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Abstract

Background: Microscopists are familiar with many blemishes that fluorescence images can have
due to dust and debris, glass flaws, uneven distribution of fluids or surface coatings, etc. Microarray
scans show similar artefacts, which affect the analysis, particularly when one tries to detect subtle
changes. However, most blemishes are hard to find by the unaided eye, particularly in high-density
oligonucleotide arrays (HDONA:s).

Results: We present a method that harnesses the statistical power provided by having several
HDONAs available, which are obtained under similar conditions except for the experimental
factor. This method "harshlights" blemishes and renders them evident. We find empirically that
about 25% of our chips are blemished, and we analyze the impact of masking them on screening for
differentially expressed genes.

Conclusion: Experiments attempting to assess subtle expression changes should be carefully
screened for blemishes on the chips. The proposed method provides investigators with a novel
robust approach to improve the sensitivity of microarray analyses. By utilizing topological
information to identify and mask blemishes prior to model based analyses, the method prevents
artefacts from confounding the process of background correction, normalization, and
summarization.

Background

Analysis of hybridized microarrays starts with scanning
the fluorescent image. For high-density oligonucleotide
arrays (HDONASs) such as Affymetrix GeneChip® oligonu-
cleotide (Affy) arrays, the focus of this paper, each
scanned image is stored pixel-by-pixel in a 'DAT" file. As
the first step in measuring intensity of the hybridization
signal, a grid is overlaid, the image is segmented into spots
or features, and the pixel intensities within each of these
are summarized as a probe intensity estimate (See reviews
[1] and [2] for cDNA chips). The probe-level intensity esti-

mates are stored in a 'CEL' file. Each gene is represented by
pairs of probes, each representing another characteristic
sequences and a 'mismatch', which is identical, except for
the Watson-Crick complement in the center. Expression
of a gene is estimated from such a probe set by applying
algorithms for background correction, normalization,
and summarization.

The quality of data scanned from a microarray is affected
by a plethora of potential confounders, which may act
during printing/manufacturing, hybridization, washing,
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and reading. Each chip contains a number of probes spe-
cifically designed to assess the overall quality of the bio-
chemistry, such as 'checkerboards' in the corners and
borders, whose purpose is, e.g., to indicate problems with
the biotinylated B2 hybridization. Affymetrix software
provides for a number of criteria to assess the overall qual-
ity of a chip, such as percent present calls, scaling factor,
background intensity, and overall pixel-to-pixel variation
(raw Q). Software packages such as Bioconductor for R [3]
have implemented biochemical quality control tools such
as RNA degradation plots. If a quality problem is found,
however, these criteria and tools do not easily suggest a
remedy and they have little sensitivity to detect localized
artefacts, like a speck of dust or a localized hybridization
problem. Although such physical blemishes obviously
affect the expression estimates, they have hitherto been
only narrowly addressed in the literature. Thus, there are
currently no safeguards to signal potential physical blem-
ishes. Instead, researchers are merely advised to carefully
inspect the chip images visually [4,5]. Given the high var-
iance among the hundreds of thousands of probes and
their random allocation on the chip, it is impossible to
visually detect any but the starkest artefacts. For two-col-
our cDNA arrays, a Bayesian network approach has been
proposed [6], based on the 'features' of the pixel distribu-
tion within each probe, yet, due to the standardized man-
ufacturing process, the probes on an oligonucleotide array
have too few 'features' for such an approach to be
effective.

As the price of microarrays continues to drop, a typical
microarray experiment now contains several chips, each
representing a sample obtained under conditions that
were similar except for the experimental factor under
investigation. Having collections of chips available offers
new strategies not only for analyzing the effect of the
experimental factor, but also for identifying blemishes.
The power of having several chips available was first har-
nessed for estimating mRNA expression levels by the
'robust multichip average' (RMA) method [7]. One of the
assumptions underlying the RMA model is that probes
across chips are highly correlated, due to differences in
their affinity [8,9] and because only a small proportion of
genes are differentially expressed in any experimental set-
ting. This correlation should be even higher for the mis-
matches, because they are less likely to be affected by the
specific changes in gene expression induced by the exper-
imental factor. Given the volume of pixel level data, (>50
megapixels per image) it is desirable to devise algorithms
that work from the 100 times smaller probe level files, the
same information used in traditional signal value estima-
tion approaches.

