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Abstract
Background: The majority of information in the biological literature resides in full text articles,
instead of abstracts. Yet, abstracts remain the focus of many publicly available literature data mining
tools. Most literature mining tools rely on pre-existing lexicons of biological names, often extracted
from curated gene or protein databases. This is a limitation, because such databases have low
coverage of the many name variants which are used to refer to biological entities in the literature.

Results: We present an approach to recognize named entities in full text. The approach collects
high frequency terms in an article, and uses support vector machines (SVM) to identify biological
entity names. It is also computationally efficient and robust to noise commonly found in full text
material. We use the method to create a protein name dictionary from a set of 80,528 full text
articles. Only 8.3% of the names in this dictionary match SwissProt description lines. We assess the
quality of the dictionary by studying its protein name recognition performance in full text.

Conclusion: This dictionary term lookup method compares favourably to other published
methods, supporting the significance of our direct extraction approach. The method is strong in
recognizing name variants not found in SwissProt.

Background
Knowledge discovery and data mining in the biological
literature have been attracting more and more interest
[1,2]. Automated text mining can facilitate the efforts of
both biological database curators [2], and of biologists
who consult the literature to acquire novel information
both within and outside of their immediate expertise. Text
mining applications come in various styles. Some rely on
statistical methods to detect unusually strong co-occur-
rences between genes or gene products (e.g., PubGene [3]
and as described by Wilkinson et al. [4]). Other applica-
tions aim to extract precise information from the text, for
instance protein mutations [5] or interactions [6,7]. A new

promising type of application, pioneered by Textpresso
[8], consists of portals that help end-users locate informa-
tion more effectively.

Most text mining applications require the ability to iden-
tify and classify words, or multi-word terms, that authors
use in an article to refer to biological entities (biological
entities include, but are not limited to, genes and their
products, cell types, and biological processes). This task is
called named entity recognition and has been well studied
in computer science for problems such as recognizing
names of places, people and organizations in news articles
[9]. Efforts to automate the named entity recognition task
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in the news domain have been very successful, with accu-
racies of automated methods that compete with accura-
cies of human efforts (~95% [9]). However, adapting
these methods to the biomedical literature has been chal-
lenging [10,11], and recently published methods on text
from abstracts report accuracies around 75% for protein
names [11,12].

Several strategies have been tried to recognize biological
entity names in articles. Some methods rely on protein
and gene databases to assemble dictionaries of protein
names. A key disadvantage of these methods is that they
critically depend on the database used as source of names,
and will not recognize new protein names before the
name is entered in the database. Another problem is that
databases may not contain each name variant used to refer
to a protein, so that partial or fuzzy matching of the
names in the database to the text in the article is needed
[13]. Fuzzy matching is difficult to control for and may
introduce spurious matches. Another class of methods
attempt to recognize protein names using the morphol-
ogy of the term: whether a term contains mixed case, or
includes a prefix or suffix next to a protein name [14]. The
main advantage of these methods is that they can detect
protein names that authors have just created, if they fol-
low the morphological clues that the method recognizes.
The main disadvantage is that authors do not use mor-
phology consistently, and that certain terms of the lan-
guage that have been used to refer to proteins (e.g., MAD
and Eye, [FlybaseIds FBgn0011648 and FBgn0000624])
cannot be recognized based on morphology [10].

Most of these methods were developed for abstracts,
because abstracts are readily available for millions of arti-
cles (e.g., PubMed). However, it is clear that information
content in text from full length articles is much greater
than in abstracts, even if the information density (infor-
mation content divided by document length) is higher in
abstracts [15,16]. Specifically, as noted by Horn et al.,
information about protein mutations is much more likely
to be found in full length articles than in abstracts [5]. This
is most likely to be true of other types of information as
well, such as experimental techniques and protocols, cell
types, species names, and interactions. Since full texts are
becoming more accessible (with open access efforts such
as the Public Library of Science, PubMed Central or Bio-
Med Central), developing methods to extract information
from full text is becoming more practical.

Compared to abstracts, however, full length articles are a
complex source of text. They usually require pre-process-
ing to convert the document from the HTML or PDF for-
mat to plain text streams. The result of the conversion will
contain all the sections of the article and separating sec-
tions is a hard problem in itself because formatting styles

and conventions vary across journals, and change period-
ically even for a given journal. In addition, journal presen-
tation styles are interleaved with the text of the article and
require specialized processing so that the tokenization of
the document matches the way the document looks when
rendered in a web browser. For instance, removing all
HTML tags when converting an HTML document to text is
inappropriate, as this may create tokens that do not exist
in the article (for instance, when removing all HTML tags,
"morphology<P>Browser" could be interpreted as "mor-
phologyBrowser"). Although some measures can be taken
to limit these problems, in practice, conversion proce-
dures are difficult to fine tune for each style and journal,
and converted full length articles are noisy sources of text.
Therefore, methods designed to extract named entities
from full text must be robust to types and amounts of
noise which are not found in abstracts.

