@,

BiolVled Central

BIVIC Bioinformatics

Software

Wildfire: distributed, Grid-enabled workflow construction and

execution

Francis Tang!, Ching Lian Chua?, Liang-Yoong Ho!, Yun Ping Lim3,

Praveen Issac* and Arun Krishnan*!

Address: 'Information Science Research, Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671 Singapore, 20perations Research Lab,
DSO National Laboratories, 20 Science Park Drive, 118230 Singapore, 3Singapore Biomedical Computing Resource, Bioinformatics Institute, 30
Biopolis Street, #07-01, Matrix, 138671 Singapore and 4Global Software Group, Motorola Electronics Pte Ltd, 12 Ang Mo Kio St. 64, Ang Mo Kio

Industrial Park 3, 569088 Singapore

Email: Francis Tang - francis@bii.a-star.edu.sg; Ching Lian Chua - chuacl@dso.org.sg; Liang-Yoong Ho - lyho@bii.a-star.edu.sg; Yun
Ping Lim - yunping@bii.a-star.edu.sg; Praveen Issac - issac@motorola.com; Arun Krishnan* - arun@bii.a-star.edu.sg

* Corresponding author

Published: 24 March 2005
BMC Bioinformatics 2005, 6:69 doi:10.1186/1471-2105-6-69
This article is available from: http://www.biomedcentral.com/1471-2105/6/69

© 2005 Tang et al; licensee BioMed Central Ltd.

Received: 22 November 2004
Accepted: 24 March 2005

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: We observe two trends in bioinformatics: (i) analyses are increasing in complexity,
often requiring several applications to be run as a workflow; and (ii) multiple CPU clusters and
Grids are available to more scientists. The traditional solution to the problem of running workflows
across multiple CPUs required programming, often in a scripting language such as perl.
Programming places such solutions beyond the reach of many bioinformatics consumers.

Results: We present Wildfire, a graphical user interface for constructing and running workflows.
Wildfire borrows user interface features from Jemboss and adds a drag-and-drop interface allowing
the user to compose EMBOSS (and other) programs into workflows. For execution, Wildfire uses
GEL, the underlying workflow execution engine, which can exploit available parallelism on multiple
CPU machines including Beowulf-class clusters and Grids.

Conclusion: Wildfire simplifies the tasks of constructing and executing bioinformatics workflows.

Background

Seemingly small steps in usability of bioinformatics appli-
cations have, perhaps, been the most important to the
bioinformatics consumer. Suites such as Accelrys SeqWeb
and EMBOSS/Jemboss [1,2], through consistent user
interface elements, have narrowed the usability gap and
made individual applications accessible to the non-spe-
cialist bioinformatician.

Bioinformatics analysis is becoming more complex, often
requiring several applications to be run in combination in
a workflow. Beowulf-class clusters have made supercom-

puting affordable, allowing us to execute workflows faster,
including some which would previously have been infea-
sible. Traditionally, building such workflows required
programming expertise, often in scripting languages such
as perl. The usability gap in bioinformatics has now
moved from individual applications to both construction
and execution of workflows.

Existing efforts in narrowing this gap include Jemboss [2],
Taverna/Freefluo [3], ICENI [4] and Biopipe [5]. Jemboss,
though it does not support workflows directly, addresses
usability of bioinformatics applications by providing a

Page 1 of 9

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15788106
http://www.biomedcentral.com/1471-2105/6/69
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2005, 6:69

graphical user interface to EMBOSS. The user interface
replaces the command-line options of the EMBOSS appli-
cations with interface elements such as check boxes, drop-
down lists and text boxes. This simplifies the applications
for users unfamiliar with command-line interfaces; even
for command-line enthusiasts, it simplifies learning of
new applications, which might only be used occasionally,
since the interface is consistent across applications. Jem-
boss can run the EMBOSS application on the same
machine ("Stand-alone mode") or remotely using a SOAP
protocol.

