
cal of the activities needed to develop the code of SigPath

Page 10 of 15

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:5

Table 3: SigPath benchmark measurement summary.

http://www.biomedcentral.com/1471-2105/6/5

Minimum of four measurements

FO Min KODO Min A (KODO - FO) %(FO/KODO) Min
Junit Tests 7809 14962 7153 52.19%
Boot 3026 3976 950 76.11%
SM Import 399189 409452 10263 97.49%
FullTextindexerl 566858 1804663 1237805 31.41%
mam.xml 58999 299876 240877 19.67%
rod.xml 95680 422423 326743 22.65%
hum.xml 144250 692476 548226 20.83%
inv.xml 430107 1895850 1465743 22.69%
vrt.xml 97662 471683 374021 20.71%
sprot4l_I.xml 332552 1763561 1431009 18.86%
sprot4l_2.xml 441054 1966868 1525814 22.42%
FullText Indexer2 2655170 7521535 4866365 35.30%
hum.xml 144250 692476 548226 20.83%
XML Import 15859 2544| 9582 62.34%
TestGetPathways 19658 21769 2111 90.30%
TestBenchmark 6840592 13531171 6690579 50.55%
Totals (ms) 12229818 30934447 18704629 39.53%
Average of four measurements
FO Avg KODO Avg %(FO/KODO) Avg FO/KODO CV
Junit Tests 7875 15414 51.11% 2
Boot 3064 4319 71.67% 12
SM Import 402303 413655 97.26% |
FullText Indexerl 572934 1818548 31.51% |
mam.xml 59745 303455 19.69% 3
rod.xml 98938 429661 23.02% 3
hum.xml 152827 698456 21.89% 5
inv.xml 434253 1915082 22.68% |
vrt.xml 100248 476812 21.03% 4
sprot4l_Il.xml 351278 1780467 19.72% 9
sprot4l_2.xml 473765 1981667 23.90% I
FullText Indexer2 2765967 7590177 36.43% 4
XML Import 16804 39913 45.44% 36
TestGetPathways 20388 24362 84.19% 10
TestBenchmark 6886598 13736330 50.16% 3
Totals (ms) 12346986 31228318 39.54%

and to deploy a production SigPath system. (Table 2. indi-
cates which use cases belong to our software development
process and which belong to administrative and curation
tasks that we need to carry out to prepare a new release of
SigPath).

As shown in Table 3, performance varies widely with the
type of use case, but is overall significantly better with the
object database backend. Use cases that perform batch
loading of protein information into the database bene-
fited the most from using the native object database Fas-
tObjects backend (with loading of data sometimes

completed five times faster than with Kodo and a
commercial relational backend). An exception to this
trend is the SM Import use case, which shows only a 3%
performance difference. This use case reads an XML file
and loads small molecules into the database. To do so, it
checks for each molecule that the accession code of the
new molecule does not already exist in the database (this
is an error condition that would interrupt the import).
Since the database does not contain small molecules, the
query used to perform this check returns an empty set for
each molecule of the import. It appears that this specific

Page 11 of 15

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:5

http://www.biomedcentral.com/1471-2105/6/5

Table 2: Overview of the use-cases in the SigPath Benchmark

Project stage Step Utility for the SigPath project

development boot Loads a sample set of information that can be used to run JUnit tests and for interactive testing
of the web application

development test Performs JUnit tests to verify that key aspects of the system are working correctly

pre-release SM import Import small molecule information (names, aliases SMILES from NCI Open)

pre-release Full Text Indexer | Builds an inverted full text index for small molecules imported in previous step

pre-release mam.xml Imports TREMBL mam.dat proteins

pre-release rod.xml Imports TREMBL hum.dat proteins

pre-release hum.xml Imports TREMBL inv.dat proteins

pre-release inv.xml Imports TREMBL inv.dat proteins

pre-release vre.xml Imports TREMBL vrt.dat proteins

pre-release sprot4|_1.xml import SwissProt 41.dat, part |

pre-release sprot4|_2.xml import SwissProt 41.dat, part ||

pre-release Full Text Indexer 2 Builds an inverted full text index for the proteins imported from TrEMBL and SwissProt

pre-release XML Import Imports data from another SigPath database (data is encoded in the SigPath XML exchange
format)

traversal simulation TestGetPathways Navigates through the Pathway instances. Used to simulate user navigation on the web site.

traversal simulation TestBenchmark Another benchmark-specific performance test.

operation is slower with the object-oriented backend that
we have used for the benchmark.