In this article, we present a method that extracts biological
named entities directly from full length articles. This
method is used to process a corpus of 80,528 full text arti-
cles and assemble a catalog of protein name references
indexed by an article PubMed identifier (PMID) with high
precision. Based on this catalog, we construct a dictionary
of 59,990 protein names. We also present a method that
uses this dictionary to identify the set of protein names a
full text article refers to. We evaluated the performance of
this method with a set of full text articles that was not used
for the construction of the catalog. The method evaluated
on a test set of 14 articles achieves an average precision of
75%. Most other published methods have been trained
and tested on abstracts only (e.g., GAPScore, YAGI and
NLProt [12,14,17]). While these methods were not devel-
oped for full text, they are representative of the state of the
art for protein name extraction. We thus chose to compare
the results obtained with our approach to the results
obtained with NLProt and YAGI, when used on the same
text material. We found that the performance of our
method compares favorably to the 42% average precision
that NLProt achieves on the same test set, at similar levels
of recalls. Tested on another set, our approach has better
average precision than YAGI, but fails to detect long pro-
tein name variants that are often detected by YAGI. These
results demonstrate the usefulness of direct name extrac-
tion from full text articles.

We have implemented the approaches described here in
the Textractor framework http://icb.med.cornell.edu/crt/
textractor/index.xml.

Results
High frequency terms in biological journal articles are 
enriched in biological entity names
Many biological research journal articles focus on one or
a few genes or gene product(s). Typical examples are
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articles that describe the cloning of a particular gene.
Other articles that describe the discovery of a new interac-
tion will often focus on the two gene products involved in
the interaction. Thus, the high frequency terms in these
articles often refer to a gene/protein, the cell line in which
the gene/protein is being studied, or the biological proc-
ess in which the gene/protein is involved. Setting a thresh-
old on the frequency of terms in an article allow us to
define the set of terms that are most frequent in the article.
In this study, we used a threshold of 30, and thus we con-
sidered "most frequent" a term that occurred at least 30
times in a given article (see Table 1).

Table 1 lists the most frequent terms found in one exam-
ple article, and how we sort them into two categories. Cat-
egory (a) includes names of biological entities. Category
(b) includes terms that may have a high frequency in an
article, but are not biological entity names. Terms in cate-
gory (b) include common words or combinations of com-
mon words (e.g., "the", "1", "figure", "the protein",
"binding"). It is possible to build an exhaustive list of
terms in (b) because most of them tend to be repeated
from article to article. We have created a filter that can
remove most terms from category (b) from the list of fre-
quent terms in an article. Figure 1 presents the algorithm
and information that this filter uses. An exhaustive list,
however, cannot be built for terms in category (a)
because, as with protein names, this list is potentially infi-
nite: the rules that authors use to define new names are
only bounded by their imagination. We applied a
machine learning strategy to differentiate and classify
terms that belong to category (a).

Learning and classifying with the neighboring features
Three support vector machine (SVM) models were con-
structed to predict if a term occurs in a context that indi-
cates (1) a protein versus a cell, (2) a protein versus a
process (3) a protein versus an interaction (See Materials
and Methods).

Since each of the most frequent terms occurs at least 30
times in a given article, we can make at least 30 predic-
tions for one term in one article. We expect that some
occurrences of a term will occur in contexts that do not
clearly indicate if the term is a protein or not. For instance,
in a sentence such as "The exact [stoichiometry of this > mul-
tienzyme complex < is unknown but] its molecular mass in
insect cells...", the context included in the window offers
little clue to decide if the term refers to a protein or not
(The occurrence of the term under inspection is marked
by > < and terms considered as features in the window
around the occurrence are enclosed in [ ]). In such cases,
the SVM score is expected to be small. In comparison,
occurrences like "...is restricted to skeletal muscle and does
not affect [expression of the >Glut4< isoform].", are very
informative since the features "expression" and "isoform"
are present together in the local context (note: if "isoform"
always occurs after "Glut4" in that article, in our algo-
rithm, "Glut4 isoform" may also be extracted by our
system).

We used a simple heuristic expression to combine the
classification results of these three models (See Materials
and Methods) and created a protein name catalog for all
the articles in the JBC2000 dataset.

Quality of the protein name catalog
For the JBC2000 dataset, we predicted a catalog of 21,501
protein names and ranked them by their combined scores
(Sc). The Sc distribution was evenly divided into 10 buck-
ets. One continuous score range was then randomly
selected in each of the 10 buckets, so that each range
includes 50 protein names. We evaluated the quality of
this catalog by manually verifying this random sample of
500 names in the corresponding articles. Figure 2 summa-
rizes this evaluation and provides precision measures.
From JBC2000, we estimate that, on average only 3 or 4
protein names will be extracted from a given article. Since
this number of names extracted is very low compared to
the complete set of names that an average article contains,
we have not evaluated the coverage of the prediction.
However, because protein names are reused in different
articles, if the method misses a name in one article, this
name may still find its way into the protein name diction-
ary through another article (see below). A more interest-
ing evaluation is thus how well would this catalog do in a
specific application, such as extracting unique protein

Table 1: Example of terms that occur most frequently in an 
article (selected from article with PMID: 10506131).

