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Abstract
Background: Our goal in BioCreAtIve has been to assess the state of the art in text mining, with
emphasis on applications that reflect real biological applications, e.g., the curation process for
model organism databases. This paper summarizes the BioCreAtIvE task 1B, the "Normalized Gene
List" task, which was inspired by the gene list supplied for each curated paper in a model organism
database. The task was to produce the correct list of unique gene identifiers for the genes and gene
products mentioned in sets of abstracts from three model organisms (Yeast, Fly, and Mouse).

Results: Eight groups fielded systems for three data sets (Yeast, Fly, and Mouse). For Yeast, the
top scoring system (out of 15) achieved 0.92 F-measure (harmonic mean of precision and recall);
for Mouse and Fly, the task was more difficult, due to larger numbers of genes, more ambiguity in
the gene naming conventions (particularly for Fly), and complex gene names (for Mouse). For Fly,
the top F-measure was 0.82 out of 11 systems and for Mouse, it was 0.79 out of 16 systems.

Conclusion: This assessment demonstrates that multiple groups were able to perform a real
biological task across a range of organisms. The performance was dependent on the organism, and
specifically on the naming conventions associated with each organism. These results hold out
promise that the technology can provide partial automation of the curation process in the near
future.

Background
Task 1B, the normalized gene list task, is intermediate in
the BioCreAtIvE tasks. It builds on task 1A, the gene men-
tion identification task [1], but it is much simpler and
requires far less understanding of the underlying biology
than task 2, functional annotation from text [2]. It reflects
a step in the curation process for the model organism
databases: once an article is selected for curation, an
important step is to list those genes discussed in the article
that have sufficient experimental evidence to merit cura-
tion – see discussion in [3]. Therefore, we were able to
extract the expert-curated gene lists from the model organ-
ism databases, to use as training and test data. We chose
to use Fly [4], Mouse [5], and Yeast [6] model organism

databases as our three sources of data. Figure 1 shows a
sample abstract from MEDLINE, together with the gene
list for that abstract (top) from FlyBase.

Evaluation for task 1B is straightforward: it consists of
comparing lists of unique identifiers. This makes it much
easier to evaluate than the other tasks in BioCreAtIvE. Task
1A required the comparison of annotated text segments,
raising issues of how to annotate complex gene names
(e.g., TTF-1-binding sites (TBE) 1, 3, and 4), as well as ques-
tions about gene name boundaries. Task 2 required expert
human evaluation of whether a text passage constitutes
adequate evidence for a particular Gene Ontology annota-
tion. Originally, for task 1B, we had also wanted evidence
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for each answer, parallel to the evidence passages required
for task 2, but our instructions for this were not clear, dif-
ferent people submitted different things and we did not
evaluate this.

In order to make the task uniform across the different
model organisms and easily accessible to non-biologists,
we extracted synonym lists from each of the three model
organism databases. For each organism, the synonym list
consisted of the list of unique gene identifiers and their
associated gene symbol and synonyms. We made these
lists available in a simple standard flat file format. Figure
1 (bottom) shows two entries from the synonym list for
Fly. By providing a uniform set of lexical resources for
each model organism, we hoped to encourage experimen-
tation with techniques that could readily generalize to

new organisms. However, participants were also allowed
to use additional lexical resources, and a several groups
took advantage of this.

We chose to use abstracts as the basis for the gene list task,
rather than full text articles. This simplified the task for the
participants, since abstracts are much shorter and easier to
process than full text article (because they are around 250
words long and are available in ASCII). The abstracts can
also be readily collected and distributed to the
participants, unlike the full text articles. However, using
abstracts meant that we had to prune the gene lists
provided by the model organism database, since these
were usually based on the full text articles. Table 1 shows
the size of the training, development test and blind test
data sets. To prepare the training data, we developed an

Abstract with gene list and synonym list excerptFigure 1
Abstract with gene list and synonym list excerpt.

Abstract ID Organism Gene ID

fly_00035_training FBgn0000592

fly_00035_training FBgn0026412

Abstract: A locus has been found, an allele of which causes a 
modification of some allozymes of the enzyme esterase 6 in
Drosophila melanogaster. There are two alleles of this locus, one of 
which is dominant to the other and results in increased 
electrophoretic mobility of affected allozymes. The locus responsible
has been mapped to 3-56.7 on the standard genetic map (Est-6 is at 
3-36.8). Of 13 other enzyme systems analyzed, only leucine
aminopeptidase is affected by the modifier locus. Neuraminidase 
incubations of homogenates altered the electrophoretic mobility of 
esterase 6 allozymes, but the mobility differences found are not 
large enough to conclude that esterase 6 is sialylated.