Taverna, by default, constructs workflows which use Web-
Services for components. The interface requires the user to
connect together output and input ports of components
to build a workflow. Taverna relies on Soaplab [6] to con-
vert the EMBOSS command-line applications into Web-
Services. However, Soaplab appears to have lost the help
text annotations of the different input fields which is char-
acteristic of other EMBOSS interfaces. ICENI is also a serv-
ice-oriented workflow framework and has a Netbeans-
based user interface.

Biopipe is a workflow framework which also allows for
execution of workflows across clusters. However, Biopipe
only allows for pipelines, not more general workflows
with iterative loops; in particular, the particle swarm opti-
misation example presented later cannot be implemented
in Biopipe. Also, Biopipe currently does not have a user-
friendly interface for building pipelines.

In the next section, we introduce Wildfire which provides
an integrated environment for construction and execution
of workflows. It provides an intuitive interface based on a
drawing analogy and, like Jemboss, presents program
options using graphical user interface elements; thus
Wildfire hides the precise syntax of scripting languages
and command-line options from the user. Jemboss can
run several independent processes in the background, but
it has no dependency handling facility, whereas Wildfire
allows the user to compose applications into a workflow.
We illustrate by presenting some examples in the Results
section. In contrast to Taverna and ICENI, Wildfire works
directly with program executables, rather than Web- or
Grid-Services. For execution, it uses GEL (Grid Execution
Language [7]) which can run the workflow over the com-
pute nodes of a cluster, similar to Biopipe. However, GEL
can also run executables directly, or on the Grid. Thus,
Wildfire and GEL bring supercomputing power to the
bioinformatician.

Implementation

Wildfire allows the user to visually construct workflows.
For execution, Wildfire exports the workflow as a GEL
script, and then calls a GEL interpretor to execute it. The

http://www.biomedcentral.com/1471-2105/6/69

GEL interpretor can either run on the same machine as
Wildfire, or on a remote compute server. Figure 1 summa-
rises the interaction between Wildfire and GEL.

Wildfire is implemented in Java, and has been tested on
Windows and Linux platforms. On a Linux platform, the
user can run workflows directly on the same machine:
ideal for developing and testing small examples on a lap-
top, while reserving the multi-processor servers and clus-
ters for running the workflow on real data.

We next describe the two main activities enabled by Wild-
fire: construction and execution of workflows.

Workflow construction

When constructing workflows, the user does not need to
work directly with the syntax of scripting languages such
as GEL or perl. Rather, the user is presented with a graph-
ical workflow canvas. On the canvas, a workflow compo-
nent can be (i) an atomic component, (ii) a subworkflow or
(iii) a loop (both parallel and sequential). An atomic
component approximately corresponds to an EMBOSS
application; in particular, each atomic component has an
ACD (Ajax Command Definition [8]) description of its
parameters and options. The user can select the atomic
components from a customisable list of templates, which
by default includes all the EMBOSS 2.8.0 applications (see
Availability and requirements section). Components are
visually rendered on the canvas as yellow rectangles
labelled with the component name (e.g. EMBOSS pro-
gram name), and a unique numerical identifier which can
be used distinguish instances from the same component
template. Sequential dependencies between components
are created by drawing an arrow between them. By default,
components not linked by arrows are assumed to be inde-
pendent (and so can be executed in parallel).

Double clicking on an atomic component in the workflow
will bring up a properties window resembling that of Jem-
boss (see Fig. 2). Wildfire uses Jemboss code to parse the
ACD [8] description of the application to construct the
form and provides default values where defined. These
forms simplify configuration options by replacing the
command-line flags and switches with graphical user
interface elements such as drop-down menus. Help text
annotations for the input fields save the user the effort of
looking up UNIX man- or EMBOSS tfm-pages.