Term Frequency Category

GnRH 79 a
side chain 60 a
the GnRH receptor 30 a
d7.49 318 38 a
the 503 b
of 334 b
and 212 b
expression 49 b
d7.49 38 a
the GnRH 30 a

Terms in italic are not considered for further analysis because their 
frequency in the document is the same as the frequency of a longer 
term that exactly contains them ("d7.49" is contained in "d7.49 318" 
and their frequencies are the same).
This indicates that the shorter term never occurs alone in the 
document.
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Filtering process and exclusion listsFigure 1
Filtering process and exclusion lists. Oval boxes on the left of the figure present the exclusions lists used as input to the 
filtering process. An exclusion list is connected to the step of the filtering process that uses it. Each step filters out terms that 
match the exclusion list in sequence based on the rules described in the boxes of the second column. Some steps perform 
matches by considering the entire term (e.g., the first step on the top), other steps use only specific words in a term. These 
lists have been built and are being maintained manually. The rectangular boxes on the right show the number of terms that 
have been excluded at each step, when processing the most frequent terms from JBC2000 (numbers in parentheses indicate 
counts of unique terms).
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names in a full text article. This is the evaluation that we
present in the rest of this article.

Quality of the protein dictionary
To address this question, we created a protein dictionary
from a more comprehensive protein catalog, which is
based on 80,528 full text articles (from JBC, EMBO,
PNAS) (see Figure 3). We used names in the dictionary to
lookup protein names in a set of 14 full length articles
from Nature Cell Biology (NCB14). The tool used to
lookup protein names is provided in Additional File 1.We
used the relative recall measure to compare our diction-
ary-based method to NLProt on NCB14 (See Materials
and Methods). Table 2 summarizes these precision and
relative recall measurements. These data indicate that the
lookup approach that we implemented in Textractor out-
performs NLProt on full text articles in precision (75%
compared to 42%) at the same level of relative recall (See
Materials and Methods for our definition of "relative
recall').

During the evaluation on NCB14, we noticed that NLProt
made systematic errors on tokens that appeared in the text
of these articles because of journal style formats (e.g., mis-
takes were made for instance on terms such as "NPG" for
Nature Publishing Group, or "getObject(name)" which
was part of the NPG Javascript header that our pre-
processing protocol failed to remove). These terms were
mistaken for gene/protein names. To rule out any possible
effect due to the selection of the articles in NCB14 (all
selected from the same journal), we performed a second
evaluation on 15 randomly selected articles from Pub-
MedCentral (published in 2003 and not part of our train-
ing set). Data in Table 3 confirm that Textractor
outperforms NLProt on full text (see relative F-1
measure).

Table 3 also shows the results of the comparison between
Textractor and YAGI [17]. While Textractor outperforms
YAGI in term of precision, the recall of YAGI is more than
double the recall of Textractor. This is summarized by a
relative F1-measure of 51% for YAGI, and 42% for
Textractor.

Inspection of the validation data suggests that YAGI is very
good at identifying protein names variants that are longer
(word length) than the ones that Textractor typically
detects (e.g., in article with PMCID 150636, when Textrac-
tor identified NS4B as a protein name, YAGI also identi-
fied "hepatitis C virus nonstructural protein NS4B"). This
point also illustrates a difficulty of comparing protein
name extraction methods, since the total set of correct
names may include redundancy.

In our evaluation, we have chosen to count as correct
names those that refer to proteins by themselves, even if
such names are shorter versions of longer names. These
shorter versions are not partial names, however, because
their occurrence in the text is sufficient to recognize a ref-
erence to a specific protein.

Since YAGI and NLProt use similar sources of informa-
tion, including protein names derived from biological
databases, but differ in their machine learning approach,
these results also suggest that Conditional Random Fields
(see [18], used by YAGI), were able to better capture the
distribution of protein names in full text, when learning
on abstracts, than the learning approach used by NLProt.
To corroborate this conjecture, many errors made by YAGI
seem to appear in the reference section of articles, which
has a different structure than the rest of a full text article.
Since both YAGI and NLProt use a database derived dic-
tionary, it would be interesting to see if the precision of
these approaches on full text can be increased when using
a dictionary built directly from full text.

Relation between the precision of the disambiguation and score valuesFigure 2
Relation between the precision of the disambiguation 
and score values. Ten score values were chosen randomly. 
For each of these values, we considered the 50 terms that 
had scores immediately greater than the value, and evaluated 
if the term referred to a gene or gene product in the article 
where the prediction was made. Precision of the prediction 
was calculated as the number of correct predictions over the 
total number of predictions (50). The 500 names which were 
checked represent a random sample of 21,501 names in the 
catalog. The Figure shows that predictions made with higher 
scores have a greater probability to be correct. The label 
shown for each evaluation point indicates the percentage of 
terms found in the evaluation corpus with a score above the 
score of this specific point.
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Limited overlap with SwissProt derived names
We matched terms in the dictionary to description lines in
SwissProt (release 45), as described for matching terms in
the dictionary to full text articles. We found that only
8.3% of the terms in our dictionary are included in Swiss-
Prot descriptions. Examples of terms present in the dic-
tionary that do not match SwissProt description lines
include: "collagen XI", "Collagen alpha1 I", "TRHRs",
"TRIM8 GERP". This result indicates that our method is
strong at identifying protein name variants that are not
found in SwissProt descriptions. SwissProt is a main
source of protein names used for building protein name
recognition methods [12,13,17]. Therefore, combining
our dictionary with names derived from SwissProt may
lead to improved performance for a variety of name recog-
nition methods.