The last column of Table 3 indicates the coefficient of var-
iation (CV) of the individual measurements (among four
independent executions). The CV values indicate that the
performance of certain steps vary significantly from execu-
tion to execution. These differences are likely to be caused
by the caching behavior of the database server and of the
operating system. Caching can occur because we have not
restarted the database server between the benchmark runs,
or rebooted the machines. These differences may also be
caused to a lesser extent by variations in what operating
processes were active and the amount of IO wait at the
time that the specific use case was executed. We have tried
to reduce such causes of variability (see methods) but
have not attempted to eliminate them completely (e.g.,
setup an isolated database server and disable all
interactive use of the server). Our rationale is that such
variability, including caching, is representative of a typical
production system. Given the CV, the average execution
time may not be an accurate representation for some use
cases, so we report also the minimum execution time
across the four independent executions of the benchmark.

The benchmark provides an indication of how well an
object-oriented database system performs compared to a
relational database backend for the SigPath use cases. A
known limitation of benchmarks is that the performance
measure that they provide are specific to the application
tested, and may not generalize well to other use cases.
Also, the SigPath benchmark does not cover multi-

S

PhosphoSmallMolecule

Q
|

PhosphoProtein

Figure 6

lllustration of the use of interfaces to express is-a
relationships among biological concepts. Circles repre-
sent interfaces while boxes represent classes. An arrow from
one class to an interface indicate that the class implement the
interface, and this relationship can be used to indicate that
instances of the class have the properties described by one
or several interfaces.

threaded/multiclient operations. Results may vary
depending on the chosen locking strategy and the number
of clients/threads running parallel. Given these caveats,
however, this benchmark indicates that, for most of the
SigPath use cases, the performance of the SigPath system
is significantly improved when using a native object data-
base system. Particularities of the SigPath benchmark that
may correlate with this result are (i) the complexity of the
database schema (75 persistent classes) and (ii) the

Page 12 of 15

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:5

number of connections that exist among instances of
these various classes.

Finally, these results and our distribution of the SigPath
benchmark source code can help vendors diagnose
performance problems with their implementation of the
JDO implementation, and provide users with an objective
measure of the performance a given JDO implementation,
for similar types of applications.

Biological database specific requirements

During our evaluation of the JDO technology, we have
noted that two common requirements of advanced bio-
logical databases are currently not being addressed by
JDO.

Support for interfaces

When designing a biological database schema, it is often
useful to express that one class shares the properties of
two or more classes. In a programming language such as
C++ this can be represented as multiple inheritance (one
class inherits from two parents) while in a programming
language such as Java, this concept is represented with
interfaces (one class implements two interfaces). In the
context of JDO, consider the class diagram shown on Fig-
ure 6. The diagram illustrates one way to represent the
phosphorylated forms of protein and small molecules.
On this diagram, one has represented a "Phosphorylated"
interface which is implemented by PhosphoProtein and
PhosphoSmallMolecule. While this way to represent bio-
logical information is useful, JDO does currently not spec-
ify the handling of interfaces, so that the design shown on
Figure 6 can not be implemented with JDO in a portable
way. (This design would work with FastObjects, but not
with Kodo.) The JDO specification should clarify if inter-
faces must be supported by for a JDO implementation to
be compliant with the standard.