Figure 1 shows how the large probe-to-probe variance can
obscure the subtle changes caused by all but the starkest
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blemishes. Since probes vary in intensity by four orders of
magnitude, a biologically relevant change of 30% in
brightness in a small region can easily go undetected. In
fact one of the chips shown in Figure 1 is affected by sev-
eral blemishes. However, Figure 1 shows that not only do
the internal standards have a very consistent pattern, as
one would expect, but also that high expression values are
correlated across chips. As we will show, drawing on these
correlations allows for a simple and efficient method to
identify areas on individual chips where the assumption
of spatially uncorrelated errors is clearly violated. We shall
use the chip-to-chip correlation to devise a 'harshlight'
that makes the blemishes stand out.

Results

Data

Psoriasis is thought to be due to an overly active immune
system [10,11]. To study how the immune response of
leukocytes isolated from blood can be affected by drugs
that may serve to control autoimmune diseases like pso-
riasis, blood was drawn from five volunteers under a pro-
tocol that had been approved by The Rockefeller
University Hospital Institutional Review Board [12].

For each subject, peripheral blood mononuclear cells
(PBMCs) were isolated and cultured in six Petri dishes.
Four cultures were activated with an anti CD3/CD28 anti-
body, two of which were pre-treated with a repressor drug.
Two cultures served as control without drug or activation.
One of the two sets of control, activated, and pre-treated
cultures (subject 1 and 2) was analyzed after 6, the other
after 24 hrs. (For subjects 3, 4, and 5, only one time point
is available.) All samples were hybridized to Affymetrix
HuU95av2 chips.

Artefacts identified on probe-level (CEL) files

Figure 1 displays the six chips obtained from one subject's
PBMC sample. This subject was chosen because one of the
chips (upper row, centre) exhibits a variety of blemishes,
which are discussed below, see Figure 2b: a 'bright spot' in
the upper-right corner, a 'dark spot' in the upper centre,
'dark clouds' in the upper and lower right centre, and two
'shadowy circles' reaching beyond the left border. Part of
the upper circle is included in the chip portion depicted in
Figure 1.

Similar results were obtained for all subjects (data not
shown). None of the artefacts would have been detected
by visual inspection of the pseudo image (Figure 2a). Even
after having seen the filtered image, most blemishes are
difficult to identify at best. Interestingly, some chips
appear to have a preponderance of specific artefacts, sug-
gesting that at least some of the blemishes are caused by
specific environmental factors during hybridization, and
providing the first indication for the validity of the
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Figure |

Detail of six chips for the second patient. Upper left corners of six chips (250 x 250 cells) with samples from a cell cul-
ture evaluated at different time points (rows: 6 hrs, 24 hrs) under different experimental conditions (columns: none, activated,
activated in the presence of a repressor). Boxed areas indicate internal standards.

proposed method. The chip used as the background in
Figure 3 has 'dark clouds' in the upper left corner and,
albeit to a lesser degree, in both lower corners. Of the two
chips with several smaller artefacts, one had three spots
that resemble the 'dark spot' in Figure 2. Only the bright
scratch at the bottom of one of the chips could have been
detected by mere visual inspection of the chip, although
even this chip passed the Rockefeller University's Gene
Array Resource Center's quality control.