Implementation and performance
We implemented the methods described in this manu-
script in the textractor framework (L. Shi and F. Cam-
pagne, unpublished). Briefly, this framework provides
support to parse full length articles into sentences; create
inverted indices where sentences are indexed by words;
store sentences, articles and other information in a data-
base; calculate features from sentences, articles or part of
the above; and import results of predictions made with
the features into the database for integration with other
types of information. The Textractor framework uses JDO
[19] for data persistence, MG4J [20] for inverted-index
support, and SVMLight [21] for machine learning. The
framework is implemented in Java 1.4+. The distribution
includes a version of the lookup tool that functions inde-
pendently of a database and uses MG4J for fast term
lookups.  This tool is distributed as Additional File 1. With
a dictionary containing about 59,000 names, processing a
set of 30 articles (133,675 words total) took about 16 sec-

Heuristics filtering of the protein catalog to produce the protein dictionaryFigure 3
Heuristics filtering of the protein catalog to produce the protein dictionary. The dictionary was constructed by con-
sidering the classification results of a particular term in different articles. Step 1: we filtered out terms that were predicted to 
be a protein in less than 75% of the articles where a prediction was made. For example, if term A appears in 4 articles and is 
classified as a protein name in 3 of them, term A is accepted in the dictionary. This process collected 61,312 terms. Step 2: we 
removed terms with two characters or less. Step 3: to remove ambiguity with protein names that are also common nouns, we 
filter the dictionary against the Webster's Revised Unabridged Dictionary (G & C. Merriam Co., 1913, edited by Noah Porter, 
provided by Patrick Cassidy of MICRA, Inc, and retrieved from http://www.dict.org). We estimate that this edition contains 
about 80 common protein names (e.g., amylase). Step 4: we filter the dictionary against species names from the NCBI taxon-
omy database [30].
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onds on a Red Hat Linux dual Xeon 3 GHz processor
server, while it took NLProt 19 minutes, and YAGI 29 sec-
onds. Similarly, YAGI processed a set of 693 articles in 753
seconds, while Textractor needed 494 seconds (65% of
the time required by YAGI).

We distribute the implementation of our method and
other relevant information, e.g., the list of regular expres-
sions used to extract the terms for SVM training, under the
Gnu General Public License to maximize their use in the
biomedical community http://icb.med.cornell.edu/crt/
textractor/index.xml.

Discussion
Information in full text
Compared to full text, abstracts have the advantages of
convenient access and uniformity of format. Based on
recent studies, however, the information content in

abstracts is less than half the information content in full
text [15,16]. In addition, most experimentalists would
consider full text a more informative source of informa-
tion than abstracts. Indeed, an abstract usually focuses on
the general idea of a biological issue per se, but the details,
such as how the issue was studied in that article, are very
unlikely to be fully described in an abstract. For an exper-
imentalist, the question is more often "how" than "what"
and is always about details. Thus, automatic text mining
applications that target experimentalists should ideally
also be able to extract relevant information from full text
articles.

This study addresses an initial step in this direction – to
collect and classify several categories of biological entity
names from full text that are essential for a detailed under-
standing of an issue, including how it was studied, from a
biological article. These categories include the terms that

Table 2: Evaluation results for the NCB14 dataset.

Textractor NLProt Union

PubMedID Correct Incorrect Precision Rel. Recall Correct Incorrect Precision Rel. Recall Correct

12629548 41 19 68% 67% 37 77 32% 59% 63
12629549 38 3 93% 84% 32 79 29% 40% 50
12640462 23 17 58% 100% 1 13 7% 4% 23
12640463 18 17 51% 36% 46 77 37% 87% 53
12640464 67 18 79% 72% 50 26 66% 50% 100
12669071 14 8 64% 54% 19 35 35% 73% 26
12669072 14 3 82% 65% 18 27 40% 51% 26
12669073 27 1 96% 81% 25 31 45% 53% 39
12669075 19 7 73% 73% 16 26 38% 47% 26
12669077 19 5 79% 73% 16 38 30% 39% 28
12669082 86 26 77% 68% 82 87 49% 65% 126
12669083 64 13 83% 58% 81 74 52% 72% 112
12679784 25 7 78% 58% 26 37 41% 60% 43
12692559 54 26 68% 60% 67 77 47% 55% 99

micro-evaluation 509 170 75% 63% 516 704 42% 63% 814
macro-evaluation 75% 67% 39% 54%

Table 3: Evaluation results for the PMC15 data set.

