
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Accelerated probabilistic inference of RNA structure evolution
Ian Holmes*

Address: Department of Bioengineering, University of California, Berkeley CA 94720-1762, USA

Email: Ian Holmes* - ihh@berkeley.edu

* Corresponding author

Abstract
Background: Pairwise stochastic context-free grammars (Pair SCFGs) are powerful tools for
evolutionary analysis of RNA, including simultaneous RNA sequence alignment and secondary
structure prediction, but the associated algorithms are intensive in both CPU and memory usage.
The same problem is faced by other RNA alignment-and-folding algorithms based on Sankoff's 1985
algorithm. It is therefore desirable to constrain such algorithms, by pre-processing the sequences
and using this first pass to limit the range of structures and/or alignments that can be considered.

Results: We demonstrate how flexible classes of constraint can be imposed, greatly reducing the
computational costs while maintaining a high quality of structural homology prediction. Any score-
attributed context-free grammar (e.g. energy-based scoring schemes, or conditionally normalized
Pair SCFGs) is amenable to this treatment. It is now possible to combine independent structural
and alignment constraints of unprecedented general flexibility in Pair SCFG alignment algorithms.
We outline several applications to the bioinformatics of RNA sequence and structure, including
Waterman-Eggert N-best alignments and progressive multiple alignment. We evaluate the
performance of the algorithm on test examples from the RFAM database.

Conclusion: A program, Stemloc, that implements these algorithms for efficient RNA sequence
alignment and structure prediction is available under the GNU General Public License.

Background
As our acquaintance with RNA's diverse functional reper-
toire develops [1-5], so does demand for faster and more
accurate tools for RNA sequence analysis. In particular,
comparative genomics approaches hold great promise for
RNA, due to the well-behaved basepairing correlations in
an RNA gene family with conserved secondary structure
(at least, well-behaved compared to protein structures).
Whereas the structural signal encoded in a single RNA
gene is rather weak and may be barely (if at all) distin-
guishable from the secondary structure of a random
sequence [6], the covariation signal increases with every
additional sequence considered.

Many programs for comparative analysis of RNA require
the sequences to be prealigned [7-9]. This can be a source
of error, since misaligned bases can add noise that
swamps the covariation signal. The most recent of these
methods allows for some uncertainty in the alignment
[7]. More generally, one can view the alignment and struc-
ture prediction as a combined problem, to be solved
simultaneously. This is the approach taken in this paper,
and by earlier programs such as FOLDALIGN [10], DYNA-
LIGN [11], CARNAC [12], QRNA [9] and our dart library,
introduced in a previous paper [13] and extended here. In
this framework, fixing of the alignment can be viewed as

Published: 24 March 2005

BMC Bioinformatics 2005, 6:73 doi:10.1186/1471-2105-6-73

Received: 30 April 2004
Accepted: 24 March 2005

This article is available from: http://www.biomedcentral.com/1471-2105/6/73

© 2005 Holmes; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 22
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/6/73
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15790387
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
a partial constraint on the simultaneous alignment/fold-
ing problem.

A powerful, general dynamic programming algorithm for
simultaneously aligning and predicting the structure of
multiple RNA sequences was developed by David Sankoff
[14]. The energy-based folding of Zuker et al [15] and
recent approaches based on Stochastic Context-Free
Grammars (SCFGs) [9,13,16-20] are both closely related
to Sankoff's algorithm. The method takes time O(L3N) and
memory O(L2N) for N sequences of length L. This is pro-
hibitively expensive at the time of writing, except for fairly
short sequences, which has motivated the development of
various constrained versions of these algorithms [9-
11,13,21].

The purpose of this paper is to report our progress on gen-
eral pairwise constrained versions of Sankoff's algorithm
(or, more precisely, constrained versions of some related
dynamic programming algorithms for SCFGs). The over-
all aim is the simultaneous alignment and structure pre-
diction of two RNA sequences, X and Y, subject to an
SCFG-based scoring scheme and user-supplied con-
straints. Additionally, we wish to be able to parameterize
the model automatically from training data. Without con-
straints, the above tasks are addressed by the resource-
intensive CYK and Inside-Outside algorithms; here, we
present constrained versions of these algorithms that
work in reduced space and time (the exact complexity
depends nontrivially on the constraints).

Our system of constraints is quite general. Previous con-
strained versions of Sankoff-like algorithms, such as the
programs DYNALIGN [11] and FOLDALIGN [10], have
been restricted to "banding" the algorithm e.g. by con-
straining the maximum insertion/deletion distance
between the two sequences or the maximum separation
between paired bases. Alternately, constraints on the
accessible structures [13] or alignments [9] have been
described.

The algorithms described here can reproduce nearly all
such banding constraints and, further, can take advantage
of more flexible sequence-tailored constraints. Specifi-
cally, the fold envelopes determine the subsequences of X and
Y that can be considered by the algorithm, while the align-
ment envelope determines the permissible cutpoints in the
pairwise alignment of X and Y. The fold envelopes can be
used to prune the search over secondary structures (e.g. by
including/excluding specific hydrogen-bonded base-pair-
ings), while the alignment envelopes can be used to prune
the search over alignments (e.g. by including/excluding
specific residue-level homologies). The fold envelopes can
be precalculated for each sequence individually (e.g. by an
energy-based folding or a single-sequence SCFG), and the

alignment envelope by comparing the two sequences
without regard for secondary structure (e.g. using a pair-
wise Hidden Markov Model); both types of pre-compari-
son are much more resource-friendly than the
unconstrained Sankoff-like algorithms. The design of the
constrained algorithms is discussed using concepts from
object-oriented programming: the dynamic programming
matrix can be viewed as a sparsely populated container,
whereas the main loop that fills the matrix is a complex
iterator [22]. The algorithms have been implemented in a
freely available program for RNA sequence alignment,
stemloc, which also includes algorithms to determine
appropriate constraints in an automatic fashion. Results
demonstrating the program's efficient resource usage are
presented.

The stemloc program also implements various familiar
extensions to pairwise alignment, including local align-
ment [23], Waterman-Eggert N-best suboptimal align-
ments [24] and progressive multiple alignment [25].
Although the envelope framework, rather than these
extensions, is the main focus of this paper, implementa-
tion of the extensions is straightforward within this frame-
work, and is briefly described.

Results
To investigate the comparative resource usage of the vari-
ous different kinds of constraint that can be applied using
fold and alignment envelopes, stemloc was tested on 22
pairwise alignments taken from version 6.1 of RFAM [37],
spanning 7 different families of functional noncoding
RNA. Each chosen test family had a consensus secondary
structure published independently in the literature, and
no two sequences in the test set had higher than 60%
identity.

The EMBL accession numbers and co-ordinates of all
sequences are listed in Table 5. The table shows the per-
formance of stemloc using the 1000-best fold envelope
and the 100-best alignment envelope. The various RFAM
families are S15, the ribosomal S15 leader sequence; the
U3 and U5 spliceosomal small nucleolar RNAs; IRE, the
iron response element from UTRs of genes involved in
vertebrate iron metabolism; glmS, the glucosamine-6-
phosphate activated mRNA-cleaving ribozyme; Purine,
the prokaryotic purine-binding riboswitch; and 6S, the
E.coli polymerase-associated transcriptional repressor.
The following three test regimes were used, each repre-
senting a different combination of fold and alignment
envelopes:

N-best alignments, all folds
The alignment envelope containing the N best primary
sequence alignments, with the unconstrained fold
Page 2 of 22
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
envelopes (stemloc options: '--nalign N --nfold -1'). This
is the red curve in Figures 8, 9, 10, 11, 12, 13

N-best folds, all alignments
The unconstrained alignment envelope, with the fold
envelopes containing the N best single-sequence structure

predictions (stemloc options: '--nalign -1 --nfold N'). This
is the green curve in Figures 8, 9, 10, 11, 12, 13

N-best folds, 100-best alignments
The alignment envelope containing the 100 best primary
sequence alignments, with the fold envelopes containing

A parse tree for the grammar of Table 1Figure 1
A parse tree for the grammar of Table 1. Each internal node is labeled with a nonterminal (Stem or Loop); additionally, the sub-
sequences (Xij, Ykl) generated by each internal node are shown. The parse tree determines both the structure and alignment of
the two sequences. The cut-points of the alignment are the sequence co-ordinates at which the alignment can be split, i.e. {(0,
0), (1, 1), (2, 2) ... (15, 12), (16, 13), (17, 14)}.

Stem

Stem

Stem

Stem

Loop

Loop

Loop

LoopLoop

Loop

Loop

Loop

Loop

Loop

Loop

X:
Y:

0 1 2 3 4 5 6 6 6 6 7 8 9 10 11 1312 14

0 1 15 16 172 3 4 5 6 7 8 9 10 11 1312 14

Cut-points

X
0,11

 Y
0,8

 X
0,17

Y
0,14

X
11,17

 Y
8,14

X
12,16

 Y
9,13

X
13,16

 Y
10,13

X
14,16

 Y
11,13

X
15,16

 Y
12,13

X
1,10

 Y
1,7

X
3,9

 Y
3,6

X
4,9

 Y
4,6

X
6,9

 Y
6,6

X
5,9

 Y
5,6

X
7,9

 Y
6,6

X
8,9

 Y
6,6

X
2,9

 Y
2,6
Page 3 of 22
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
the N best single-sequence structure predictions (stemloc
options: '--nalign 100 --nfold N'). This is the blue curve in
Figures 8, 9, 10, 11, 12, 13

In the first two tests, N was varied from 1 to 100; in the
latter test, N was varied from 1 to 10000. The lower ceiling
for N in the first two tests was imposed by resource limi-
tations. Note that the endpoint of the red curve ("N-best
alignments, all folds"), which occurs at N = 100, coincides
with the asymptotic limit of the blue curve ("N-best folds,
100-best alignments") at high N.