Average vs. median in the filtering procedure

The proposed filtering process relies on identifying devia-
tions of a probe on one chip from a measure of central
tendency for this probe across chips. Thus, if few chips
have high intensity 'outliers' for one probe, the chips with
normal intensities may appear to be negative 'outliers'.
One would expect that the six-chip filter is less likely to

generate such 'ghosting' artefacts than the three chip filter.
We compared the use of medians vs. arithmetic means as
the reference. As we had predicted based on the under-
standing that errors are more likely to be outliers than
white noise, using medians not only resulted in less
'ghosting’, but also in fewer isolated cells being consid-
ered artefacts and, thereby, better contrast (Figure 4).

Validation of probe-level artefacts by going back to the
pixel-level image

Our method allows us to identify spatially correlated
regions that are unlikely to originate from random fluctu-
ations. To demonstrate that the statistical anomalies
detected in the pseudo images at the probe level (Figure 2
and Figure 3) are, in fact, physical blemishes, we inspected
the corresponding raw image at the pixel level. The regular
artefacts seen (shadow, circle, cloud, etc.) are clearly
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Figure 2
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Blemishes of one chip (Activated 6 h) for the second patient. Left (a), whole chip pseudo-image. The box indicates the
portion of this chip depicted in the center image of the first row of Figure |. Right (b), filtered image based on the set of the

three chips in the first row (with median adjustment).

blemishes, even if the precise nature of the physical blem-
ish may not be known. Still, the difference in features
between blemishes suggests different causes.

A number of factors are known to cause bright or dark
spots in fluorescence micrographs. Dust on the front cover
slip will cause a dark, out-of-focus shadow. Common
white paper is bleached with strongly fluorescent dyes, so
fibres from tissue paper ordinarily used for cleaning cause
intense glare. Many organic solvents, detergents, and
other chemicals will fluoresce when concentrated, so left-
over droplets or condensates will appear as bright regions,
regardless of whether they are in front or behind the focal
plane. A crack in the glass would ordinarily be invisible to
fluorescence microscopy - except for its ability to accumu-
late such substances. Glass will normally be coated with
substances to prevent the direct binding of fluorophores
to it; however, any damage to the fragile coating will cause
fluorescent streaks. Illumination with a coherent source
such as a laser, as opposed to a broadband source such as
a xenon lamp, has specific artefacts such as speckle. In
addition, the arrays themselves are manufactured through

photolithographic techniques and may contain occa-
sional damage.

Dirt

The visible bright artefact at the bottom-left of Figure 3 is
the only blemish in our dataset that did not require
'harshlighting' to be visible. The magnification in Figure
5a shows a structure in an area of 25 x 25 probes. Figure
5b shows the corresponding area in the raw image, clearly
exhibiting this artefact to be a piece of debris lying in front
of the active array surface in the optical path. While the
exact physical nature of this debris is unclear, there can be
no doubt that probes highlighted at the bottom of Figure
3b are, in fact, a blemish.

Dark and bright spots

A very 'dark spot' was seen in the lower left corner of Fig-
ure 3b. The probe level pseudo image (Figure 6a) shows a
dark region, but only the raw image reveals the character-
istic of this blemish: an elliptical spot with sharp bounda-
ries which pass through the inside of probes. Still, the grid
is visible underneath, as in one of the examples given by
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Figure 3
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Collage of Artefacts. b) Areas with artefacts obtained from seven chips. a) Composition of the raw areas corresponding to
the areas denoted in (b). Filtered image based on the set of three chips with median adjustment.

Simon, Korn, et al. [13] for cDNA arrays. The dark probes
in Figure 6a are therefore likely to be caused by a physical
blemish that has 'stained' the image with a dark oval, a
mechanical/optical artefact that invalidates the measured
intensities of the probes in the region, so all affected
probes in the region should be excluded from further
analysis. The 'dark spot' in Figure 2 (upper centre) also
had a well defined border, although with less contrast
(not shown). Three similar artefacts were seen in yet
another chip, as shown in the composite picture (Figure
3).