Wildfire extends the Jemboss interface by allowing the
user to use expressions (similar to spreadsheet formulae)
in the text fields. For example, in Fig. 2, the query file for
blastall is = $flie. The first letter is an equals symbol (=)
and indicates that this is not a literal string, but an expres-
sion. The remainder is the expression meaning "the value
of variable $flie". Here the value of $flie is determined by

Page 2 of 9

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:69

User uses Wildfire to create
workflow as GEL script

=\
\

http://www.biomedcentral.com/1471-2105/6/69

Execution on 2ddig Aol
(1) local,
(2) Cluster, or [mamba | ©Local ® Remote
3) Grid
N € : [mambabiia-staredusg | Port: 22 |
Condor
Portable BatchSy.. v| NumProc: |
LLiIF Local Threads
fork Sun Grid Engine Clean up after run
MPI Pat] Load Sharing Facility
e f— Portable Batch System |
Foes Cond
— [Save | Cancel
I:I‘ ‘ Cluster Laptop
GRID

Figure |

Relationship between Wildfire and GEL. Relationship between Wildfire and GEL. Wildfire is an interactive application
which allows users to construct workflows using a drawing analogy. Wildfire executes the workflow by exporting it as a GEL
script which is executed using a suitable GEL interpretor. There are GEL interpretors for execution on (i) the Grid, using Con-
dor, (ii) a cluster, using LSF, PBS or SGE, and (jii) the same machine, which could be a laptop, desktop or multi-processor

server.

the pforeach container, as shown in the background win-
dow, and denotes a parallel composition of blastall
instances with $file set to the different files matching
_dice.fna. The output file is

= $file . ".out"

which is an expression meaning "the value of variable
$flie with .out appended". Another example of an expres-
sion is

= $f % ".fasta"

which means "the value of variable $f without the .fasta
extension". The % and . operators can be mixed, for

example

= $f % ".fasta" . ".pep"

which replaces the .fasta extension with .pep.

In addition, the user can add his/her own command-line
programs to the list of atomic components by providing a
description of its command-line options using an
extended ACD syntax. The Wildfire user interface has a
facility to help the user write ACD files for new atomic
components. The interface shields the user from the com-
plex ACD syntax.

Other than defining the dependencies between compo-
nents and the invocation arguments, the user can place
input files required by the workflow in subdirectories
within the workflow directory. Wildfire can instruct GEL
to copy files from these subdirectories into the working
directory before a component is executed. Any instance
can specify input files, thus allowing for files to be staged-
in in a just-in-time manner. However, a common

Page 3 of 9

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:69

http://www.biomedcentral.com/1471-2105/6/69

&Y,
File Edit Arrange Run Help

Whldile

“Custom| Emboss | roject |

J ALIGNMENT

z:fcfhj

- DISPLAY

JEDIT
J ENZYME KINETICS

Parallel

| FEATURE TABLES
—J INFORMATION

pforeach
$file of * gbk.gz

J NUCLEIC

X DEe [0 Ao aridas Wil

J PHYLOGENY

pforeach B
$file of "_dice*.fn

- PROTEIN
J UTILS

BLASTAL
NCEI BLAST

blastall
14

l aaindexextra || INPUT section

- abiview

- antigenic
- backtranseq
- banana

I biosed

- btwisted
cai

- chaos

- charge

- checktrans
- chips

Program name
{min:10 max:1.0 default:blastp)

|

‘ Database

\hlastn

lhs_mgc_mrna.fasta

Enter the sequence as:

Query File
=$file

H Browse files... |

(® file / database entry or ' paste or C list of files

- cirdna
J codcmp

[Input Sequence Options || Reset

Produces HTML output (T/FP
(default:F)

- coderet 1F
- compseq

- cons

- cpgplot

alignment view options

9: tabular with co... | (min:0.0 max:0.0 defaut:0)

-

routput section

Report output file

{=$ﬂle i ‘ {default:stdout)

Figure 2

Elements of the Wildfire interface. Elements of the Wildfire interface. The main window in the background shows the
workflow canvas. Its left panel lists the atomic workflow components; this list is preconfigured with all EMBOSS applications
and can be customised. The foreground window shows the properties form for the blastall program.

workflow pattern is one which specifies all input files to
copied only by the first instance in the workflow.