A range of different values for the parameter N was used
to test the above three strategies. As N was increased over
the range, the size of the corresponding fold or alignment
envelopes was found to be strongly correlated (Figures 6,
7). However, the actual size of the fold/alignment
envelopes in each particular test case varies widely (see
large error bars in Figures 6, 7), perhaps due to variable
factors such as the sequence lengths, compositions and/or

identities. Since it is easier to control the envelope con-
struction parameter N than to control the envelope sizes
directly, the following section will report performance
indicators as a direct function of N, rather than as a func-
tion of the strongly-correlated but widely-varying enve-
lope sizes. We report performance indicators for stemloc
as follows. Let A and B be alignments of a given pair of
sequences, each represented as a set of aligned residue-
pairs {(i, k)}. Suppose that A is the alignment according
to RFAM, and B is the alignment predicted by stemloc.
Then define the alignment sensitivity to be |A ∩ B|/|A| and
the alignment specificity to be |A ∩ B|/|B|. Further, let S and
T be possible secondary structures for a given sequence,
each represented as a set of base-pairs {(i, j)}. Suppose
that S is the published structure, and T is the structure pre-
dicted by stemloc. Then the basepair sensitivity is |S ∩ T|/
|S| and the basepair specificity is |S ∩ T|/|T|.

These performance indicators are averaged over all 22
pairwise alignments and plotted for the three test regimes

Parsing a pair of sequences (X, Y) using the Inside algorithm involves iterating over subsequence-pairs (Xij, Ykl) specified by four indices (i, j, k, l)Figure 2
Parsing a pair of sequences (X, Y) using the Inside algorithm involves iterating over subsequence-pairs (Xij, Ykl) specified by four
indices (i, j, k, l). In the constrained Inside algorithm, these indices are only valid if the fold envelopes (triangular grids) include the
respective subsequences (i, j) and (k, l) (shown as black circles) and the alignment envelope (rectangular grid) includes both cut-
points (i, k) and (j, l) (shown as short diagonal lines). The filled cells in the rectangular grid show the aligned nucleotides. Note
that the co-ordinates (i, j, k, l) lie on the grid-lines between the nucleotides.

A A UGGC C C

G

C

U

A

A

G
C

C

G
G
U

Alignment envelope

A

A

U
G

G

C
C

C

G CU AAGC C GGU

Fold envelopes

Alignment:

Cut-points:

Base-pairing:

G CU AAGC C GGU

A A UGGC C C

i=1, j=7, k=1, l=10

i j
j

k

l
k

Page 4 of 22
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
in Figure 8 (alignment sensitivity), Figure 9 (alignment
specificity), Figure 10 (basepair sensitivity) and Figure 11
(basepair specificity). As can be seen, the N -best align-
ment regime empirically seems to achieve an asymptotic
maximum performance around N � 100 (possibly even
around N � 10), while the N -best fold envelope under-
performs compared to the unconstrained fold envelope
up to around N � 1000. The tests were performed on a 2.3
GHz Apple PowerPC G5. The resource usages of the test
regimes are plotted in Figure 12 (user-mode running
time) and Figure 13 (memory usage). The resource usage
of the constrained algorithms is substantially reduced
when the envelopes are smaller (i.e. at lower N). This is
especially notable when contrasting the resource usage of
the "N -best folds, all alignments" test with the more con-
strained "N -best folds, 100-best alignments" test.

Three main conclusions can be drawn from these data.
First, allowing the search to consider more than a single

alignment greatly improves structure prediction (the red
curve). Second, constraining the alignment search while
exhaustively scanning fold space (the red curve) outper-
forms constraining the fold search while exhaustively
scanning alignment space (the green curve). Third, the
hybrid strategy (the blue curve), which partially con-
strains both searches, approaches the alignment-con-
strained, fold-unconstrained strategy (the red curve) in
performance, with a significant saving in CPU and mem-
ory resources. Memory is the limiting factor in pairwise
RNA alignment, and the primary motivation for con-
straints. For example, without constraints, alignment of
two 16S ribosomal subunits using the stemloc grammar
would take approximately 500 terabytes. (Using fold
envelope constraints with structures fully specified, it can
be done in under 5 gigabytes.)

Based on the results of these tests, the default envelope
options for stemloc were chosen to be the 100-best

Bifurcation rules allow a subsequence-pair (Xij, Ykl) to be composed from two adjoining subsequence-pairs (Xim, Ykn) and (Xnj, Yni)Figure 3
Bifurcation rules allow a subsequence-pair (Xij, Ykl) to be composed from two adjoining subsequence-pairs (Xim, Ykn) and (Xnj,
Yni). For this to be permitted by the constraints, the X-fold envelope (upper triangular grid) must contain subsequences (i, m),
(m, j) and (i, j) (black dots), the Y-fold envelope (rightmost triangular grid) must contain subsequences (k, n), (n, l) and (k, l)
(black dots) and the alignment envelope (rectangular grid) must contain cutpoints (i, k), (m, n) and (j, l) (short diagonal lines).
The filled cells in the rectangular grid show the nucleotide homologies highlighted in the alignment. Note that all co-ordinates
(i, j, k, l, m, n) lie on the grid-lines between nucleotides.

i=1, j=7, k=1, l=10, m=4, n=4

A A UGGC C C

G

C

U

A

A

G
C

C

G
G
U

A

A

U
G

G

C
C

C

G CU AAGC C GGU

i j
k

l

j

k

Alignment:

Cut-points:

Base-pairing:

G CU AAGC C GGU

A A UGGC C C

m

n

n

m

Page 5 of 22
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
alignment envelope and the 1000-best fold envelope. The
performance of stemloc with these envelopes on each of
the pairwise test alignments is given in Table 5.

Discussion
The algorithms presented here include constrained ver-
sions of Pair-SCFG dynamic programming algorithms
that run in significantly reduced space and time. The pri-
mary advance over previous work is the simultaenous
imposition of fold and alignment constraints, including
alignment constraints that are more general than others
previously described. Thes constraints lead to significant
reductions in requirements for processor and memory
usage, which will increase the length of RNA sequences
that can be analyzed on mainstream computer hardware.

These algorithms have been used to implement stemloc, a
fast, efficient software tool for multiple RNA sequence
alignment implementing numerous extra features such as
local alignment, Waterman-Eggert N -best suboptimal
alignment and progressive multiple alignment. The
source code for the program is freely available from http:/
/www.biowiki.org.

The results given here should be regarded as preliminary.
For example, we have only tested the pairwise alignment
functionality; full evaluation/optimisation of the multiple
alignment algorithm remains. Rather than using the CYK
algorithm, one could use the Inside-Outside algorithm
with a decision-theoretic dynamic programming step to
maximize expected performance [38,39]. As noted in the
Parameterization section, it might also be possible to
improve on the training procedure. We are also consider-
ing ways of elaborating the grammar to include basepair
stacking terms. These and other improvements we hope to
address in future work.

Conclusion
RNA sequence analysis has generated considerable inter-
est over recent years, as many new roles for RNA in the cell
have come to light. RNA genes and regulatory elements
are components of many molecular systems and compar-
ative genomics is a powerful way to probe this function,
perhaps even more so for RNA than for protein (due to the
"well-behaved" statistical correlations found in RNAs
with conserved secondary structure). Furthermore, statis-
tical modeling of RNA evolution continues to play a fun-
damental role in the phylogenetic classification of new
forms of life.

These biological motives have driven a demand for RNA
sequence analysis tools that are faster, slimmer and more
scaleable. It is hoped that the algorithms and approaches
described here, together with development and analysis of
RNA evolutionary models [36], may expand the applica-
tions of RNA informatics.

Methods
We begin our description of the envelope method with an
explanatory note regarding our decision to present these
constraints in terms of SCFGs, rather than other scoring
schemes such as those based solely on energies [15] or on
energy/information-theoretic hybrids [11].

The reason for our choice of SCFGs is simple: stochastic
grammars are, in our opinion, the most theoretically well-
developed of the scoring schemes used for RNA. They
come with well-documented algorithms for sequence
alignment, structure prediction, parameterization by
supervised learning from various kinds of training data,
and calculation of posterior probabilities [20]. Discussion
of these algorithms is facilitated by a well-developed and
widely-understood probabilistic vocabulary. Stochastic
grammars are actively researched outside bioinformatics,
principally in natural language processing [26]. Crucially,
SCFGs are sufficiently general to express virtually all of the
features offered by other scoring schemes [19]. We also
acknowledge the appeal of free energy-based scoring
schemes, which have the advantage that the parameters

These fold envelopes (triangular grids) limit the maximum length of subsequences (black dots), while the alignment envelope (rectangular grid) limits the maximum deviation of cutpoints (short diagonal lines) from the main diagonalFigure 4
These fold envelopes (triangular grids) limit the maximum
length of subsequences (black dots), while the alignment
envelope (rectangular grid) limits the maximum deviation of
cutpoints (short diagonal lines) from the main diagonal.