The bright spot on the upper right corner Figure 2 clearly
is of different nature. The zoomed area of the DAT file of
the second chip (activated) of subject 2 shown in Figure
7b reveals a diffuse area of brightness that covers around
20 probes. Because this bright cloud is out of focus, it is
difficult to assess whether its physical location was in
front of or behind the focal plane; it could be a leftover
detergent condensate in the plastic back panel of the chip.
The artefact is less visible in the pseudo image than in the
raw image, because the low granularity of the pseudo
image enforces an artificial grid structure. Moreover, the
Affymetrix image analysis algorithm, taking the 75 per-

centile of the pixels as an estimate of the probe, may make
it more difficult to detect these artefacts through visual
inspection because the brightness in areas with low pixel-
to-pixel variation is lowered for all percentiles above the
median. Although they were easily seen in the filtered
pseudo image, neither the 'bright spot' nor the 'dark spot'
could have been identified by visual inspection of the
original pseudo image. Even on the raw image, only an
extremely thorough search for areas of low pixel-to-pixel
contrast or boundaries with high contrast across probes
could have detected these artefacts based on a single chip
alone. Thus, blemishes involving only 9 to 25 probes
would often be overlooked in a visual inspection of both
the raw and the pseudo image. Given the high variance
across pixels, any image processing algorithm aiming at
detecting such blemishes at high sensitivity would also
create many false positive results.

Dark clouds

For the 'dark clouds', the raw image at first did not show
any recognizable feature. Upon closer inspection, how-
ever, we noted that the 'dark cloud' in subject 1 had higher
pixel-to-pixel variance (Figure 8). The noise does not seem
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control activated repressed

raw image

average normalization
3 chip fitter  © chip filter 3 chip filter

median normalization

6 chip filter

Figure 4

Median vs. Average filter. The "bright spot" artefact (of Figure 2). Top row: raw image from the same are of three chips
showing gene expression from the same sample under three experimental conditions. 3 chip filtering relies on information
from the three presented chips measured at 6 hrs only, while 6 chip filtering also draws on the chips observed at 24 hrs.
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Figure 5
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"Dirt". Detail of the artefact seen at the bottom of Figure 3. a) CEL file b) DAT file. The size of this artefact is approximately

25 x 25 probes in the CEL file and 0.5 %X 0.5 mm on the chip).

Figure 6

"Dark Spot". Detail of the 'dark spot' artefact seen in the lower left corner of Figure 3. a) CEL file b) DAT file.

to have a physical origin, as the fluctuations appear to be
single-pixel in extent, giving the raw image a 'grainy’
appearance.

The areas outside the dark clouds do not appear to be any
grainier, so it does not seem to be a change of exposure
setting or other simple global change. The image analysis

software reports a single, global pixel-to-pixel variation
Q.. it would be useful to have a local quality measure as
well, in a fashion similar to the reported background esti-
mate for probe intensities. All dark clouds we found
impinge on the array borders. We have no conjecture as to
the physical origin of this problem.
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Figure 7
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"Bright Spot". Detail of the 'bright spot' in the upper right corner of Figure 3. a) CEL file b) DAT file.

Shadowy circles

The two artefacts crossing the left border of Figure 2 sug-
gest yet another reason for blemishes on microarrays.
Only one of our chips displayed this artefact, but it did so
twice on the same border. Neither the raw image nor
physical examination of the chip in a dissection micro-
scope provided any hints to the possible cause (data not
shown).

There are myriad possible explanations for what caused
this striking artefact. A perfectly round structure with out-
liers concentrated near its perimeter, evocative of the
'coffee stain rings' phenomenon [14], suggests that a bub-
ble (or a drop) may have formed, during the microfluidic
stage, condensation after the washing stage, or as a manu-
facturing defect.