Workflow execution

For execution, Wildfire exports a programmatic descrip-
tion of the workflow, in a scripting language called GEL
[7], which is passed to a GEL interpretor for execution.
GEL is a scripting language with parallel constructs char-
acterising common parallel workflow execution patterns.
It is designed to be a generic parallel scripting language

which can be executed on different types of homogeneous
and heterogeneous parallel hardware such as shared-
memory SMP servers, clusters with a shared disk image,
and Grids without a shared disk image. There currently
exist interpretors that can run GEL scripts on SMP servers,
clusters with Platform LSF, PBS or Sun GridEngine (SGE),
and on Condor Grids [9,10]. GEL is similar to APST [11],
NIMROD [12] and DAGMan (part of Condor) but also
allows for cyclic dependencies between jobs. The reader is
referred to [7] for a more thorough description of GEL.

Page 4 of 9

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:69

‘Illllllllllllllll.
Wildfire

.

A E E E E E E R ER B BN IIIIIIIIIII’

ssh/scp

IIIIIIIIIII.

. Server s = = = =

GEL

t Queue Manager

EMBOSS APPLICATIONS

*
*

Figure 3

Remote execution of workflows. Remote execution of
workflows. In the case of large workflows or when the appli-
cations are not available on the client machine, it is possible
to execute the workflow remotely. In this case, Wildfire uses
the secure shell (SSH) protocol to send the files to the
remote machine and start execution. The remote machine
can be a cluster or multiprocessor server.

When developing small workflows, the user can run the
workflow on the same machine (see Availability and
requirements section). In this way, Wildfire can be used as
a stand-alone application without access to the network.

Alternatively, the user can choose to send the workflow to
a remote server and run it there. In this case, Wildfire uses
the secure shell (SSH) protocol to send the necessary files
over to, and then run the GEL interpretor on the remote
server (see Fig. 3). The GEL interpretor can execute the
atomic components directly if the server has multiple
processors. If the server is a cluster, then GEL can submit
the atomic components as jobs to the queue manager. In
either case, the GEL interpretor will try to use multiple
processors where possible. Remote server execution is
useful for workflows with large data sets since GEL will
make use of multiple processors. It is also useful if the
atomic components are not installed on the local
machine.

Wildfire and GEL do not require super-user privileges to
install: they can be installed in the "home" directory. For

http://www.biomedcentral.com/1471-2105/6/69

the client-server mode of operation, only an SSH service
on the server is required; there is no need to configure
other services such as SOAP over HTTP or Web-/Grid-
Services, and the firewall is only required to allow incom-
ing SSH connections. Most modern UNIX-style configura-
tions already provide an SSH service.

Wildfire can also use GEL to break up the workflow and
run parts of it concurrently on different supercomputers
using Condor. (Note: GEL 1.0 uses the Globus [13] proto-
cols to provide Grid support. GEL 2.0 uses Condor for
Grid execution and future support for Globus Grids will
be via Condor-G.) This is useful for very large workflows
which require as many compute resources as possible. In
practice, it is more useful when not all components are
available on any one machine, for example, because of
licence availability.

Wildfire monitors execution of the individual atomic
components and feedback is provided via annotations on
the canvas which are updated in real-time.

The exported GEL script can also be run directly using an
interpretor via the command line. This allows a workflow
to be run in batch mode independently of Wildfire, and is
useful for very long-running workflows or those that have
to be run repeatedly.

Results

We describe three applications of Wildfire. In the first
application, we construct a workflow for analysis of
human tissue-specific transcripts by comparing them
against the known exons. This example shows how Wild-
fire can make use of the parallel capabilities of supercom-
puters. The second example considers a particle swarm
optimisation algorithm implemented as a workflow, and
shows that Wildfire can express workflows requiring iter-
ation. The last example cross validates an allergenicity pre-
diction algorithm. The number of parallel processes in
this workflow can only be determined at run-time.