Evaluation Performance Measure YAGI Textractor NLProt

micro-evaluation precision 43% 66% 34%
micro-evaluation rel. recall 63% 31% 41%
micro-evaluation rel F-1 51% 42% 37%
macro-evaluation precision 40% 53% 29%
macro-evaluation rel. recall 66% 30% 37%
macro-evaluation rel F-1 52% 40% 34%
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refer to protein/gene, cell type, biological process, and
interactions. Specifically, we compared the recognition of
the protein/gene names with other systems and empha-
sized the strength of our approach in identifying term
variants.

Term variants and disambiguation
Our method draws on several concepts introduced in
[22], but differs in the following ways. (1) We use only
features derived from the context of the term. This makes
our method insensitive to the morphology of the term
and allow us to collect terms as diverse as "d2-dopamine
receptor", "dopamine D2 receptor", "D2 dopamine recep-
tor", "D2R", "D2DR", "DRD2", "d2s receptor", "d2l
receptor" and their plural forms for the same protein in
the catalog. (2) We applied term disambiguation to terms
extracted from full text without the help of a dictionary of
protein names. In contrast, [22] used Genbank as the
source of its dictionary and extracted terms by fuzzy-
matching the text of the article. (3) We combine informa-
tion from the multiple sentences in which a term occurs
to make a prediction if the term is a protein or not in a
given article. Since we disambiguate only terms that
appear more than 30 times in an article, information from
at least 30 sentences is considered for each term in an arti-
cle. (4) The precision measures that we report benchmark
the ability of our method to precisely identify that a term
is a protein in a given article. Performance measures given
in [22] measure the performance of a related, but distinct
task: assigning a term to one of three classes (protein,
mRNA, gene) when it is already known that the term
belongs to one of these classes.

Extraction of long protein names
We have described that our method may fail to detect long
protein names (see Results). Such names appear with a
lower frequency in articles and are often abbreviated in
full text. Approaches to extract acronym definitions from
full-text may complement our approach and help extract
long protein names (see [23] for a review of such
approaches).

Specific evaluation protocol for full-text
Protein name marking is a task where a program tries to
mark the occurrences of all the protein names in a text. In
full text, some protein names are repeated very often. If we
followed the name marking benchmark standards, we
would count correct extractions several times for such
repeated terms. While this is not a problem for abstracts,
we noticed that this practice would artificially inflate the
precision measures on full text.

Instead of benchmarking the performance of gene/protein
name tagging in the text, we thus benchmark the perform-
ance of extracting the names of gene/proteins mentioned

in a given article. We evaluate this by counting errors and
success at the level of unique terms. Since this protocol is
different from the ones used in other published studies,
performance measures that we report cannot be compared
to other published measures. Another factor that renders
such comparison meaningless is the difference in the
input material. We show in Tables 2 and 3 that the per-
formance of a given method varies widely from article to
article. Our validation protocol, however, compares the
performance of several methods on the same input mate-
rial, using the same evaluation measures and therefore
supports objective comparisons between the methods
benchmarked.

Relative recall helps compare several methods
Obtaining accurate measures of coverage is challenging
because coverage requires counting the number of correct
protein names in an article. Several factors make obtain-
ing these counts more difficult for full text than for
abstracts. (1) Full texts refer to a large number of protein
names in all the sections of the paper (in the first test set,
NCB14, we recognize on average a total of 58 unique
names per article). (2) It is difficult for human annotators
to identify all spelling variants of protein names that auto-
mated methods may identify. To alleviate the impact of
these factors on the evaluation, we presented annotators
with names identified by each prediction method. In prac-
tice, this procedure guarantees that annotators consider
each name variant predicted by one of the methods and
determine if the name refers to a protein. The protocol
thus helps avoid omissions that can occur when annota-
tors are not familiar with the subject of the article, and
directly provides the annotation counts (Ci) required to
calculate the relative recall measure (see methods).

Building the catalog
Our method creates a catalog of protein and gene name
references directly from full length noisy article materials.
Tanabe and Wilbur recently described a method to assem-
ble a gene/protein lexicon from the text of abstracts [24].
While there is certainly an overlap between protein names
used in abstract and in full text, it is not clear what the
extent of the overlap is. Thus, our method and the one
presented by Tanabe and Wilbur should be complemen-
tary. Finally, our study of the quality of the protein catalog
in a common application (protein name recognition in
full text material), demonstrates the utility of direct name
extraction from full text articles.

Conclusion
Our results show that a pure dictionary-based lookup
method can outperform NLProt [12] on full text articles,
when using a dictionary built directly from the same type
of source material (full length articles). We have presented
a method that can build such a focused dictionary from a
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large corpus (> 80,000) of articles. The method is compu-
tationally efficient. We freely distribute the dictionary that
we have built to carry out our evaluations and a program
that can extract names of proteins from full length articles.