Support for large number of objects

Biological databases often need to manage large number
of objects (e.g., large number of proteins, small mole-
cules, etc.). For instance, SigPath stores information about
several hundred of thousands of proteins. We found that
JDO 1.0.1 lacks some features that would facilitate writing
scalable applications.

An example is that the JDO standard does not provide a
scalable way to determine the number of persistent
instances of a given class. The JDO compliant way to
accomplish this operation is to obtain a reference to a col-
lection of instances of this class (using a JDO Extent), and
to call the size() method on this collection. Since the col-
lection must first be obtained from the database server
before the size() method can be invoked, this procedure
takes a time proportional to the number of instances of

http://www.biomedcentral.com/1471-2105/6/5

this class. Most database backends store the number of
instances of a certain class in the database and can deter-
mine this information in a constant time, so a standard
way to obtain this information from a JDO
implementation would be very helpful (SigPath can use
either a pure JDO extent sizing method, or a vendor-spe-
cific method through an extension mechanism imple-
mented in the source code, so that performance can be
compared).

A second example is that JDO 1.0.1 does not provide sup-
port for queries that return large result sets. Under stand-
ard JDO 1.0.1 behavior, traversing a persistent collection
(by accessing each element of the collection in turn)
brings the entire contents of that collection into memory.
This behavior is appropriate for small result sets. How-
ever, there are cases where the complete set of instances
returned by a query cannot be processed within a single
transaction. This occurs for instance when all the results
returned by a query do not fit in the fixed memory limit
allocated to the Java Virtual Machine. In such cases, it may
be necessary to obtain the result of a query in chunks of a
certain number of records/instances (for instance 1,000 or
10,000 instances at a time), and process them in inde-
pendent transactions. Upon transaction commit, memory
associated with a chunk is released and can be used to
process the next chunk. Implementing this type of scala-
ble processing in an efficient manner usually requires
making modifications both in the persistent class of ele-
ments in the result set and in the query filter. The class of
the elements in the result set can be modified to add an
instance identifier that can be used both to sort the
instances and to select only those within the current
processing chunk. The query filter can be modified to add
a clause that selects only instances of the next chunk,
based on the identifier introduced in each element. An
alternative is to provide an API call to notify the JDO
implementation that instances which have been proc-
essed can be evicted from memory. Since several vendors
already have their own extensions to provide scalability
feature, it would be useful for JDO to support such fea-
tures through a standard API.

Conclusions

Here, we have shown that it is possible to develop a bio-
informatics database that can be reconfigured automati-
cally and recompiled to run either against a relational
database backend or against an object database backend.
The key advantage of this added flexibility is that the bio-
informatics database becomes portable with respect to the
database backend. This has important implications for the
development of open-source bioinformatics databases. In
such projects, usually more than one laboratory contrib-
utes to developing the software of a specific biological
database. Therefore, it is useful if each laboratory can

Page 13 of 15

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:5

choose a database backend for development and deploy-
ment, yet contribute to the project in a shared code base.

The Java Data Objects standard offers the productivity
gains of transparent object persistence, and a fine-grained
object persistence model useful to represent many biolog-
ical concepts. We discussed why JDO can appear as an
attractive option for the development of advanced biolog-
ical databases and the type of problems that we encoun-
tered when implementing and deploying a biological
database against two different JDO implementations. The
future JDO standard (JDO 2.0) should address some of
the issues that we discussed in this article (e.g., support for
interfaces, or for large result sets). When JDO 2 imple-
mentations become available, we expect that JDO tech-
nology will have a significant impact on the design of
high-performance biological databases that need to repre-
sent and manage complex biological information types.

Methods

Benchmark use cases

To address the performance question, we have developed
benchmark use cases. The benchmark use cases were
designed to be representative of performance that one
would observe when either (i) developing the software of
the SigPath system or (ii) preparing a new release of the
SigPath IMS (includes loading the database with informa-
tion from other databases). Our benchmark thus consid-
ers both the development and the production stages of the
life-cycle of the application.

The use cases, or benchmark steps and a summary of their
purpose in the context of the SigPath project are listed on
Table 2.