Tissue-specific Gene Expression Analysis

To study tissue-specific gene expression in humans, we
compare the known exons against a database of 16,385
transcripts obtained from the Mammalian Gene Collec-
tion. Since the human genome contains many exons, the
extraction process is time consuming, but it is easily par-
allelised. The standard organisation of the 24 chromo-
somes into separate files provides a natural partitioning of
the exon extraction problem: we extract the exons from
each chromosome in parallel. To further increase the
granularity of the problem and so exploit more parallel-
ism, we break up each of the 24 files of exons into five
smaller files, resulting in a total of 120 files. We blast each
of these smaller files against the database of transcripts.

Page 5 of 9

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:69

http://www.biomedcentral.com/1471-2105/6/69

Parallel
g ™
$f %ffo*régag 'll 9z 4 ™
qunzip exonx dice $q :ftf:iz?:;]%fna
2 3 5 blastall
noop.sh I~ R 11
1 \ /
p ~
qunzip formatdb
6 10
Figure 4

Tissue-specific gene expression analysis. Tissue-specific gene expression analysis. We initially start with 24 compressed
genbank files, one for each human chromosome. We decompress (gunzip) the genbank file, extract (exonx) from it all the
exons into one fasta file and then break up (dice) this fasta file into 5 smaller fasta files; we do this for each chromosome in par-
allel. At the same time, we decompress the file of transcripts and use formatdb to format it for use as a BLAST database.
Finally, we blast the exons against the transcript database in parallel. Note that components are rendered as rectangles and the
bottom half shows a unique numerical identifier; this can be used to distinguish components derived from the same template,

e.g. gunzip:2 and gunzip:6.

The workflow as constructed in Wildfire is shown in Fig.
4, and its implementation without Wildfire is described in
detail in [14]. The atomic component exonx is a program
developed in-house to extract and store exons from a gen-
bank file in fasta format; dice is a perl script used to break
up a fasta file into smaller pieces. The noop.sh component
is required to instruct GEL to copy the input files into the
working directory. (The initial copying of input files will
likely be an implicit feature of workflows in future ver-
sions of Wildfire, and so the explicit noop. sh component
will no longer be necessary.) The remaining components
(GNU gunzip, NCBI BLAST formatdb and blastall) are
standard applications which we have incorporated as
atomic components using our ACD editor.

The whole workflow takes less than 6000 seconds to run
on a 128 CPU Pentium III cluster, whereas a sequential
version of the same workflow required almost nine times
longer. Profiling of the workflow shows that breaking up
the 24 files of exons more evenly would significantly
improve performance. Since all programs are run via the
scheduler on the cluster, the workflow follows whatever
scheduling policies are configured at the component-
level. Hence, the workflow in its current form is already
efficient from the point of view of resource use.

Swarm optimisation

Real-life optimisation problems are often intractable and
heuristics are the only choice for finding near optimal
solutions. Particle Swarm Optimisation [15] is such a heu-
ristic based on simulation of information exchange
between leaders and followers observed in, for example,
bird flocking.

The algorithm simulates individuals flying through the
search space. On each iteration, the individuals are sepa-
rated into a set of leaders and a set of followers, based on
their fitness. The followers use the locations of the leaders
to change their flying direction, i.e. search velocity. The
location of each individual is computed based on its
current location and flying direction. The new location is
used to rank the fitness of individuals and subsequently
the leader and follower sets.

Note that efficient Swarm Optimisation implementations
exhibit both (1) iteration and (2) parallelism: successive
generations must be simulated until a termination
condition is met, and simulation of each generation
entails simulation of many independent individuals.
Therefore, a workflow tool suitable for implementing
such algorithms must support iteration and parallelism.

Page 6 of 9

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:69

pforfi=0t03

initl

evall

1
Y ;

ﬁ init2
- 4 3

http://www.biomedcentral.com/1471-2105/6/69

I ™
pforeach
$file of follower_sﬁ:fj
eval2

g ; \

classify

7 reassign
™ / 7

Figure 5

extract

Swarm optimisation example. Swarm optimisation example. Component evall is executed four times in parallel within a
parallel for loop. The circle denotes a while loop, with test as loop guard: if test returns false, then we follow the bottom
branch to extract, otherwise we follow the right branch and test test again after reassign. Component eval2 is executed in par-

allel once for each file matching follower_sol*.