A A UGGC C C

G

C

U

A

A

G
C

C

G
G
U

A

A

U
G

G

C
C

C

G CU AAGC C GGU
Page 6 of 22
(page number not for citation purposes)

http://www.biowiki.org
http://www.biowiki.org

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
can be determined experimentally. Energy-based scores
can also be used to find posterior probabilities of base-
pairings using a partition function [27]. However, to
extend energy-based methods to two or more sequences,
one must incorporate substitution scores. These are infor-
mation-theoretic in nature and so are measured in bits,
rather than kilocalories-per-mole [28]. Reconciling these
two units of score (in a principled way) is an open prob-
lem. However, in an SCFG framework, all scores are infor-
mation-theoretic and so there is no conflict of units.

Despite these arguments, many people continue to find
calories preferable to bits as a unit of score. For such read-
ers, we note that the system of constraints described here
is entirely applicable to the general score-attributed gram-
mar. This includes energy-based and heuristic scoring
schemes as well as (for example) grammars whose rule
"probabilities" actually represent log-odds ratios, or
which are conditionally normalized with respect to one
sequence.

Notation
To implement SCFG dynamic programming algorithms
efficiently for RNA, it is convenient to define a simplified
(but universal) template for grammars, similar in princi-
ple to "Chomsky normal form" [29,30]. Our "RNA nor-
mal form" preserves the RNA-optimized efficiency of the
Pair SCFG form presented in an earlier paper [13] (based
on a single-sequence form due to Durbin et al [20]) by
introducing different types of production rule to mini-
mize bifurcations and collect emissions. The form defined
here is slightly different from the above forms, in that it
classifies only production rules, and not nonterminals,

into different types. Let be the
"ungapped RNA alphabet", i.e. the set of four possible

nucleotides in RNA. Let be the
"gapped RNA alphabet", i.e. the ungapped RNA alphabet

Ω plus the gap symbol . Finally, let Ψ = Ω' × Ω' be the
"gapped-pair RNA alphabet", i.e. a Cartesian product of
two gapped RNA alphabets. We write Ψ-symbols by

These fold envelopes (triangular grids) and alignment envelope (rectangular grid) limit the subsequences (black dots) and cut-points (short diagonal lines) to those consistent with a given alignment and consensus secondary structure (shown)Figure 5
These fold envelopes (triangular grids) and alignment envelope (rectangular grid) limit the subsequences (black dots) and cut-
points (short diagonal lines) to those consistent with a given alignment and consensus secondary structure (shown). The align-
ment path is also shown on the alignment envelope as a solid black line, broken by cutpoints.

A

A

U
G

G

C
C

C

G CU AAGC C GGU

CGU AAGC C GGU

UA A GGC C C

Alignment:

Cut-points:

Base-pairing:

A A UGGC C C

G

C

U

A

A

G
C

C

G
G
U

Ω = { }A ,C ,G ,U

′ = −Ω { }A ,C ,G ,U ,

−

Page 7 of 22
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
vertically stacking pairs of Ω'-symbols, like this or this

.

A pairwise stochastic context-free grammar in RNA
normal form consists of a nonterminal symbol alphabet
Φ, a terminal symbol alphabet that is the gapped-pair
RNA alphabet Ψ, and (for each nonterminal L) a probabil-
ity distribution over a set of transformation rules (or pro-

duction rules), (L → R), where R = R1 ... RK is a sequence
of nonterminal or terminal symbols, taking one of several
stereotypical forms (see below). The nonterminal L is
referred to as the left-hand side (LHS) of the production

rule and the symbol sequence R as the right hand side
(RHS).

Let S, U, V, W ∈ Φ denote nonterminal symbols. The
allowable forms for production rules include termina-
tions, transitions, bifurcations and emissions. These are
defined as follows

Terminations: rules of the form L → ε.

Transitions: rules of the form L → V. The directed graph
formed by transition rules on nonterminals must be acy-
clic, and the list of nonterminals Φ must be topologically

reverse-sorted with respect to this graph; i.e. if (U → V)
> 0, then V appears before U in Φ.

Fold envelope size is highly correlated with N in the N-best fold test, although the variance is large due to the diversity of alignments in the testFigure 6
Fold envelope size is highly correlated with N in the N-best
fold test, although the variance is large due to the diversity of
alignments in the test.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100

S
iz

e
of

 fo
ld

 e
nv

el
op

e

N

G
A

U
−





Alignment envelope size is highly correlated with N in the N-best alignment test, although the variance is large due to the diversity of alignments in the testFigure 7
Alignment envelope size is highly correlated with N in the N-
best alignment test, although the variance is large due to the
diversity of alignments in the test.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

S
iz

e
of

 a
lig

nm
en

t e
nv

el
op

e

N



Page 8 of 22
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
Bifurcations: rules of the form L → VW. There must be no
transition-termination path from V or W to ε, i.e. neither
V or W can have completely empty inside sequence-pairs
(see next section for a formal definition of the "inside
sequence-pair").

Emissions: rules of the form where A', B',

C', D' ∈ Ω' are gapped RNA symbols, at least one of which
is a non-gap symbol. For convenience, we also define A, B,
C, D ∈ Ω* to be the corresponding ungapped RNA
sequences, as follows: A is the empty string if and only if
A' is the gap character; otherwise, A = A'. Similar defini-
tions apply for B, C and D.

The particular RNA normal form described in this section
is chosen for ease of presentation. The implementation in

the dart library uses the slightly more restrictive form for
Pair SCFGs defined in an earlier paper [13].

For presentational purposes, we will generally omit all-
gap columns from the pairwise alignment and the gram-
mar. For example, an emission rule having the form

 would be written as instead. All-

gap columns are not very interesting to a sequence analyst,
and only arise in our formalism because all emission rules
have the same form.

Table 1 is an example of an RNA normal form grammar
with two nonterminals, Stem and Loop. The grammar
generates simple alignments of stems and loops, using
two nonterminals (Stem and Loop); the starting nonter-
minal is Stem. The rule probabilities are functions of five
scalar probability parameters (stemExtend, stemGap,

Alignment sensitivity as a function of envelope size parame-ter N for three different test regimesFigure 8
Alignment sensitivity as a function of envelope size parame-
ter N for three different test regimes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

A
lig

nm
en

t s
en

si
tiv

ity

N

N-best alignments, all folds
N-best folds, all alignments

N-best folds, 100-best alignments

L A

B
R C

D

→ ′
′

′
′

Alignment specificity as a function of envelope size parameter N for three different test regimesFigure 9
Alignment specificity as a function of envelope size parameter
N for three different test regimes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

A
lig

nm
en

t s
pe

ci
fic

ity

N

N-best alignments, all folds
N-best folds, all alignments

N-best folds, 100-best alignments

L R→ −
−

U
C

L R→ U
C

Page 9 of 22
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
bifurcate, loopExtend and loopGap) and four arrays of
probability parameters (baseIndel[4], baseSubstitu-
tion[16], basepairIndel[16] and basepairSubstitution
[256]). Here we introduce the notation X [N] for an array
of N probability parameters normalized so that

. It is also convenient to introduce some

notation for ungapped sequences at this stage. Let X, Y ∈
Ω* denote ungapped RNA sequences, including (possi-
bly) the empty string ε. Let Xi be the i'th symbol of X
(counting from 1, so e.g. X3 is the third symbol), let Xij

denote the subsequence from Xi+1 to Xj inclusive, or the
empty string if i = j (so e.g. X0,3 contains the first three sym-
bols of X, while X3,3 = ε) and let |X| denote the length of X.

The parse tree and the sequence likelihood

The grammar is a probabilistic model for deriving
sequences X, Y from a single nonterminal. This derivation

proceeds as follows: start with an initial sequence contain-
ing one starting nonterminal, S, then repeatedly apply
probabilistically-sampled transformations to the nonter-
minals in the sequence. Eventually the sequence will con-
tain only terminals from Ψ. This process generates a parse
tree, rooted at node S, in which internal nodes are labeled
with nonterminals and leaf nodes with terminals, with
children of each node ordered left-to-right (Figure 1).
Sequence X can be obtained by reading off ungapped RNA
symbols from the top row of the output, and sequence Y
by reading off the bottom row. Note that the subtree
rooted at any internal W-labeled node describes a sub-
process that generates some pair of subsequences (Xij, Ykl)
starting from nonterminal W. We will refer to this subse-
quence-pair (Xij, Ykl) as the inside sequence-pair of W.