The boot and test steps make it possible for the SigPath
developers to create a sample database and test that
important functionalities of the application are working
satisfactorily.

boot - The boot step compiles the sources of the project,
enhances the JDO persistent classes (a program, called a
JDO enhancer, transforms Java class files into persistent
classes and allow them to interact with the JDO imple-
mentation), creates an empty database and imports infor-
mation into the database. Importing this information
involves parsing an XML file that contains the informa-
tion, validating this file against the SigPath information
exchange XML Schema, validating against additional
semantic rules that cannot be expressed with XML
Schemas (database lookups are used during this step to
connect new instances to instances previously submitted
in the database, if needed), and saving new persistent
instances to the database. The boot sample data is

http://www.biomedcentral.com/1471-2105/6/5

designed to contain at least one instance of each type of
information that can be stored in the SigPath IMS.

test — The test step runs JUnit tests against the data that
was imported during the boot step. The JUnit tests assert
that information stored in the database corresponds to the
information in the boot XML file. For instance, the tests
check that the number of persistent instances matches the
number found in the boot import file, but also that spe-
cific elements of information have been saved accurately.
Furthermore, the tests assert various semantic properties
of the application and database access code, running que-
ries against the database, navigating through objects, cre-
ating new persistent instances or deleting them, etc. The
complete set of operations performed in the test is fully
described in the source code for the JUnit tests (see
edu.mssm.crover.sigpath.test package, and specifically the
class MasterTest).

small molecule import - This step creates SmallMole-
culelmpl persistent instances (implementation of the
SmallMolecule interface shown on Figure 2). The data
used to create these molecules is a modified form of the
NCI open database. Only small molecules that have a
name, description, aliases and SMILES representation are
imported from NCI Open (the total number of molecules
read is 237,771, and the total number of molecules
loaded into the database is 45,229). These data are
imported and stored in the attributes of SmallMolecule-
Impl (most fields: name, description and aliases are inher-
ited from SigPathEntityImpl).

protein import - This series of steps creates Proteinlmpl
persistent instances (implementation of the Protein inter-
face, shown on Figure 2). The data to load these proteins
is obtained from a simplified XML format created from
SwissProt and TTEMBL data files with SwissKnife [26]. The
exact list of files imported is given on Table 2.

full text indexer - The SigPath system offers users the abil-
ity to search entities by keywords. This step builds an
inverted full text index [27] that is used by the web appli-
cation to accelerate keyword-based queries. An inverted
full text index links each keyword that occurs in text
strings of a SigPath entity (e.g., name, description, aliases)
to the SigPathEntity instance that contains the keyword.
This step creates 465,679 Keyword instances that link to a
total of 345,133 SigPath entities (small molecules or
proteins).

XML import - This step is similar to the loading of Sig-
Path information in the boot target, but loads informa-
tion obtained from the online version of SigPath (this
benchmark used the information as of October 14th
2003). For this benchmark, XML import instantiates 14

Page 14 of 15

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:5

SmallMoleculeIlmpl, 8 Proteinlmpl, 121 ComplexImpl,
77 modified chemicals (SmallMoleculelmpl or Protein-
Impl), 92 ConcentrationMeasurement, 165 Reaction-
Impl, 75 EnzymaticReactionImpl, 23 Model, 3 Pathway
and 27 PendingReviews.

Benchmark procedure

The benchmarks were run as described on the SigPath
Project web site ([??] see the "JDO benchmark" tab). Each
benchmark (FastObjects or Solarmetric Kodo with a rela-
tional database) was run on a two Xeon 3GHz processor
machine with hyper-threading on and 6 Gb of memory.
The machine was running Red Hat Advanced Server Linux
2.4.21-4.0.1.ELsmp, and was used both as database server
and database client (to minimize the impact of the net-
work on performances). No significant other processes
were running on the benchmark machine while the tests
were executed. We benchmarked FastObjects t7 server ver-
sion 9.0.7.185 and Kodo JDO version 2.5.3. Each bench-
mark was run four times to average the effect of variability
in the computational environment that may not have
been controlled by our benchmark procedure. The results
report the coefficient of variations (mean divided by the
standard deviation) of the total running time for each use
case and this helps point out cases when the computa-
tional environment had an effect on measured times. We
believe that these variations are common in a production
environment and report the average total running time as
well as the minimum total running time for each use case.