Our method is robust to various sources of noise found in
full length articles and achieves a state of the art level of
precision on this material. A key element that contributes
to the robustness of our method seems to be that we never
extract a name from an article as a protein name based
only on the morphology of the term, but instead require
that the term is predicted several times as a protein name
in other articles. This robustness may be the result of con-
sidering an array of evidence, found in the sentences from
several articles, to determine if a term is likely to refer to a
gene or gene product, and reusing this knowledge again
and again. In its current state, an outstanding limitation of
our approach is its inability to deal with certain types of
term ambiguity (i.e., the same term referring to a protein
("TnT"/Troponin T or "TnT"/Translation and Transduc-
tion kit). This is an area for improvement that will require
further research.

Methods
Document pre-processing and extraction of terms
We represent all documents with the Unicode standard
[25]. We define a word as a contiguous sequence of letter,
digits, dashes and dot characters (we use the classification
of Unicode characters established for the Java language
and implemented in the java.lang.Character class of this
language, so that letters include special characters such as
α or β). We split documents into sentences of at least m
characters, with heuristics that consider the types or iden-
tity of characters in a window of 6 characters around
potential sentence terminators (characters .;?!). Parameter
m was set to 40 in this experiment, a value that rejects sen-
tence splits if they would create a sentence shorter than
about a quarter of a column of this article. Full details of
the sentence splitting procedure are given in the source
code in the supplementary material (see class
SentenceSplitterIterator).

We define a term as a word or a contiguous sequence of
words, which appears in an article, but does not span sen-
tence boundaries. The term may or may not refer to a pro-
tein name or to any grammatical class. We call n-gram a
term that contains n words. "The" is thus considered a
term, and a one-gram, while "The method" can be called
a term, a 2-gram. The frequency of a term in a document or
set of documents is the number of times the term occurs
in the document or set of documents. Here, we identify n-
grams in an article by finding all the unique word
sequences of length 1 to 5 words that have a frequency
greater than one. (We observed that most protein names

with high frequency are shorter than 5 words, but this
parameter could be varied.)

Disambiguating biological entity names
In an approach similar to [22], we convert terms to fea-
tures and use a machine learning approach to disam-
biguate protein names from other names. In contrast to
[22], where Hatzivassiloglou et al. used morphology and
positional information, we only use the context of the
terms in the sentences of the article to make a decision.
Furthermore, in our approach, only the terms that are the
most frequent in an article are considered for disambigua-
tion. We treat each occurrence of a term in an article sep-
arately and then aggregate the predictions to determine
one prediction per term and article. This process is illus-
trated in Figure 4.

Calculating features for each occurrence of a term in the 
article
We call feature a real-valued number that is used as input
to a machine learning algorithm. Let p(a,t,o) denote the
position of one occurrence o of term t in article a, and i(w)
be a function that maps each word of the corpus to an
integer (a number that uniquely identifies a feature). Such
a function could map word "the" to 12 and word "The" to
105, or map both words to the same integer, to wrap
cases. The features for term t at p(a,t,o) are the set of words
W(p(a,t,o)) that exist in a window of words from p(a,t,o)
- l to p(a,t,o) + length(t) + l -1, excluding the term word(s),
with l the length of the window on either side of the term
occurrence and length(t) the number of words of term t.
We define one feature, identified by its index: i(w) for
each word w that occurs in the training corpus. For each
word w that occurs in this window, and does not belong
to the term we set the value of feature i(w) to 1. The value
of feature i(w) is set to zero if the word does not occur
within the window. The feature thus gets the same value if
the term occurs once or multiple times in the window
around a term occurrence. For experiments described in
this article, we used a window size of 3.

Training data set
Our training data set (JBC99) consisted of 1,814 articles
(about 520,000 sentences) published in the Journal of
Biological Chemistry (JBC) during the last quarter of year
1999. Full length articles were obtained as HTML files and
converted to text using the HtmlParser package [25].
Image tags were replaced by their ALT tag, when available,
or by whitespace. For most journals that present Greek let-
ters as images, the ALT tag contains a textual representa-
tion of the symbol, in these cases, β is replaced by "beta".
Presentation tags, such as <p> and <br>, were replaced by
whitespace.
Page 9 of 13
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Training SVM models
We trained three support vector machines [26] (also
called SVM models). Training SVM models requires train-
ing data sets with positive and negative examples. To
construct training data sets, we created lists of terms in
several categories. To create these lists, we filtered the
most frequent terms obtained for each article of the train-
ing corpus. We built four lists of non-ambiguous terms:
protein/gene names (PG), cell names (C), process names
(Pr), and interaction keywords (IK). We made sure that
the names in these lists were non-ambiguous, that is, that
the name, in any sentence context would be a true
instance of its class. To construct PG, for instance, we
included n-grams that match the regular expressions ".+
receptor" or ".+ kinase" (thus, n> = 2), because n-grams
that end in "receptor" or "kinase" are very unlikely to be
used in a context where they do not refer to proteins.
Other terms that could be ambiguous – e.g., SNF, which
could be a gene/protein name, or a funding agency (Swiss
National Science Foundation) – were not used for train-

ing. Regular expressions were used to facilitate the assem-
bly of drafts of these lists, but the lists were carefully
inspected and edited manually before training.