The workflow in Fig. 5 is a simplified implementation of
a swarm algorithm by Ray et al. [16] implemented as a
workflow. The algorithm is applied to a parameter estima-
tion problem for a biochemical pathway model consisting
of 36 unknowns and eight ordinary differential equations
[17]. Components initl, evall and init2 are used to ini-
tialise and rank the individuals. Component test deter-
mines whether the workflow should terminate and extract
collects together the results on termination of the
simulation. Component eval2 is used to evaluate the fit-
ness of an individual; note the outer parallel loop evalu-
ates the fitness of each follower. The remaining
components are used to select the leaders and followers.

Component test depends on both init2 and reassign; on
the first iteration, test can start executing only after init2
has terminated, and on subsequent iterations, only after
reassign has terminated. Since reassign itself hereditarily
depends on test (i.e. reassign depends on eval2 which
depends on classify which itself depends on test) we see
there is a cyclic dependency. The while loop in GEL allows
such dependencies and so is crucial for this workflow.

Allergenicity prediction

Allergenicity prediction is the process of determining
whether a new protein sequence is an allergen or not. Pro-
teins known to induce allergic responses have been docu-
mented in allergen databases. One approach to
allergenicity prediction is to determine, automatically,

motifs from sequences in such a database, and then search
for these motifs in the query sequences.

The objective of the workflow in Fig. 6 is to test the accu-
racy of the approach described above, where protein
sequence motifs are identified using an algorithm [18]
based on wavelet analysis. From a group of 817
sequences, known to be allergens, we take a learning set
consisting of a randomly selected subset covering 90% to
be used for identification of motifs. The remaining 10%
are used as query sequences for allegenicity prediction. We
use the predictions to assess the accuracy of this approach.

Initially, we use ClustalW to generate the pairwise global
alignment distances between the protein sequences in the
learning set. We then use these distances to cluster the pro-
tein sequences by partitioning around medoids using the
R project [19]. We use ClustalW again to align each cluster
of protein sequences and we use the wavelet analysis algo-
rithm on each aligned cluster to identify motifs in the pro-
tein sequences. For each identified motif, we build an
HMM profile [20,21] in parallel. Note that the number of
motifs is not know a priori; it can only be known at run-
time. The HMM profiles are then used to search for the
motifs in each query sequence, and thus predict whether
it is an allergen or not. The accuracy of the predictions is
computed to assess the effectiveness of this approach.

Page 7 of 9

(page number not for citation purposes)

BMC Bioinformatics 2005, 6:69

http://www.biomedcentral.com/1471-2105/6/69

format
$file of input+.1xt

W e

pforeach

pforeach B
$file of *motifv

clusta... |
12 wavele. ..

13

group

join_scr

Process_scr

“

Figure 6

An allergenicity prediction workflow. The allergenicity prediction workflow from [23] constructed in Wildfire. The com-
ponents in this workflow are all custom applications, or custom scripts calling standard applications. Components format,
group, join_scr and process_scr are administrative programs which translate and convert files from one format to another.
Component rscript uses the R-project to cluster the amino acid sequences from a database of known allergens. For each clus-
ter, we align its sequences and use a wavelet algorithm to predict motifs. The resulting motifs are used to construct HMM pro-
files using hmmbuild. Finally, we use these profiles with hmmpfam to predict allergenic sequences. Components join_scr and

process_scr collate and summarise the results.

Discussion

Bioinformaticians can use Wildfire as an integrated envi-
ronment to construct and to execute workflows. The graph-
ical user interface elements ease workflow construction by
hiding the syntax of scripting languages. The constructed
workflows can be executed across multiple processors (i)
in the same server, (ii) in a cluster, or (iii) across several
supercomputers across the Grid.