The parse tree likelihood is the product of all the rule prob-
abilities corresponding to the internal nodes. Summing

Fold sensitivity as a function of envelope size parameter N for three different test regimesFigure 10
Fold sensitivity as a function of envelope size parameter N
for three different test regimes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

F
ol

d
se

ns
iti

vi
ty

N

N-best alignments, all folds
N-best folds, all alignments

N-best folds, 100-best alignments

X[]z
z∑ = 1



Fold specificity as a function of envelope size parameter N for three different test regimesFigure 11
Fold specificity as a function of envelope size parameter N for
three different test regimes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

F
ol

d
sp

ec
ifi

ci
ty

N

N-best alignments, all folds
N-best folds, all alignments

N-best folds, 100-best alignments
Page 10 of 22
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
the likelihoods of all parse trees rooted in state S and

generating sequences X, Y, one obtains P(X, Y | S,), the
sequence likelihood. This sum can be performed efficiently
by the Inside algorithm, as will be described below.

Dynamic programming algorithms for Pair SCFGs
The following section describes the constrained and
unconstrained dynamic programming (DP) algorithms
used for Pair SCFGs.

The Inside algorithm

The Inside algorithm [26] computes P(X, Y | S,) by
recursive decomposition via intermediate probabilities

(i, j, k, l) ≡ P(Xij, Ykl|U,). In RNA normal form, the
time-limiting step in the Inside algorithm involves

summing contributions to (i, j, k, l) from bifurcation

rules of the form U → VW, such that the bifurcation splits
the two sequences (X, Y) between bases (Xm, Yn) and
(Xm+1, Yn+1)

An asymptotically faster step involves summing contribu-
tions from matching emission rules of the form

 (transition rules are represented as the

special case A' = B' = C' = D' =)

Total running time of stemloc (including envelope generation phases) as a function of envelope size parameter N for three different test regimesFigure 12
Total running time of stemloc (including envelope generation
phases) as a function of envelope size parameter N for three
different test regimes.

 1

 10

 100

 1000

 1 10 100 1000 10000

R
un

ni
ng

 ti
m

e/
se

co
nd

s

N

N-best alignments, all folds
N-best folds, all alignments

N-best folds, 100-best alignments





U 

U

Peak memory usage of stemloc (i.e. the size of the principal CYK matrix) as a function of envelope size parameter N for three different test regimesFigure 13
Peak memory usage of stemloc (i.e. the size of the principal
CYK matrix) as a function of envelope size parameter N for
three different test regimes.

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 10 100 1000 10000

M
em

or
y

us
ag

e/
by

te
s

N

N-best alignments, all folds
N-best folds, all alignments

N-best folds, 100-best alignments

Q m n U VW i m k n

Q Q m n

B
W

V W
V

B
n k

l

m i

j

(,) () (, , ,)

(,)

= →

=

∑∑

∑∑
==

  

1

U A

B
V C

D

→ ′
′

′
′

−

Page 11 of 22
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
(Recall that A is the ungapped version of A'. Thus |A| = 0

⇔ A = ε ⇔ A' = and similarly for B, C and D.)

The intermediate probabilities of the Inside algorithm can
then be expressed as

(i, j, k, l) = Q1 + Q2

Termination of the recursion is provided by matching end
rules, U → ε, if and only if the subsequences (Xij, Ykl) are
empty

(i, i, k, k) = (U → ε)

The sequence likelihood is obtained as

P(X, Y | S,) ≡ (0,|X|,0,|Y|)

In pseudocode, the Inside algorithm is

• Inputs: X, Y, S,

• For i = |X| to 0 (descending)

 • For j = i to |X|

 • For k = |Y| to 0 (descending)

 • For l = k to |Y|

 • For each nonterminal U ∈ ε

 • Set Q1 ← 0; calculate Q2

 • For m = i to j

 • For n = k to l

 • Calculate QB(m, n) and add to Q1

 • Calculate (i, j, k, l) and store

Table 1: A stochastic context-free grammar for generating pairwise alignments of RNA structures.

L → R
 (L → R)

Stem → stemExtend (1 - stemGap) basepairSubstitution [AC, BD]

| stemExtend (stemGap/2) basepairIndel [AC]

| stemExtend (stemGap/2) basepairIndel [BD]

| (1 - stemExtend)(1 - bifurcate) baseSubstitution [AB]

| Stem Stem (1 - stemExtend) bifurcate
Loop → loopExtend (1 - loopGap) baseSubstitution [AB]

| loopExtend (loopGap/2) baseIndel [A]

| loopExtend (loopGap/2) baseIndel [B]

| ε 1 - loopExtend



A

B

C

D
Stem

A C

− −
Stem

− −
B D

Stem

A

B
Loop

A

B
Loop

A

−
Loop

−
B

Loop

Q U A

B
V C

DVD YC XB YA X ljki

2
11

= → ′
′

′
′

∑∑∑∑∑
∈∈∈∈ ++


{ , }{ , }{ , }{ , } εεεε 







+ − + −V i A j C k B l D(| |, | |, | |, | |)

−

U

U 

 S



U
Page 12 of 22
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
• Return (0, |X|, 0, |Y|)

The time-limiting step of the Inside algorithm (computing
the QB) involves six indices (i, j, k, l, m, n) and the time
complexity of the full recursion is O(|X|3|Y|3). However,
the stored intermediate probabilities involve only four
indices (i, j, k, l) and so the memory complexity is
O(|X|2|Y|2).

In RNA normal form, the emission rules (Q2) account for
homologous base-pairings between residues (Xi, Xj) and
(Yk, Yl), or unpaired residues at Xi, Xj, Yk or Yl. This may
also imply that Xi and Yk are aligned, or that Xj and Yl are
(Figure 2). The bifurcation rules (QB(m, n)) account for
conserved multiloop structures in the RNA, i.e. one
homology between substructures Xim and Ykn and another
between substructures Xmj and Ynl (Figure 3).

Imposing constraints
The high time and memory cost of the Inside and related
algorithms motivate the development of slimmer, faster
versions. To begin with, we impose constraints that nar-
row the search space. For example, we might want to pre-
parse the sequences individually (using a single-sequence
SCFG, or other O(|X|3) RNA-folding method) and iden-
tify likely base-pairs (Xi, Xj) or (Yk, Yl), and/or likely
unpaired nucleotides Xi or Yk. Even simpler, we could
simply throw out basepairs (Xi, Xj) between distant resi-
dues (i.e. where j - i exceeds some cutoff) Alternatively, we
might want to pre-align the sequences (using a pairwise
hidden Markov model, or other O(|X||Y|) alignment
method) and identify likely alignment columns (Xi, Yk)
and/or likely indels Xi or Yk. Again, more simply, we could
simply exclude columns (Xi, Yk) for which |k - i| is too
large.

We can combine these various strategies into a general-
ized constraint on base-pairs, alignment-columns or both.

We stipulate that (i, j, k, l) = P(Xij, Ykl|U,) = 0 unless
the following conditions are satisfied

Here and are sets of permissible co-ordinates for
structurally discrete subsequences in X and Y. Fold-related
features (basepairs and unpaired residues) can be
included or excluded by this set, and so we refer to it as a

fold envelope [13]. The set is a set of possible cut-points
in the alignment of X and Y, and is referred to as an align-
ment envelope [31]. Both types of envelope are illustrated

in Figure 2. The fold and alignment envelopes satisfy the
following set relations

If equality holds in all three cases, then we recover the
unconstrained Inside algorithm.

Note that the co-ordinates (i, j, k, l) for the cutpoints and
subsequences lie between residues of X and Y.

There are (|X| + 1)(|Y| + 1) cutpoints in the maximal

alignment envelope and (|X| + 1)(|X| + 2) subse-

quences in the maximal fold envelope .

As an alternative to the unconstrained Inside algorithm,
we can partially initialize the envelopes to limit the
maximum subsequence length and/or the maximum
deviation of the alignment from the main diagonal (Fig-
ure 4). More flexibly, we can limit the recursion to a single
alignment, a single structure, or a broadly-specified set of
alignments or structures (Figure 5). Applications such as
alignment of two known structures [13,32], alignment of
an unstructured sequence to a known structure [33] or
structure prediction from a known alignment [9] all
reduce to simple application of the appropriate
constraints.

Further possible constraints
The constraints given here allow the independent imposi-
tion of alignment or fold constraints. One can imagine
further, even more general constraints. For example, one
could exclude subsequence-pairs (Xij, Ykl) of radically dif-
ferent lengths, i.e. for which |(j - i) - (k - l)| exceeds some
cutoff. This constraint is employed by the FOLDALIGN
program. It is not expressible as a combination of
independent alignment and fold constraints, and has not
been implemented for the present work, though it would
be relatively straightforward to combine it with the other
constraints described here [10].