Table 4 describes the composition of the training sets built
from the non-ambiguous lists described above and indi-
cates the number of terms used for training. Table 5
presents "ξα estimates" after training. The ξα values are
conservative estimates of the leave-one-out error that can
be computed efficiently after training an SVM [21]. We
created three SVM model training sets: PG+/C -, where PG
terms are labelled in the positive class, and C terms in the
negative class. The other sets used for training were PG+/
Pr - and PG+/IK -, with the same naming conventions.
These training set compositions are chosen so that the
three SVM models trained from these datasets will give
positive scores to terms that are predicted to be in the cat-
egory PG. Training was performed with the RBF kernel
and parameters γ = 0.005 and C = 19.4433 (PG+/C -), C =
19.0005 (PG+/IK-), C = 19.1587(PG+/Pr -).

Steps involved in constructing the catalog of protein referencesFigure 4
Steps involved in constructing the catalog of protein references. Terms are shown enclosed in rectangular boxes. 
Terms may occur in the context of sentences (when on a horizontal line, left), or in an article (right). Step 1: Articles are split 
into sentences, and sentences are split into tokens. Tokens roughly correspond to words (see text for details). Tokens with 
high frequency that are not eliminated by the exclusion lists (see Figure 1) are grouped into n-grams. On the figure, APE1/ref-1 
is a n-gram that consists of two tokens: APE1 and ref-1, and can be recognized if the two terms co-occur frequently in 
sequence in a full length article. When the terms are recognized, each occurrence of a term in sentences of the article is iden-
tified. Step 2: Machine learning features are calculated from the context of the term in the article (see text for details) and the 
support vector machine (SVM) model classifies the context of the term. We obtain the score for each context of a term. In our 
experimental setup, smaller scores suggest that the context provides little evidence that the term refers to a protein, while 
larger scores (in absolute values) indicate more support. Step 3: We calculate the combined score (Sc) as the sum of the scores 
for each occurrence of a given term in a given article. The final catalog consists of a table with one row per term and article. 
Each row has three columns: PubMedID, term, and Sc.
Page 10 of 13
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Binary SVM classifiers assign a predicted class to a term by
considering the sign of the output of a trained support
vector machine. The output of the SVM is un-calibrated
and is not the prior probability of the class given the fea-
tures [27]. However, the SVM output is correlated with the
probability [28] and thus the magnitude of the output can
be used as a measure of confidence in the prediction
(small absolute values indicate smaller confidence, while
larger absolute values indicate stronger confidence).

Combining predictions for several occurrences of a term in 
one article
For a SVM model, the individual classification scores for
each occurrence of a term in an article were summed, so
as to produce three values: SumPG+/C-, SumPG+/IK- and
SumPG+/Pr-. We used a simple heuristic expression to com-
bine the three scores into the final Sc score (we summed
the three Sum scores and adversely weighted a negative
sum in any of the three classifications by multiplying each
negative Sum by 50 before adding them). The parameter
50 was chosen empirically to give more weight to negative
individual Sum scores. The combined score, Sc, is such
that greater, positive values have a higher possibility of
referring to protein names, and negative values are
unlikely to refer to protein names.

JBC2000 Test set
We assessed the quality of the biological entity name dis-
ambiguation with a test set derived from articles pub-
lished in JBC during the year 2000. The test set is mostly
independent from the training set, as the only common
points between the articles in the two sets is that they were
published in the same journal and formatted with the
same conventions.

Creation of a dictionary of gene and gene product names
Not each term in the protein catalog can be used directly
to lookup protein names in articles. A key problem is
ambiguity, terms that refer to proteins in certain articles,
but refer to other concepts in other articles. In an attempt
to reduce ambiguity, we filtered the protein catalog with
several heuristics. These heuristics are presented in Figure
3. When applied to the catalog of protein references pro-
duced from the "most frequent" terms obtained from
80,528 articles from JBC, EMBO, and PNAS, these filters
produce a dictionary of 59,990 terms.

Evaluation of the dictionary to lookup gene and gene 
product names in full text
Dictionary Test Set construction
We built the NCB14 set with 14 articles selected randomly
from articles published in Nature Cell Biology in 2003.
Since this journal was not used for the construction of the
protein catalog, the style, formatting and names present in
these test articles had never been used to develop our
method. Furthermore, we did not refine or tune any of the
parameters of our method after we started this evaluation.
Therefore, the performance values that we report here
should be representative of what can be expected when
the method is used on new, unseen, but similar full length
article materials.

Matching names of the dictionary to articles with textractor
Names found in the dictionary were matched to the text
of each article in the test sets. When matching n-grams, we
match letters and digits and ignore punctuation and spe-
cial characters except dashes ('-') and dots ('.'). Using this
strategy, if A, B and C are words, an "A B-C" in the diction-
ary will match "A,B-C" and "A#B-C" in the text of an arti-
cle, but not "A B,C". Using this matching procedure, the
name "PKC-zeta lambda" will match "PKC-zeta/lambda"

Table 4: Composition of the training sets

Training lists PG C IK Pr

# n-grams, n>=2 304 193 111 254
# occurrences in articles where the n-gram is most frequent 16,543 10,862 5,853 12,547

Table 5: Performance estimators after training.