Thus, to further elucidate the potential cause of this arte-
fact, we plotted the observed vs. the expected intensity
(median across the other five chips) for each probe in the
area depicted above (Figure 9). We then marked the
points below the .10 percentile of all deviations (3) in this
area, which formed the 'shadowy circle'. These points
were seen over a wide range in expected intensity (7 to 14
in log, units), although their density is higher for lower
intensities. Notably, their intensity was consistently lower
than the expected intensity, as though something had
only partially interfered with hybridization - or partially
stripped the fluorophores prior to readout, or affected
probe sensitivity.

Relevance

To determine the extent to which such artefacts may affect
standard analyses, we compared the activated vs. the
repressed samples (two each) for patient 2, and studied
whether masking the blemishes affects the list of differen-
tially expressed genes.

We searched for blemishes all four chips; after manually
circling each affected area, we masked (declared missing)
all points in the upper or lower 10th percentile within that
area, respectively. We used either the lower or upper 10%
since one of our findings is that all artefacts seem to have
the common characteristic shown, for instance, in Figure
9, that outliers within an artefact are either (almost) exclu-
sively brighter ('bright spot') or darker (all other blem-
ishes) than expected We conducted separate analyses for
the original and the masked data. We estimated the signal
value for each probe using the Bioconductor implementa-
tion (affy package 1.3.28, R.1.8) of the MAS5 algorithm
with default parameters, after modifying the summariza-
tion and normalization steps to allow for missing data.
The overall effect is shown in Figure 10a, with a maximum
difference of 4.6 log,.

Genes whose expression estimates changed by more than
0.1 log, through filtering were considered as ‘altered' by
filtering. The 'bright spot', where about 39 probes were
affected, altered the expression of 16 genes by up to 1.37
log,. The 'shadowy circle' altered the expression of about
380 genes; more than 50 of them by more than 0.5 log,.
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DAT

"Dark Clouds". Detail of the region containing the 'dark cloud' at the right border of Figure |. Top row: sample area around
the 'dark cloud', Bottom row: corresponding area from a control chip. 15t column: CEL file, second column: DAT file; third col-

umn: detail from the indicated area in the DAT file.

The 'dark spot' affected 47 probes, altering expression of
103 genes by up to 1.6 log,. The 'cloud' altered the expres-
sion of 700 genes, 83 of them by more than 0.5 log,. The
dirt covering around 25 x 25 probes, affected around 376
probes, altering 148 genes, 16 of them by more than 0.5
to a maximum of 1.26 log,.

Finally, we compared the two conditions (absence vs.
presence of a repressor), mirroring masked probes on
both on the affected and the corresponding chip. As an
exploratory criterion, we used the modified (paired) t-test
suggested in Smyth [15] from the limma package of the
Bioconductor project [16]. As shown in Figure 10b, the
effects of identifying genes as differentially expressed can
be dramatic, demonstrating the potential value of detect-
ing blemishes and masking affected areas on microarrays.

Validity

We validate the proposed method using data from the
Spike-in HUG133 experiments [17]. This data set consists
of 3 technical replicates of 14 separate hybridizations of
42 spiked transcripts at concentrations from 0.125 pM to
512 pM arrayed as a Latin Square. Our interest is to assess
whether masking the blemishes improves the ability to
detect differentially expressed genes. We used the Affycomp
package of the Bioconductor project, which encompass a
series of tools developed by [18] to compare the perform-
ance of expression measures for Affymetrix GeneChips.
Figure 11 shows that masking blemishes has little effect
for large fold changes, as one would expect, while the
ROC curve (sensitivity) vs. (1-specificity) shows a sub-
stantial improvement for small (2 fold) changes. Other
statistics are also improved in this case: the average false
positive decreases (from 2818 t02763) while the true pos-
itives increases (from 14.33 to 14.57). Comparing by
range of intensities, the area under the curve (AUC) is big-
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"Shadowy circles". Analysis of the two 'shadowy circles' at the left border of Figure 2. Observed intensities vs. expected
intensities.
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Influence on expression values. a) Expression values for four chips of subject 2, original data vs. filtered data. b) T-statistics
for the comparison of activated vs. activated in the presence of the repressor; raw vs. filtered data. Open circles: p < 0.01 with
the original data only, solid black dots: p < 0.01 with the filtered set only; large grey solid dots: p < 0.0l with both sets.
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ger for the masked data in the lower intensities (0.003 vs.
0.010) while keep similar performance in the medium
and low range (data not shown), resulting in a bigger aver-
age weighted AUC for the filtered data (0.002 vs. 0.007) (a
detailed description of these statistics can be found in [18]
and in the affycomp vignette). Thus, our masking proce-
dure improves the sensitivity/specificity to detect small
differential expression, especially in the range of low
intensities.