Accelerating the iteration
Simply setting some intermediate probabilities to zero is
not sufficient to accelerate the Inside algorithm. We also
need to redesign the iteration to avoid visiting zero-prob-
ability subsequence-pairs (Xij, Ykl). This is achieved by pre-

indexing the fold envelopes , and the alignment

envelope so that we can quickly locate valid co-ordi-
nates (i, j, k, l). The following is pseudocode for the algo-
rithm with the redesigned iterator

S

U 

k l

i k

j l

Y,

,

, ()

() ∈

() ∈

() ∈



 1

 X Y







X

Y

i j i j X

k l k l Y

i k i X k Y

⊆ () ≤ ≤ ≤

⊆ () ≤ ≤ ≤

⊆ () ≤ ≤ ≤ ≤

{ , : }

{ , : }

{ , : , }

0

0

0 0


1
2

 X

 X Y



Page 13 of 22
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
• Inputs: X, Y, S,

• For i = |X| to 0 (descending)

 • For each j satisfying (i, j) ∈ (ascending) (†)

 • For each k satisfying (i, k) ∈ (descending) (†)

 • For each l satisfying (k, l) ∈ (ascending) (†)

 • If (j, l) ∈ then

 • For each nonterminal U ∈ Φ

 • Set Q1 ← 0; calculate Q2

 • For each m satisfying {(i, m), (m, j)} ⊂
(†)

 • For each n satisfying {(k, n), (n, l)} ⊂
(†)

 • If (m, n) ∈ then

 • Calculate QB(m, n) and add to Q1

 • Calculate (i, j, k, l) and store

• Return (0, |X|, 0, |Y|)

(†) These ordered subsets of , and can be
precomputed for speed.

Alternative designs for the algorithm are possible, and
indeed different circumstances may affect the choice of
optimal design (e.g. depending on which envelopes are
most constrained).

Slimming the container
Memory is the most prohibitively expensive resource
demand of the Inside algorithm. In its simplest form, the

algorithm stores the intermediate probabilities (i, j, k,
l) using a five-dimensional array indexed by U, i, j, k and
l. To get the most benefit out of imposing constraints, it is
necessary to replace this multidimensional array with an
efficiently-indexed reduced-space container.

This design decision involves a close trade-off between
CPU and memory usage. Initially, we tested various com-
binations of generic containers with O(N)-storage and
O(N log N) access-times, such as balanced search trees

[22]. These were found to be unbearably slow, and so we
settled on a configuration of nested preindexed arrays.
This configuration wastes some space, but has the impor-
tant advantage of constant access time for given indices
(U, i, j, k, l).

For fold envelope , we precompute and sort the list

 = {(i, j)} ⊆ of subsequences starting at each posi-

tion i. For each subsequence (i, j) ∈ , let be its

rank in . These are also precomputed and

stored. Similar precomputed sets and ranks

are stored for .

Our DP matrix then uses an inner two-dimensional array
nested inside an outer two-dimensional array.

The outer array has dimensions (|X|, |Y|) and is indexed

by (i, k). The inner array has dimensions (| |, | |)

and is indexed by (,). Cells of this inner array

are further sub-indexed by nonterminal U using a stand-

ard fixed-length array, yielding (i, j, k, l).

This particular configuration is efficient when the align-
ment envelope is densely populated and the fold enve-
lopes are sparsely populated. As with the redesigned
iterator, there may be alternative designs that are resource-
optimal under various different circumstances, depending
on the nature of the envelopes.

The CYK algorithm
The Cocke-Younger-Kasami (CYK) dynamic program-
ming algorithm [20] is related to the Inside algorithm, but
replaces "p + q" with "max(p, q)" in all formulae (that is,
instead of summing probabilities, the maximum proba-

bility is always taken). The entries of the DP matrix, (i,
j, k, l), represent the maximum likelihood of any parse tree
for (Xij, Ykl). A recursive/stack-based traceback algorithm
can be used to recover this parse tree, beginning from sub-
sequence (i, j, k, l) = (0, |X|, 0, |Y|) (for global alignment)

or (i, j, k, l) = argmax (i, j, k, l) (for local alignment)
[13].

The Outside and KYC algorithms
The Outside and KYC algorithms widen the applications
of probabilistic inference with SCFGs. The Outside algo-
rithm, together with the Inside, can be used to recover
posterior probabilities of given basepairs/columns, which
can be used as alignment reliability indicators or as



 X



Y



 X

Y



U

S

 X Y 

U

 X

αX
i()  X

 X βX
i j(,)

αX
i() βX

i j(,)

αY
k() βY

k l,()

Y

αX
i() αY

k()

βX
i j(,) βY

k l,()

U

V

S
Page 14 of 22
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
update counts in Expectation Maximization parameter
training [20,26]. The KYC algorithm can be used with CYK
to recover maximum-likelihood tracebacks from given co-
ordinates. (We introduce the name "KYC" as a simple
reversal of "CYK", reflecting the fact that KYC is to CYK as
Outside is to Inside, i.e. the "reverse" version of the
algorithm.)

These algorithms use dynamic programming recursions
that are related to Inside and CYK. The Outside algorithm
calculates intermediate probabilities of the form

(i, j, k, l) = P(X0,i, Y0,k, V, Yl,|Y|, Xj,|X| |S)

representing the sum-over-probabilities of all partial parse
trees rooted at S and ending in V without having yet gen-
erated sequences Xij and Ykl. Then, for example, the
posterior probability that some node V in the parse tree
has inside sequence-pair (Xij, Ykl) is

As CYK is related to Inside, the KYC algorithm is related to
the Outside algorithm: the intermediate probabilities

(i, j, k, l) are found using similar recursions (see
below), but with all sums "p + q" replaced by maxima
"max(p, q)". The CYK and KYC DP matrices can be used to
find the maximum likelihood of any parse tree containing
a node V with inside sequence-pair (Xij, Ykl): this maxi-

mum likelihood is (i, j, k, l) (i, j, k, l). A recursive/
stack-based traceback algorithm can be used to find the
parse tree with this maximum likelihood.

As with the Inside algorithm, we sum contributions to

(i, j, k, l) from various matching production rules. In
contrast to the Inside algorithm, the nonterminal V that

indexes (...) must now be matched on the right-hand-
side, not the left-hand-side, of these production rules. We
first consider bifurcations from a source nonterminal U
that adjoin adjacent subsequences to left (U → WV) or
right (U → VW), so that the inside sequence-pairs for U
are (respectively) (Xmj, Ynl) or (Xim,Ykn)

Next we consider emission rules, , again

representing transitions as the special case A' = B' = C' = D'

=

The intermediate Outside probabilities are thus

(i, j, k, l) = +

(0, |X|, 0, |Y|) = 1 (Termination condition)

Note that the Inside probabilities (i, j, k, l) are needed
to compute the Outside probabilities. We supply the
Inside matrix, I, as an input to the Outside algorithm
(they are usually calculated at the same time anyway).

In terms of the underlying iteration, the key difference
between the Inside and Outside algorithms is as follows.
Suppose subsequence-pair INNER = (Xij, Ykl) is enclosed
by subsequence-pair OUTER = (Xi'j', Yk'l') (that is, 0 ≤ i' ≤ i
≤ j ≤ j' ≤ |X| and 0 ≤ k' ≤ k ≤ l ≤ l' ≤ |Y|, and INNER ≠
OUTER). Then the Inside iterator visits INNER before
OUTER, whereas the Outside iterator visits OUTER before
INNER. The order in which the Outside iterator visits
nonterminals is topologically forward-sorted with respect
to the grammar's transition-rule graph (i.e. the reverse of
the order used by the Inside iterator).

• Inputs: X, Y, S, , I

• Initialize (0, |X|, 0, |Y|)

• For i = 0 to |X| (ascending)

 • For each j satisfying (i, j) ∈ (descending) (†)

 • For each k satisfying (i, k) ∈ (ascending) (†)

 • For each l satisfying (k, l) ∈ (descending) (†)

 • If (j, l) ∈ then

 • For each nonterminal U ∈ Φ (reverse order)

 • Set ← 0; calculate

 • For each m satisfying {(m, j), (m, i)} ⊂
(†)

V

 

V V

S

i j k l i j k l

X Y

(, , ,) (, , ,)

(,| |, ,| |)0 0

V

V V

V

V

′ = →

′ = →

∑∑Q m n U WV m j n l m i n k

Q m n U VW

L U W
WU

R

(,) () (, , ,) (, , ,)

(,) ()

  

  U W
WU

L
n

k

m

i

R

i m k n j m l n

Q Q m n Q m n

(, , ,) (, , ,)

(,) (,)

∑∑

∑∑′ = ′ + ′
==

1
00 nn l

Y

m j

X

==
∑∑
| || |

U A

B
V C

D

→ ′
′

′
′

−

′ = → ′
′

′
′

∑∑∑∑∑
∈∈∈∈ ++

Q U A

B
V C

DUD YC XB YA X ljki

2
11


{ , }{ , }{ , }{ , } εεεε











− + − +U i A j C k B l D(| |, | |, | |, | |)

V ′Q1 ′Q2

S

W



S

 X



Y



′Q1 ′Q2

 X
Page 15 of 22
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
 • For each n satisfying {(n, l), (n, k)} ⊂
(†)

 • If (m, n) ∈ then

 • Calculate (m, n) and add to

 • For each m satisfying {(i, m), (j, m)} ⊂
(†)

 • For each n satisfying {(k, n), (l, n)} ⊂
(†)

 • If (m, n) ∈ then

 • Calculate (m, n) and add to

 • Calculate (i, j, k, l) and store

(†) These ordered subsets of , and can be
precomputed for speed.

The reduced-space dynamic programming matrix that was
developed above for the constrained Inside algorithm can
be re-used for the constrained Outside algorithm.

Implementation
The above-described algorithms were implemented in the
C++ dart library. One dart program in particular, stemloc,
is an efficient general-purpose RNA multiple-sequence
alignment program that can be flexibly controlled by the
user from the Unix command line, including re-estima-
tion of parameters from training data as well as a broad
range of alignment functions.