Training sets PG+/C- PG+/IK- PG+/Pr-

ξα estimates recall >= 73.96% 78.62% 58.48%
precision >= 72.82% 75.52% 57.75%
error <= 32.37% 34.61% 47.93%
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in article PMID 10749857. Matching of words shorter
than 6 characters is case-sensitive (i.e., "TnT" will not
match "TNT"), while matching of longer words is case
insensitive "human topoisomerase II" will match "human
TOPOISOMERASE II"). In contrast to other dictionary-
based approaches (e.g., [13]), our matching procedure
does not allow variations on the words that constitute the
name: "receptor" will not match "receptors". Since this
matching method is fairly strict, plurals and other varia-
tions of protein names must appear explicitly in the dic-
tionary for the name to be matched to the full text.

How to define gene/gene product/protein names
The definition of protein that we used to train Textractor
differs from the definition used by the human annotators
who created the YAPEX corpus [29]. For Textractor, pro-
tein names refer to a protein or to the part of a protein,
while for YAPEX, proteins must be single entities. The Tex-
tractor definition allows for protein domains (e.g., "SH2
domain") and parts of proteins, such as "histone H3 at
serine 10", or protein complexes ("the proteasome"). Our
definition was chosen pragmatically, since parts of pro-
teins are often mentioned when describing interactions
and a long term goal of our project is to extract protein
names to support the extraction of information about
interactions. We count partial matches as errors when the
partial match does not refer to a protein name in itself. For
instance, "proteasome" and "the proteasome" are both
correct identifications, while "endothelin-converting" is
incorrect even if "endothelin-converting enzyme" is a cor-
rect match in the same article.

Comparing with NLProt
Articles in the HTML format were converted to Unicode
text as described under document preprocessing. Both
NLProt and the Textractor lookup tool were given the
same text material as input. The output produced by
NLProt was parsed to extract the protein names recog-
nized by the method. We sorted names to be unique (fol-
lowing the term matching criteria described above), and
produced a tab delimited file (first column: PMID; second
column: term extracted from this article). This file was
merged with the Textractor predictions using the term as
unique key. The numbers of occurrences found by each
method are also listed. These files were annotated by the
authors during the evaluation and are provided in supple-
mentary material to allow comparison with future
methods.

Evaluation measures
Various performance measures can be used when compar-
ing prediction or extraction methods. Accuracy of a pre-
diction is defined as the percentage of correct predictions,
over all the classes of terms predicted. For instance, when
predicting protein and non-protein names, accuracy

measures how well both protein and non-protein names
are predicted. However, accuracy can be misleading when
the test set contains one class in a larger proportion than
the other. For instance, if the test set contains 10% of
terms that are proteins and no proteins names are pre-
dicted, the prediction has an accuracy of 90%. For this rea-
son, we prefer the precision and recall measures. The
precision is the accuracy measured over one class, for
instance measured over proteins. It is calculated as the
ratio of correct predictions over the number of predictions
made. Recall measures how many elements of one class
are predicted in this class. Recall is calculated as the ratio
of correct predictions in one class over the total number of
instances of this class that could have been predicted.
Intuitively, "precision" measures how specific a
prediction is when a class is predicted, and "recall" meas-
ures how much the prediction method has missed in a
class.

To combine and summarize performance values obtained
for several articles, we use micro- and macro-evaluation
[21,25]. Macro-evaluation averages the values of precision
and relative recall calculated in individual articles, while
micro-evaluation sums the counts of correct and incorrect
predictions over all the articles before calculating global
measures.

Relative recall
When comparing several prediction methods, we define
the relative recall of method i (among n possible
methods)as:

where Ci represent the set of all the correct predictions
made by method i, Card(set) represents the number of
elements in a set, and Union(set1, set2,...) represents the
set that is the union of several sets. It can be seen that if
any of the methods has perfect recall, the relative recall of
each method matches the traditional recall. Furthermore,
when the measure is applied with more than two meth-
ods, the values of the relative recall will converge towards
the recall as the number of methods increases (each
method contributes to the union the true positives that is
detects, until the union matches the complete set of posi-
tives in the data set). The advantage of the relative recall is
that only predicted terms need to be evaluated for each
prediction method, so that reading the whole article is not
required.

Given the observed variability of precision in the articles
of our test sets, we assume that the recall of an extraction
method will also vary from one article to another. There-
fore, it is clear that a measure of recall, however consistent

RR
Card C

Card Union Ci Cj Cni
i=

( )

( ( , ,..., ))
,

Page 12 of 13
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:88 http://www.biomedcentral.com/1471-2105/6/88
and careful the evaluation, will not be informative if eval-
uated for a single article. Measuring relative recall lowers
the cost of evaluation and makes it possible to compare
the recall of several methods over larger article samples.
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Additional File 1
Full-text lookup tool with dictionary. This tool implements the lookup 
approach that is used for evaluation of the protein dictionary in the man-
uscript. The Java Archive (Zip format) contains a copy of the protein dic-
tionary that is also available from our web site. (Additional instructions 
will be printed to the console.)
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-88-S1.jar]
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