Wildfire is preconfigured to allow applications from
EMBOSS to be used as workflow components. The user
can add his own applications to be used as components
by creating the necessary ACD files. Wildfire also hides
this syntax by providing a wizard for creating and editing
ACD files.

In a typical scenario, the user develops a workflow by vis-
ually constructing and executing small examples on his
desktop or laptop. When the workflow is ready, the user
can run it on real data on a shared resource such as a com-
pute cluster running a scheduler. GEL workflows, such as
those constructed in Wildfire, run well on shared
resources since the components of the workflow are run
through the scheduler. This gives the scheduler more
opportunities to schedule the components with respect to
whatever policies are configured: for example, a fair share
policy would allow jobs from other users to run even
when the workflow would otherwise monopolise the
whole cluster.

We have described three applications of Wildfire in three
different fields, and welcome readers to try Wildfire for

themselves and solicit recommendations for

improvements.

Availability and requirements

Wildfire

Wildfire is run on the client computer and allows the user
to visually construct workflows. Wildfire invokes GEL (see
below) to execute workflows. EMBOSS 2.8.0 [22] is
required (2.9.0 is not yet supported) to run EMBOSS
workflows.

Availability:_http://wildfire.bii.a-star.edu.sg

Operating systems: Platform Independent (tested on
Windows, 1386 Linux)

Programming Language: Java
Other requirements: Java 1.4.2, GEL
Licence: GPL

Currently, stand-alone mode is not available for

Windows.

GEL

GEL is an interpretor which executes GEL scripts generated
by Wildfire. Currently only UNIX platforms are
supported. GEL supports LSF, SGE and PBS clusters, SMP
servers and Condor-based Grids.

Availability: http://wildfire.bii.a-star.edu.sg

Page 8 of 9

(page number not for citation purposes)

�http://wildfire.bii.a-star.edu.sg
http://wildfire.bii.a-star.edu.sg

BMC Bioinformatics 2005, 6:69

Operating systems: GNU-style UNIX (tested on i386
Linux, ia64 Linux, Spare Solaris, Alpha Tru64)

Programming Language: Java
Other requirements: Java 1.4.2, bash

Licence: free for non commercial use, see http://http:
wildfire.bii.a-star.edu.sg

Authors' contributions

FT lead and coordinated the software engineering aspects
of the project, and drafted this manuscript. FT and CCL
co-designed Wildfire and GEL. CCL and HLY pro-
grammed, tested and debugged the software. LYP
designed the tissue-specific transcript analysis workflow.
PI and AK designed the allergen prediction workflow. AK
participated in the concept, design and testing of the soft-
ware and contributed to successive revisions of this man-
uscript. All authors read and approved the manuscript.

Acknowledgements

The authors would like to thank Tan Chee Meng and Prof. Tapabrata Ray
for their contribution to the Particle Swarm Example, and various anony-
mous referees for improvements in this manuscript.

References

I. RiceP, Longden |, Bleasby A: EMBOSS: The European Molecular
Biology Open Software Suite. Trends in Genetics 2000,
16:276-277.

2. Carver T, Bleasby A: The design of Jemboss: a graphical user
interface to EMBOSS. Bioinformatics 2003, 19(14):1837-1843.

3. Oinn T, Addis M, Ferris], Marvin D, Greenwood M, Carver T, Pocock
MR, Wipat A, Li P: Taverna: A tool for the composition and
enactment of bioinformatics workflows. Bioinformatics 2004,
20(7):3045-3054.

4. Furmento N, Lee W, Mayer A, Newhouse S, Darlington J: ICENI: An
Open Grid Service Architecture Implemented with Jini.
SuperComputing 2002 2002.

5. Hoon S, Ratnapu KK, Chia JM, Kumarasamy B, Juguang X, Clamp M,
Stabenau A, Potter S, Clarke L, Stupka E: Biopipe: a flexible frame-
work for protocol-based bioinformatics analysis. Genome Res
2003, 13:1904-1915.