Discussion

As an alternative approach to identify blemishes, one
might try to look at the residuals from parametric estima-
tions in the background subtraction or summarization
stages; e.g., looking at the residuals of the PM-MM differ-
ence model [19] or the RMA model over the PM values
[20] to identify possible aberrations. Unfortunately, the
variety of models currently being discussed attests to the
fact that each model has its drawbacks. While random var-
iation can typically be handled by statistical methods, sys-
tematic errors in the choice of the model assumptions
may have a drastic impact on these processes. The pro-
posed method is robust in the sense that only few
assumptions are made. Another advantage of our
approach is that we can include mismatch probes which
are especially suitable to identify aberrations, because
they are less sensitive to gene expression variations.

Moreover, in any such model of expression estimation the
residuals of the entire probe set containing a faulty probe
is likely to be affected, so that errors are spread across the
probe set and hence over the image; if one probe in a
probe set is an outlier, e.g., very bright, all other probes
would be slightly dark ghost images, similar to the 'ghost-
ing' seen in Figure 4. Utilizing topological information for
identification and elimination of blemishes has the
advantage that suspect probes are identified before back-
ground correction, normalization and summarization
take place. Thus, faulty data will not confound the pre-
processing steps and further statistical analysis.

With the next generation of Affymetrix chips, the rele-
vance of correcting for blemishes will even increase. Here,
we analyzed U95 chips with 16 probe pairs per probe set.
To make room for more probe sets, the number of pairs
per set has been reduced to (as few as) 11 on the U133
chips. This, however, not only increases the standard error
by 20%, and, thus the effect of any artefacts on the results,
but also reduces the ability of model based methods to
draw on probe set information. The number of neigh-
bouring cells on a microarray, in contrast, is not adversely
affected by reducing the size of the probe sets. In fact,
smaller probe sets make it less likely that probe pairs from
the same set are in close vicinity.

http://www.biomedcentral.com/1471-2105/6/65

Conclusion

We have presented an extremely simple method for find-
ing blemishes on microarrays. The method's simplicity
makes it robust and it does not rely on estimating model
parameters. It sensitively tagged blemishes on chips that
had passed our Gene Array Resource Center's quality con-
trol mechanism. Only one blemish (Figure 5) could have
been readily seen in the raw images. That we found clear
evidence of physical blemishes in the raw images for most
of the artefacts identified on the pseudo images attests to
the validity of the findings.

We have applied our method to an experimental dataset
and were able to identify anomalies of different type.
Approximately 25% of our chips are blemished, often
more than once, and blemishes can cover areas from a few
dozen to hundreds of probes. We examined the potential
impact these blemishes have on the experiments. Failure
to remove the blemishes from further analysis can materi-
ally affect the detection of subtle changes in experiments
testing similar conditions. When applied to the Spike-in
data set, the proposed method had an overall better sensi-
tivity/(1-specificity) ratio.

For the future we propose to develop pattern recognition
algorithms to automatically find and mask out suspected
blemishes, and to modify the extant background correc-
tion and summarization algorithms to be able to properly
handle missing data from blemish removal.