The dart libraries provide Inside, Outside, CYK, KYC,
traceback and training algorithms for any pairwise SCFG
in RNA normal form, whose rule probabilities can be
expressed as algebraic expressions of some set of probabil-
ity parameters (with associated normalization con-
straints). The operator-overloading features of C++ are
utilized in full, so that the syntax of initializing a grammar
object involves very few function calls and is essentially
declarative.

dart source code releases can be downloaded under the
terms of the GNU Public License, from the following URL
(which also gives access to the latest development code in
the CVS repository)

http://www.biowiki.org/

The grammars and algorithms described in this paper spe-
cifically refer to release 0.2 of the dart package, dated
October 2004 (although the algorithms are also imple-
mented in release 0.1, dated 10/2003).

Selecting appropriate fold and alignment envelopes
This section offers a non-exhaustive list of possible strate-
gies for choosing appropriate fold/alignment envelopes.
(Italicized terms apply to fold envelopes, and bold terms
to alignment envelopes.)

• Choose some appropriately simplified grammar, such as
a single-sequence SCFG/pair HMM that models RNA fold-
ing/primary sequence alignment. Compute posterior
probabilities of subsequences/cutpoints using the Inside-
Outside/Forward-Backward algorithm for some single-
sequence SCFG/pair HMM that models RNA folding/pri-
mary sequence alignment. Select all subsequences/cut-
points with posterior probability above some threshold
(or select e.g. the top 10 percentile of the posterior
probabability distribution). Ensure that each of these sub-
sequences/cutpoints is on a valid traceback path, e.g. by
running the CYK-KYC/Viterbi-forward-backward algo-
rithm to find the maximum-likelihood traceback path
from any given subsequence/cutpoint. Take the union of all
subsequences/cutpoints on these traceback paths to obtain
the required envelope.

• As above, choose some appropriate single-sequence
SCFG/pair HMM that models RNA folding /primary
sequence alignment. Compute the maximum traceback
path-likelihood from all subsequences/cutpoints using the
CYK-KYC/Viterbi-forward-backward algorithm for this
grammar. Select all subsequences/cutpoints with maxi-
mum traceback likelihood above some threshold (or
select e.g. the top 10 percentile of the max-traceback like-
lihood distribution) and do a traceback from each such
cell. Take the union of all subsequences/cutpoints on these
traceback paths to obtain the required envelope.

• As above, choose some appropriate single-sequence
SCFG/pair HMM that models RNA folding /primary
sequence alignment. Sample some number of RNA struc-
tures /pairwise alignments using the Inside/Forward algo-
rithm with stochastic traceback. Take the union of all
subsequences/cutpoints on these traceback paths to obtain
the required envelope.

The latter two strategies have been implemented in the
stemloc package described below. Empirically, the sto-
chastic strategy appears to be less reliable than the deter-
ministic strategies (although in theory the stochastic
strategy will eventually find the globally optimal align-
ment given sufficiently many random repetitions, which
may be a useful property).

Y



′QL ′Q1

 X

Y



′QR ′Q2

U

 X Y 
Page 16 of 22
(page number not for citation purposes)

http://www.biowiki.org/

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
Table 2: The stemloc grammar, part 1 of 3: stem and loop structures.

L → R (L → R)

Start → Stem startInStem
| LBulge

(1 - startInStem) postStem [2]/ (2 postStem[i])

| RBulge
(1 - startInStem) postStem[2]/ (2 postStem[i])

| LRBulge
(1 - startInStem) postStem [3]/ (postStem[i])

| Multi
(1 - startInStem) postStem [4]/ (postStem[i])

Stem → xyStemMatch 1 - stemGapOpen
| yStemIns stemGapOpen/2
| xStemDel stemGapOpen/2

StemMatch → xyStemMatch (1 - stemGapOpen) stemExtend
| yStemIns stemGapOpen/2
| xStemDel stemGapOpen/2
| StemExit (1 - stemGapOpen)(1 - stemExtend)

StemIns → xy StemMatch (1 - stemGapExtend)(1 - stemGapSwap) stemExtend
| yStemIns stemGapExtend
| xStemDel (1 - stemGapExtend) stemGapSwap
| StemExit (1 - stemGapExtend) (1 - stemGapSwap)(1 - stemExtend)

StemDel → xyStemMatch (1 - stemGapExtend)(1 - stemGapSwap) stemExtend
| xStemDel stemGapExtend
| yStemIns (1 - stemGapExtend) stemGapSwap
| StemExit (1 - stemGapExtend) stemGapSwap (1 - stemExtend)

StemExit → Loop postStem [1]
| LBulge postStem [2]/2
| RBulge postStem [2]/2
| LRBulge postStem [3]
| Multi postStem [4]

Multi → LMulti RMulti 1
LMulti → LBulge multiBulgeOpen

| Stem (1 - multiBulgeOpen)
RMulti → Multi multiExtend

| Stem (1 - multiExtend)(1 - multiBulgeOpen)2

| LBulge (1 - multiExtend)(1 - multiBulgeOpen) multiBulgeOpen
| RBulge (1 - multiExtend)(1 - multiBulgeOpen) multiBulgeOpen
| LRBulge (1 - multiExtend) multiBulgeOpen2

Loop → xyLoopMatch (1 - loopGapOpen)
| yLoopIns loopGapOpen/2
| xLoopDel loopGapOpen/2

LoopMatch → xyLoopMatch (1 - loopGapOpen) loopExtend
| yLoopIns loopGapOpen/2
| xLoopDel loopGapOpen/2
| ε (1 - loopGapOpen) (1 - loopExtend)

LoopIns → xyLoopMatch (1 - loopGapExtend)(1 - loopGapSwap) loopExtend
| yLoopIns loopGapExtend
| xLoopDel (1 - loopGapExtend) loopGapSwap
| ε (1 - loopGapExtend)(1 - loopGapSwap) (1 - loopExtend)

LoopDel → xyLoopMatch (1 - loopGapExtend)(1 - loopGapSwap) loopExtend
| xLoopDel loopGapExtend
| yLoopIns (1 - loopGapExtend) loopGapSwap
| ε (1 - loopGapExtend)(1 - loopGapSwap)(1 - loopExtend)



i=∑ 1
3

i=∑ 1
3

i=∑ 1
3

i=∑ 1
3

Page 17 of 22
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
Multiple sequence alignment
A heuristic algorithm for performing multiple alignment-
and-folding of RNA sequences with a pairwise SCFG by
progressive single-linkage clustering runs as follows

• Start by making pairwise alignments (with predicted sec-
ondary structures) for all pairs of input sequences.

• Mark the highest-scoring pair, and extract the two
marked sequences with their predicted secondary structures.
This highest-scoring pair is called the seed alignment.

• While some sequences remain unmarked:

 • For each newly-marked sequence:

Table 3: The stemloc grammar, part 2 of 3: bulges.

L → R (L → R)

LBulge → xyLBulgeMatch (1 - loopGapOpen)
| yLBulgeIns loopGapOpen/2
| xLBulgeDel loopGapOpen/2

LBulgeMatch → xyLBulgeMatch (1 - loopGapOpen) loopExtend
| yLBulgeIns loopGapOpen/2
| xLBulgeDel loopGapOpen/2
| Stem (1 - loopGapOpen)(1 - loopExtend)

LBulgeIns → xyLBulgeMatch (1 - loopGapExtend)(1 - loopGapSwap) loopExtend
| yLBulgeIns loopGapExtend
| xLBulgeDel (1 - loopGapExtend) loopGapSwap
| Stem (1 - loopGapExtend)(1 - loopGapSwap) (1 - loopExtend)

LBulgeDel → xyLBulgeMatch (1 - loopGapExtend)(1 - loopGapSwap) loopExtend
| xLBulgeDel loopGapExtend
| yLBulgeIns (1 - loopGapExtend) loopGapSwap
| Stem (1 - loopGapExtend)(1 - loopGapSwap) (1 - loopExtend)

RBulge → xyRBulgeMatch (1 - loopGapOpen)
| yRBulgeIns loopGapOpen/2
| xRBulgeDel loopGapOpen/2

RBulgeMatch → xyRBulgeMatch (1 - loopGapOpen) loopExtend
| yRBulgeIns loopGapOpen/2
| xRBulgeDel loopGapOpen/2
| Stem (1 - loopGapOpen) (1 - loopExtend)

RBulgeIns → xyRBulgeMatch (1 - loopGapExtend)(1 - loopGapSwap) loopExtend
| yRBulgeIns loopGapExtend
| xRBulgeDel (1 - loopGapExtend) loopGapSwap
| Stem (1 - loopGapExtend)(1 - loopGapSwap) (1 - loopExtend)

RBulgeDel → xyRBulgeMatch (1 - loopGapExtend)(1 - loopGapSwap) loopExtend
| xRBulgeDel loopGapExtend
| yRBulgeIns (1 - loopGapExtend) loopGapSwap
| Stem (1 - loopGapExtend)(1 - loopGapSwap) (1 - loopExtend)

LRBulge → xyLRBulgeMatch (1 - loopGapOpen)
| yLRBulgeIns loopGapOpen/2
| xLRBulgeDel loopGapOpen/2

LRBulgeMatch → xyLRBulgeMatch (1 - loopGapOpen) loopExtend
| yLRBulgeIns loopGapOpen/2
| xLRBulgeDel loopGapOpen/2
| RBulge (1 - loopGapOpen) (1 - loopExtend)

LRBulgeIns → xyLRBulgeMatch (1 - loopGapExtend)(1 - loopGapSwap) loopExtend
| yLRBulgeIns loopGapExtend
| xLRBulgeDel (1 - loopGapExtend) loopGapSwap
| RBulge (1 - loopGapExtend)(1 - loopGapSwap) (1 - loopExtend)

LRBulgeDel → xyLRBulgeMatch (1 - loopGapExtend)(1 - loopGapSwap) loopExtend
| xLRBulgeDel loopGapExtend
| yLRBulgeIns (1 - loopGapExtend) loopGapSwap
| RBulge (1 - loopGapExtend)(1 - loopGapSwap) (1 - loopExtend)



Page 18 of 22
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
Table 4: The Stemloc grammar, part 3 pf 3: emissions.