6. Senger M, Rice P, Oinn T: Soaplab - a unified Sesame door to
analysis tools. Proceedings, UK e-Science, All Hands Meeting
2003:509-513 [http://industry.ebi.ac.uk/soaplab/].

7. Chua Ching Lian, Tang F, Issac P, Krishnan A: GEL: Grid Execution
Language. | Parallel and Distributed Computing in press.

8. de Boer T: AJAX Command Definition (ACD files). [http:/
www.rfcgr.mrc.ac.uk/Software/EMBOSS/Acd/].

9. Litzkow M, Livny M, Mutka MW: Condor: A Hunter of Idle
Workstations. Proceedings of 8th International Conference on Distrib-

uted Computing Systems 1988:104-111 [http://www.cs.wisc.edu/con
dor/publications.html].
10. Condor Team: Condor Home Page. 2002 [http:/

www.cs.wisc.edu/condor/].

I1. Berman FD, Wolski R, Figueira S, Schopf J, Shao G: Application-
Level Scheduling on Distributed Heterogeneous Networks.
Proceedings of Supercomputing 1996 1996.

12. Abramson D, Sosic R, Giddy J, Hall B: Nimrod: A Tool for Per-
forming Parameterised Simulations Using Distributed
Workstations. HPDC 1995:112-121.

13. Foster |, Kesselman C: Globus: A Metacomputing Infrastruc-
ture Toolkit. The International Journal of Supercomputer Applications
and High Performance Computing 1997, 11(2):115-128.

14. Chua CL, Tang F, Lim YP, Ho LY, Krishnan A: Implementing a Bio-
informatics Workflow in a Parallel and Distributed Environ-

http://www.biomedcentral.com/1471-2105/6/69

ment. Parallel and Distributed Computing: Applications and Technologies,
of LNCS, Springer 2005, 3320:1-4.

I15. Eberhart RC, Kennedy |: A New Optmizer using Particle
Swarm Theory. Sixth International Symposium on Micro Machine and
Human Science, IEEE Service Center 1995:39-43.

16. Ray T, Tai K, Seow K: An Evolutionary Algorithm for Con-
strained Optimization. Proceedings of the Genetic and Evolutionary
Computation Conference, Morgan Kaufmann 2000:771-777.

17. Moles CG, Mendes P, Banga JR: Parameter Estimation in Bio-
chemical Pathways: A Comparison of Global Optimization
Methods. Genome Research 2003, 13:.

18. Krishnan A, Li KB, Issac P: Rapid detection of conserved regions
in protein sequences using wavelets. In Silico Biology 2004,
4(2):133-48.

19. R Language Definition [http://www.r-project.org]

20. Durbin R, Eddy S, Krogh A, Mitchison G: Biological sequence analysis.
CUP 1998.

2l. Eddy S: HMMER User's Guide. [http://hmmer.wustl.edu].

22. EMBOSS [http://emboss.sourceforge.net]

23. Li KB, Issac P, Krishnan A: Predicting allergenic proteins using
wavelet transform. Bioinformatics 2004, 20:2572-8.

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 9 of 9

(page number not for citation purposes)

http://
http://wildfire.bii.a-star.edu.sg
http://wildfire.bii.a-star.edu.sg
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10827456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10827456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14512356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14512356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12869579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12869579
http://industry.ebi.ac.uk/soaplab/
http://www.rfcgr.mrc.ac.uk/Software/EMBOSS/Acd/
http://www.rfcgr.mrc.ac.uk/Software/EMBOSS/Acd/
http://www.cs.wisc.edu/condor/publications.html
http://www.cs.wisc.edu/condor/publications.html
http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/condor/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15107019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15107019
http://www.r-project.org
http://hmmer.wustl.edu
http://emboss.sourceforge.net
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15117757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15117757
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Workflow construction
	Workflow execution

	Results
	Tissue-specific Gene Expression Analysis
	Swarm optimisation
	Allergenicity prediction

	Discussion
	Availability and requirements
	Wildfire
	GEL

	Authors' contributions
	Acknowledgements
	References