Methods
Let X(), i = 1, ..., n, represent the intensity values of the i-
th of n chips, each consisting of m x m (e.g., 650 x 650)

cells Xg}l) Assuming that biological systems respond to

relative, rather than absolute differences in gene expres-
sion, for each pair of chips a matrix of pointwise (log)
ratios is defined as

RO = 1) 1) = log( x® /x() 1) = log( x) )

Given that the intensity at each cell is highly determined
by the sequence of the probe [8], the spatial distribution
of differences in log-intensities should have no identifia-
ble features, except for probes belonging to probe sets
related to the genes that are differentially expressed under
the conditions the samples were taken. Here, we assume
that the proportion of differentially expressed genes is
small. Thus, since probes belonging to a probe set are
(more or less) randomly distributed across the chip, cells
of related genes are rarely located next to each other, so
that no obvious pattern should be discernable. If, how-
ever, chip X() has a localized 'defect’, this should result in
a similar pattern across all R(#) in the region of the
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defect. To allow for visual inspection of such pattern, we
draw on the fact that the distribution of differences in log-
intensities should be (more or less) symmetrical, except
for outliers caused by rare events affecting small areas in
particular chips. Probe-wise outliers (due to both
differential expression and defects) can be identified by
comparing each chip to a measure of central tendency
derived from all other chips. Although other measures of
central tendency will be discussed below, we start our dis-
cussion with the special case of the arithmetic mean,
which is known to be optimal in the classical linear model

(121])

R() —

1 (i)
Let R(:i) = Alii) 4 D) - D() 4+ € where A(ii) indicates the ran-
dom contribution from the differentially expressed genes,
D() describes the defects of the i-th chip, and € other ran-

dom errors. Then, D() contributes not only to RO (bars
indicating the average over the index replaced by dot), but
also, albeit with only 1/n of the intensity, to each of the

other R(#) 352 'negative shadow' or 'ghost' image. As
the number of chips n increases, however, the law of large
numbers allows for approximating the linear equation
system (1), with hats indicating estimators, as

Rli) — pli) _

1 -,
% 0. (2)

n-—1

From (2), we get the linear equation system:

(1_1}_{(@") :([_l]JD(i)
n n

where I = (&, _;);; -1.,and J = (1);; -1, A system

1 .. .
Y= (I——] D has the trivial solution Y = D whenever
n

column sums are zero (JY = 0). As (2) guarantees that

JR() =0, setting Y = (1 _1 Jﬁ(i’°) yields the solution
n

00 (12 O -2 1901901

as the linear model estimate for the deviation of the i-th
chip from the other chips. As the number of chips
increases, ghosting reduces, so that any discernable pat-

tern in lﬁg@g in the limit would suggest a defect.

The above justification for obtaining residuals within the
linear model by subtracting the average is well known.

http://www.biomedcentral.com/1471-2105/6/65

Still, spelling out and justifying the individual steps above
helps in two ways. First, we can fine tune the method for
the particular situation we are faced with and, second, we
can provide numerical examples comparing the proposed
non-parametric with the traditional parametric approach.
The justification for the choice of the arithmetic mean
(average) as the measure of central tendency in linear
models relies either on the law of large numbers and the
central limit theorem or on the assumption that the distri-
bution of errors is symmetrical, in general, and Gaussian,
in particular. Neither assumption is easily justified for the
errors caused by defects on a chip.

The arithmetic mean is known to be relatively sensitive to
outliers. Thus, to discriminate outliers from observations
close to the centre of the non-outliers, one would need
either a very large number of chips or a measure of central
tendency that is less likely to be affected by the outliers
themselves. While microarray 'experiments' now typically
consist of more than a single chip, the number of chips
analyzed under comparable conditions is still too small to
rely on the central limit theorem for outlier detection.
With the number of chips in the single digits, even 'Win-
sorization' may not be feasible. Moreover, the need for
choosing some Winsorization cut-off points adds an
undesirable level of arbitrariness to the results. The
median, as the most robust form of Winsorization, pro-
vides for a simple alternative measure of central tendency:

lA)&)ed =1 ), ﬂ];) = median, (L(]? ) (3)
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