L → R (L → R)

xyLoopMatch → baseSubstitution [A, B]

yLoopIns → baseIndel [B]

xLoopDel → baseIndel [A]

xyLBulgeMatch → baseSubstitution [A, B]

yLBulgeIns → baseIndel [B]

xLBulgeDel → baseIndel [A]

xyRBulgeMatch → baseSubstitution [C, D]

yRbulgeIns → baseIndel [D]

xRBulgeDel → baseIndel [C]

xyLRBulgeMatch → baseSubstitution [A, B]

yLRBulgeIns → baseIndel [B]

xLRBulgeDel → baseIndel [A]

xyStemMatch → basepairSubstitution [AC, BD]

yStemIns → basepairIndel [BD]

xStemDel → basepairIndel [AC]



A

B
LoopMatch

−
B

LoopIns

A

−
LoopDel

A

B
LBulgeMatch

−
B

LBulgeIns

A

−
LBulgeDel

RBulgeMatch C

D

RBulgeIns −
D

RBulgeDel C

−

A

B
LRBulgeMatch

−
B

LRBulgeIns

A

−
LRBulgeDel

A

B

C

D
StemMatch

− −
B D

StemIns

A C

− −
StemDel
Page 19 of 22
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
 • Align the marked sequence, with a fold envelope con-
strained by its predicted structure, to each unmarked
sequence in turn. (The fold envelope can be tailored to
allow e.g. extension of local alignments.)

 • Select the highest-scoring of the pairwise (marked-to-
unmarked) alignments. Use this alignment to merge the
unmarked sequence into the seed alignment, and mark
this sequence as newly aligned.

• Return the seed alignment.

The above algorithms have been implemented in stemloc.
The multiple alignments produced by this algorithm lack
well-defined probabilistic scores unless the pair SCFG is
conditionally normalized. It is also straightforward to
retrieve the N best non-overlapping alignments by
repeatedly applying an incremental Waterman-Eggert-
style mask to the alignment envelope [24]. This is imple-
mented in stemloc for the pairwise case.

A grammar for pairwise RNA alignment and structure prediction
After some empirical experimentation, we developed the
grammar of Tables 2, 3, 4 for the stemloc program. The
grammar is split over three tables due to its considerable
number of rules. Table 2 contains rules describing the
connectivity of stems, loops and multiloops, and contains
the only bifurcation rule. Table 3 describes the connectiv-

ity of bulges and Table 4 handles emissions (basepaired,
unpaired, aligned or gapped).

The starting nonterminal is Start. The nonterminals repre-
senting higher-level units of RNA structure are Loop,
Stem, LBulge, RBulge and LRBulge. Each of these has asso-
ciated Match, Ins and Del states (e.g. StemMatch, StemIns
and StemDel) and each of these states has an associated
emission state, prefixed with x, y or xy superscripts (e.g.
xyStemMatch, yStemIns and xStemDel). The Multi state
models multiloops, using a bifurcation to LMulti and
RMulti.

Tables 2, 3, 4 also refer to probabilistic parameters used by
the models. Free probability parameters (allowed to range
from 0 to 1) include startInStem (determining the proba-
bility of ending the alignment with a basepair), loopEx-
tend, stemExtend and multiExtend (determining the
geometric distribution over loop and stem lengths, or the
number of branches in a multiloop), multiBulgeOpen
(determining the probability of bulges in multiloops) and
stemGapOpen, stemGapExtend, stemGapSwap, loopGap-
Open, loopGapExtend and loopGapSwap (determining
the geometric distribution over gap lengths in stems and
loops). There are also five parameter arrays: postStem[4]
(determining whether a stem is followed by a loop, a
bulge, a double-stranded bulge or a multiloop);
baseIndel[4] (a probability distribution for a single una-

Table 5: The subset of RFAM used to test the constrained SCFG algorithms.

RFAM family Seauence (EMBL.ID / startpoint-endpoint) Alignment Basepair
X Y sens. spec. sens. spec.

S15 AE004150.1/7123-7243 AE004888.1/2785-2659 0.65 0.752 0.462 0.353
S15 AE005545.1/3797-3683 AE004888.1/2785-2659 0.652 0.701 0.615 0.4
U3 U27297.1/2-180 AF277396.1/3-126 0.252 0.248 0.0833 0.087

glmS AL935254.1/94449-94600 AE010557.1/24-169 0.603 0.599 0.667 0.595
glmS AE010557.1/24-169 AE013165.1/2616-2459 0.532 0.587 0.545 0.667
glmS AL596166.1/50734-50929 AE013165.1/2616-2459 0.873 0.873 0.757 0.7
glmS AC078934.3/32621-32405 AE010557.1/24-169 0.869 0.863 0.756 0.689
glmS AL935254.1/94449-94600 AE013165.1/2616-2459 0.715 0.715 0.811 0.769

Purine AE007775.1/3558-3459 AL591981.1/205922-205823 0.869 0.869 0.773 0.81
Purine AL591981.1/205922-205823 AP004595.1/160373-160472 0.838 0.838 0.591 0.5
Purine AE007775.1/3558-3459 AE010606.1/4680-4581 0.67 0.699 0.636 0.875
Purine AP003194.2/163700-163601 AE016809.1/202496-202595 0.84 0.866 0.857 0.75

U5 M16510.1/245-451 AF095839.1/890-777 0.584 0.579 0.667 0.8
U5 X63789.1/2236-2349 AF095839.1/890-777 0.716 0.69 0.8 0.8
IRE AY112742.1/12-41 S57280.1/391-417 0.667 0.667 0.6 0.75
IRE AF266195.1/14-43 X01060.1/3950-3976 0.963 0.963 0.9 0.9
IRE S57280.1/391-417 X13753.1/1434-1460 1 1 0.6 0.6
IRE AY112742.1/12-41 X13753.1/1434-1460 0.778 0.778 0.8 0.727
IRE AF266195.1/14-43 AF171078.1/1416-1442 0.963 0.963 0.7 0.7
IRE AF171078.1/1416-1442 X01060.1/3950-3976 1 1 0.7 0.875
6S Y00334.1/77-254 AL627277.1/108623-108805 0.869 0.869 0.811 0.754
6S AE004317.1/5626-5807 AL627277.1/108623-108805 0.777 0.777 0.736 0.709
Page 20 of 22
(page number not for citation purposes)

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
ligned, unpaired nucleotide); baseSubstitution[16] (a
joint probability distribution for two aligned, unpaired
nucleotides); basepairIndel[16] (a joint probability distri-
bution for two unaligned, basepaired nucleotides); and
basepairSubstitution [256] (a joint probability
distribution for four aligned, basepaired nucleotides). All
of the above parameters were automatically estimated
from training data by the dart software.

To summarize, the grammar models homologous stems,
loops, multiloops and bulges in pairwise RNA
alignments, with covariant substitution scores and affine
gap penalties (geometric indel length distributions). It has
the property that any combined alignment and structure
prediction for two RNA sequences has a single, unambig-
uous parse tree. In our investigations, this unambiguity
appeared to improve the accuracy of alignment and
structure prediction substantially; see also writings on this
topic by Giegerich [34] and Dowell, Eddy et al [35]. The
grammar is also designed to minimize the number of
bifurcation rules (the only bifurcation is Multi → LMulti
RMulti).

The stemloc grammar does not model basepair stacking
effects due to π-orbital overlap, nor does it allow low-cost
insertion or deletion of whole stems or substructures.
Since the algorithms are implemented for any SCFG, it is
straightforward to modify the program to experiment
with grammars that model such phenomena. An example
of a grammar that models the latter type of mutation
(whole-substructure indels), and is also fully derived from
an evolutionary rate-based model, is presented in a com-
panion paper [36].