Authors' contributions

Marko Srdanovic and US implemented significant com-
ponents of the FastObjects and Kodo JDO ports. Marko
Srdanovic collected benchmark data at WMC and US col-
lected similar data at FastObjects. Michael Schwieger and
FC designed the study and contributed to the JDO ports.
FC drafted the manuscript. All authors read and approved
the final manuscript.

Acknowledgements

We thank Lucy Skrabanek for assistance with the Kodo implementation
port and David Guinther for a technology grant to FC that made this bench-
mark possible.

References

I. Taylor CF, Paton NW, Garwood KL, Kirby PD, Stead DA, Yin Z,
Deutsch EW, Selway L, Walker J, Riba-Garcia |, Mohammed S, Deery
M), Howard JA, Dunkley T, Aebersold R, Kell DB, Lilley KS, Roep-
storff P, Yates R, Brass A, Brown AJ, Cash P, Gaskell S, Hubbard §),
Oliver SG: A systematic approach to modeling, capturing, and
disseminating proteomics experimental data. Nat Biotechnol
2003, 21:247-254.

2. Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T,
Cuff), Curwen V, Down T, Durbin R, Eyras E, Gilbert J, Hammond M,
Huminiecki L, Kasprzyk A, Lehvaslaiho H, Lijnzaad P, Melsopp C,
Mongin E, Pettett R, Pocock M, Potter S, Rust A, Schmidt E, Searle S,
Slater G, Smith J, Spooner W, Stabenau A, Stalker J, Stupka E, Ureta-
Vidal A, Vastrik I, Clamp M: The Ensembl genome database
project. Nucleic Acids Res 2002, 30:38-41.

20.
21.
22.

23.

24.

25.
26.

27.

http://www.biomedcentral.com/1471-2105/6/5

Oliver DE, Rubin DL, Stuart JM, Hewett M, Klein TE, Altman RB:
Ontology development for a pharmacogenetics knowledge
base. Pac Symp Biocomput 2002:65-76.

Rubin DL, Hewett M, Oliver DE, Klein TE, Altman RB: Automating
data acquisition into ontologies from pharmacogenetics
relational data sources using declarative object definitions
and XML. Pac Symp Biocomput 2002:88-99.

Horn F, Bettler E, Oliveira L, Campagne F, Cohen FE, Vriend G:
GPCRDB information system for G protein-coupled
receptors. Nucleic Acids Res 2003, 31:294-297.

Horn F, Weare], Beukers MW, Horsch S, Bairoch A, Chen W,
Edvardsen O, Campagne F, Vriend G: GPCRDB: an information
system for G protein-coupled receptors. Nucleic Acids Res 1998,
26:275-279.

Horn F, Vriend G, Cohen FE: Collecting and harvesting biologi-
cal data: the GPCRDB and NucleaRDB information systems.
Nucleic Acids Res 2001, 29:346-349.

Karp PD, Riley M, Paley SM, Pelligrini-Toole A: EcoCyc: an encyclo-
pedia of Escherichia coli genes and metabolism. Nucleic Acids
Res 1996, 24:32-39.

Karp PD, Riley M, Saier M, Paulsen IT, Collado-Vides |, Paley SM, Pel-
legrini-Toole A, Bonavides C, Gama-Castro S: The EcoCyc
Database. Nucleic Acids Res 2002, 30:56-58.

Karp PD, Riley M, Saier M, Paulsen IT, Paley SM, Pellegrini-Toole A:
The EcoCyc and MetaCyc databases. Nucleic Acids Res 2000,
28:56-59.