Parameterization
Under the SCFG framework, the probability parameters
for the grammar can be estimated directly from data using
the Inside-Outside algorithm with appropriate con-
straints, which are easy to supply (e.g. to sum over all
parses consistent with a given alignment, one simply uses
an appropriate alignment envelope). The parameters were
trained from 56376 (non-independent) pairwise align-
ments from RFAM [37], with each pairwise alignment
making a weighted contribution of 1/N to the counts
computed during Expectation Maximization training,
where N is the number of sequences in the multiple
alignment from which the pairwise alignments were
derived. Furthermore, the pairwise alignments were
binned according to sequence identity, providing four
alternative parameterisations; the bin ranges were 30–
40%, 50–60%, 70–80% and 90–100%.

stemloc allows the user to re-estimate all parameters from
their own personal training set of trusted alignments. This
may be a useful feature, since the training procedure

described above is probably biased. Since training was
performed using all kinds of sequence available in RFAM,
including RNA sequences with computationally predicted
secondary structure as well as those for which structures
were experimentally confirmed, it is possible that the
stemloc parameters may be skewed by the parameters of
the computational methods used by the RFAM curators to
predict structure. These include the homology modeling
program INFERNAL [37] and the de novo structure predic-
tion program PFOLD [8].

Authors' contributions
IH designed, programmed, tested and documented the
algorithms.

Acknowledgements
The author thanks Sean Eddy for inspiring discussions and three anonymous
reviewers for their helpful suggestions. The work was conceived during an
NIH-funded workshop on RNA informatics organised by Elena Rivas and
Eric Westhof in Benasque, Spain, 2003.

References
1. Eddy SR: Noncoding RNA genes. Current Opinion in Genetics and

Development 1999, 9(6):695-699.
2. Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR: Ribos-

witches Control Fundamental Biochemical Pathways in
Bacillus subtilis and Other Bacteria. Cell 2003, 113:577-586.

3. Sijen T, Plasterk RH: Transposon silencing in the Caenorhabdi-
tis elegans germ line by natural RNAi. Nature 2003,
426(6964):310-314.

4. Ambros V: The functions of animal microRNAs. Nature 2004,
431(7006):350-355.

5. Baulcombe D: RNA silencing in plants. Nature 2004,
431(7006):356-363.

6. Rivas E, Eddy SR: Secondary structure alone is generally not
statistically significant for the detection of noncoding RNAs.
Bioinformatics 2000, 16(7):583-605.

7. Coventry A, Kleitman DJ, Berger B: MSARI: Multiple sequence
alignments for statistical detection of RNA secondary struc-
ture. Proceedings of the National Academy of Sciences of the USA 2004,
101:12102-12107.

8. Knudsen B, Hein J: RNA secondary structure prediction using
stochastic context-free grammars and evolutionary history.
Bioinformatics 1999, 15(6):446-454.

9. Rivas E, Eddy SR: Noncoding RNA gene detection using com-
parative sequence analysis. BMC Bioinformatics 2001, 2:8.

10. Gorodkin J, Heyer LJ, Stormo GD: Finding the most significant
common sequence and structure motifs in a set of RNA
sequences. Nucleic Acids Research 1997, 25(18):3724-3732.

11. Mathews DH, Turner DH: Dynalign: an algorithm for finding the
secondary structure common to two RNA sequences. Journal
of Molecular Biology 2002, 317(2):191-203.

12. Perriquet O, Touzet H, Dauchet M: Finding the common struc-
ture shared by two homologous RNAs. Bioinformatics 2003,
19:108-116.

13. Holmes I, Rubin GM: Pairwise RNA structure comparison using
stochastic context-free grammars. Pac Symp Biocomput
2002:163-174.

14. Sankoff D: Simultaneous solution of the RNA folding, align-
ment, and protosequence problems. SIAM Journal of Applied
Mathematics 1985, 45:810-825.

15. Zuker M, Stiegler P: Optimal Computer Folding of Large RNA
Sequences Using Thermodynamics and Auxiliary
Information. Nucleic Acids Research 1981, 9:133-148.

16. Eddy SR, Durbin R: RNA Sequence Analysis Using Covariance
Models. Nucleic Acids Research 1994, 22:2079-2088.

17. Sakakibara Y, Brown M, Hughey R, Mian IS, Sjölander K, Underwood
RC, Haussler D: Stochastic Context-Free Grammars for tRNA
Modeling. Nucleic Acids Research 1994, 22:5112-5120.
Page 21 of 22
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10607607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12787499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12787499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12787499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14628056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14628056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15372042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15372043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11038329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11038329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15304649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15304649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15304649
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10383470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10383470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11801179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11801179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9278497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9278497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9278497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11902836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11902836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12499300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12499300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11928472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11928472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6163133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6163133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6163133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8029015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8029015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7800507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7800507

BMC Bioinformatics 2005, 6:73 http://www.biomedcentral.com/1471-2105/6/73
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

18. Brown M, Wilson C: RNA Pseudoknot Modeling Using Inter-
sections of Stochastic Context-Free Grammars with Appli-
cations to Database Search. 1995 [http://www.cse.ucsc.edu/
research/compbio/pseudoknot.html].

19. Lefebvre F: A Grammar-Based Unification of Several Align-
ment and Folding Algorithms. In Proceedings of the Fourth Interna-
tional Conference on Intelligent Systems for Molecular Biology Edited by:
States DJ, Agarwal P, Gaasterland T, Hunter L, Smith RF, Menlo Park.
CA: AAAI Press; 1996:143-154.

20. Durbin R, Eddy S, Krogh A, Mitchison G: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids Cambridge, UK: Cam-
bridge University Press; 1998.

21. Hofacker IL, Bernhart SH, Stadler PF: Alignment of RNA base
pairing probability matrices. Bioinformatics 2004,
20(14):2222-2227.

22. Austern MH: Generic Programming and the STL: Using and Extending the
C++ Standard Template Library Addison-Wesley; 1999.

23. Smith TF, Waterman MS: Identification of Common Molecular
Subsequences. Journal of Molecular Biology 1981, 147:195-197.

24. Waterman MS, Eggert M: A new algorithm for best subsequence
alignments with application to tRNA-rRNA comparisons.
Journal of Molecular Biology 1987, 197:723-725.

25. Higgins DG, Sharp PM: Fast and Sensitive Multiple Sequence
Alignments on a Microcomputer. Computer Applications in the
Biosciences 1989, 5:151-153.

26. Lari K, Young SJ: The Estimation of Stochastic Context-Free
Grammars Using the Inside-Outside Algorithm. Computer
Speech and Language 1990, 4:35-56.

27. McCaskill JS: The Equilibrium Partition Function and Base Pair
Binding Probabilities for RNA Secondary Structure. Biopoly-
mers 1990, 29:1105-1119.

28. Altschul SF: Amino Acid Substitution Matrices from an Infor-
mation Theoretic Perspective. Journal of Molecular Biology 1991,
219:555-565.

29. Chomsky N: Three Models for the Description of Language.
IRE Transactions Information Theory 1956, 2:113-124.

30. Chomsky N: On Certain Formal Properties of Grammars.
Information and Control 1959, 2:137-167.

31. Holmes I: Studies in probabilistic sequence alignment and
evolution. In PhD thesis The Sanger Centre; 1998.

32. Shapiro BA, Zhang KZ: Comparing multiple RNA secondary
structures using tree comparisons. Computer Applications in the
Biosciences 1990, 6(4):309-318.

33. Klein R, Eddy SR: Noncoding RNA gene detection using com-
parative sequence analysis. BMC Bioinformatics 2003, 4(44):.

34. Giegerich R: Explaining and Controlling Ambiguity in
Dynamic Programming. In Combinatorial Pattern Matching: 11th
Annual Symposium Volume 1848. Edited by: Giancarlo R, Sankoff D.
Springer-Verlag Heidelberg; 2000:46-59.

35. Dowell RD, Eddy SR: Evaluation of several lightweight stochas-
tic context-free grammars for RNA secondary structure
prediction. BMC Bioinformatics 2004, 5:71.

36. Holmes I: A probabilistic model for the evolution of RNA
structure. BMC Bioinformatics 2004, 5(166):.

37. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR: Rfam:
an RNA family database. Nucleic Acids Research 2003, 31:439-441.

38. Holmes I, Durbin R: Dynamic programming alignment
accuracy. Journal of Computational Biology 1998, 5(3):493-504.

39. Do CB, Brudno M, Batzoglou S: PROBCONS: Probabilistic Con-
sistency-based Multiple Alignment of Amino Acid
Sequences. in press.
Page 22 of 22
(page number not for citation purposes)

http://www.cse.ucsc.edu/research/compbio/pseudoknot.html
http://www.cse.ucsc.edu/research/compbio/pseudoknot.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15073017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15073017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7265238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7265238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2448477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2448477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2720464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2720464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1695107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1695107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2051488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2051488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1701685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1701685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15180907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15180907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15180907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9773345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9773345
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	N-best alignments, all folds
	N-best folds, all alignments
	N-best folds, 100-best alignments

	Discussion
	Conclusion
	Methods
	Notation
	Table 1

	The parse tree and the sequence likelihood
	Dynamic programming algorithms for Pair SCFGs
	The Inside algorithm
	Imposing constraints
	Further possible constraints
	Accelerating the iteration
	Slimming the container
	The CYK algorithm
	The Outside and KYC algorithms

	Implementation
	Selecting appropriate fold and alignment envelopes
	Multiple sequence alignment
	A grammar for pairwise RNA alignment and structure prediction
	Parameterization

	Authors' contributions
	Acknowledgements
	References