Bader GD, Donaldson I, Wolting C, Ouellette BF, Pawson T, Hogue
CW: BIND--The Biomolecular Interaction Network
Database. Nucleic Acids Res 2001, 29:242-245.

ISO: Specification of abstraction syntax notation one (asn.l).
Information Processing Systems 1987, Standard 8824:.

Nentwich C, Emmerich W: Valid versus Meaningful: Raising the
Level of Semantic Validation: ; Budapest, Hungary. ACM;
2003.

Konvicka K, Campagne F, Weinstein H: Interactive construction
of residue-based diagrams of proteins: the RbDe web
service. Protein Eng 2000, 13:395-396.

Skrabanek L, Campagne F: Tissuelnfo: high-throughput identifi-
cation of tissue expression profiles and specificity. Nucleic Acids
Res 2001, 29:E102-2.

Nelson MR, Reisinger S, SG. H: Designing databases to store
biological information. BIOSILICO 2003, 1:134-142.

Bancilhon F, Delobel C, Kanellakis P: Building an object-oriented
database-the story of O2. , Morgan Kaufmann; 1992.

Java Data Objects (JDO) Java Specification Request. [http://
www.jcp.org/en/jsr/detail?id=12]

Cattell RGG, Barry DK, Catell R, Berler M, Eastman }, Jordan D, Rus-
sell C, Schadow O, Stanienda T, Velez F: The Object Data Stand-
ard: ODMG 3.0. Edited by: R.G.G. Cattell DKBRCMBJE. , Morgan
Kaufmann Publishers;; 2000.

FastObjects JDO implementation [http://www.fastobjects.com/
us]

Solarmetric Kodo JDO implementation [http://www.solarmet
ric.com]

Campagne F, Neves S, Chang CW, Skrabanek L, Ram PT, lyengar R,
Weinstein H: SigPath Project Pages. [http://www.sigpath.org].
Campagne F, Neves S, Chang CW, Skrabanek L, Ram PT, lyengar R,
Weinstein H: Quantitative information management for the
biochemical computation of cellular networks. Sci STKE 2004,
2004:pll .

Jordan D, Russell C: Java Data Objects. Ist edition edition. ,
O'Reilly & Associates; 2003.

JUnit, Unit Test Framework [http://www.junit.org]

Fleischmann W, Hermjakob HAG: SwissKnife. 1999 [http:/swiss
knife.sourceforge.net/].

Witten IH, Moffat A, TC B: Managing Gigabytes: Compressing
and Indexing Documents and Images. 2nd edition edition. ,
Morgan Kaumann Publishers; 1999.

Page 15 of 15

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12610571
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12610571
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11928517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11928517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11928517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11928521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11928521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11928521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9399852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9399852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8594595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8594595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10877849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10877849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10877849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11691939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11691939
http://www.jcp.org/en/jsr/detail?id=12
http://www.jcp.org/en/jsr/detail?id=12
http://www.fastobjects.com/us
http://www.fastobjects.com/us
http://www.solarmetric.com
http://www.solarmetric.com
http://www.sigpath.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15340175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15340175
http://www.junit.org
http://swissknife.sourceforge.net/
http://swissknife.sourceforge.net/

	Abstract
	Background
	Results
	Conclusions

	Background
	Data persistence
	The pros and cons- of persistence technologies for biological databases
	Java Data Objects Technology
	A critical evaluation of the JDO technology

	The SigPath Information Management System
	Introduction to the SigPath ontology/database schema
	Table 1

	Results
	SigPath: porting from one JDO implementation to another
	Modifications to the JDO file
	Modifications to the code base
	Modification to the code base and benchmark/application data

	Performance measurements

	Discussion
	Portability
	Performance
	Table 2

	Biological database specific requirements
	Support for interfaces
	Support for large number of objects

	Conclusions
	Methods
	Benchmark use cases
	Benchmark procedure

	Authors' contributions
	Acknowledgements
	References