FlyBase Synonym List (Excerpt)
FBgn0000592: CG6917; Carboxyl ester hydrolase; EST 6; EST-6; EST6; 
Est; Est 5; Est 6; Est D; Est-5; Est-6; Est-D; Est6; Esterase 6; Esterase-6; 
est 6; est-6; est6 
FBgn0026412: Leucine aminopeptidase; Leucine-aminopeptidase
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automated pruning procedure to remove genes from the
gene list that were not mentioned in the abstract. As dis-
cussed in [3], this was a "noisy" process. We delivered the
noisy training data "as is" but we hand corrected the
development test data and the blind test data. In later
experiments, we estimated the quality of the noisy train-
ing data for Yeast at an F-measure of 92% (Table 2, 2nd

row); for Fly it was 83% (Table 3, 2nd row); and for Mouse,
it was 71% (Table 4, 2nd row).

In addition to pruning the gene lists to reflect the content
in the abstracts, we made one additional simplification in
the task. The model organism databases do not curate
every gene mentioned in a paper – they curate only those
genes that meet a set of (organism-specific) criteria,
including presentation of experimental evidence related
to gene or gene included in the gene list. However, we felt
that the abstract might not provide enough context to
determine whether a gene had sufficient evidence for cura-
tion or was mentioned only in passing, so for the test data
sets, the annotators added, by hand, all genes mentioned
in the abstract. This was not done for the automatically
generated training data, so the automatically generated
training set had significant recall errors (see Tables 2, 3,
4).

Results
Tables 2, 3, 4 show the scores from each participating sys-
tem, by group and run (each run was considered a system)
for Yeast (Table 2), Fly (Table 3) and Mouse (Table 4).
Each group was allowed to submit up to three systems for
each organism. The systems were scored against the man-
ually created "gold standard" for each abstract in the test
set (250 abstracts per organism). The results are presented
in terms of the following metrics:

True Positives: Number of correctly detected genes

False Positives: Number of genes incorrectly marked as
being present

Misses: Number of genes NOT detected by the system

Precision: True Positives / (True Positives + False
Positives)

Recall: True Positives/ (True Positives + Misses)

F-measure: Balanced precision/recall computed as 2*P*R/
(P+R)

The first two rows of each table show first the Gold Stand-
ard compared to itself, which always yields a score of
100% or 1. The second line, Noisy Training, shows the
results of comparing the test data run through the "auto-
matic cleaning" procedure and compared to the Gold
Standard. This provides an estimate of the quality of the
automatically generated training data.

Next, for each organism, we show High, Median and Low
scores for each of these quantities, followed by the scores
of each group by run.

In addition to the tables, Figure 2 shows a composite
graph of precision versus recall for all systems and all
organisms. This graph also shows the estimates of training
data quality (marked as Yeast Train, Fly Train and Mouse-
Train in the legend and in solid symbols on the graph).
The diagonal line indicates balanced precision versus
recall.

The results demonstrate several things, in particular, that
there are significant differences among organisms.

1. Yeast is the easiest. The F-measures of the systems
tended to be high, with several groups achieving an F-
measure of over 0.90, and a median F-measure of 0.86.
Also, the quality of the training data was high (F-measure
0.92).

2. Fly was harder than Yeast: the high F-measure was 0.82,
and there was much greater variability in performance
(median F-measure was 0.66). The training data quality
for Fly was significantly lower than for Yeast (0.83). Fly
was hard because there are many ambiguous terms, and
there is also extensive overlap between Fly gene name
abbreviations and English words, such as "not", "period",
"was", etc.

3. Mouse was the hardest as measured by system perform-
ance (best F-measure 0.79), although the median system
performance for Mouse was better than for Fly (0.74). The
training data quality was the lowest (F-measure of 0.71),
with a high precision (99%) but a low recall (55%). The
poor training data quality was related to the stringent
Mouse curation criteria. Because of this, there were
relatively many more genes that were mentioned in the
article but not judged to be appropriate for curation (and
therefore, not on the list of curated genes from the MGI
database). These genes were not included in the automat-
ically generated training data, hence the low recall and

Table 1: Task 1B training and test data sets

Abstracts Yeast Fly Mouse

Training (noisy annotation) 5000 5000 5000
Development test (hand corrected) 108 110 250
Blind Test (extensively corrected) 250 250 250
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low F-measure for the training data. Of course, such men-
tions were added manually into the development test data
and blind test data. Indeed, for Mouse, the median system

F-measure was actually higher than the training data F-
measure, indicating that the systems did a good job in
generalizing away from the noise.

Table 2: Task 1B results on Yeast gene list task

YEAST F-measure Precision Recall True Positives False Positives Missed

Gold Standard 1.000 1.000 1.000 613 0 0
Noisy Training 0.918 0.985 0.86 527 8 86

Hi 0.921 0.969 0.962 590 329 171
Low 0.763 0.642 0.721 442 15 23
Median 0.858 0.94 0.848 520 34 93

user5_1B_1 0.819 0.948 0.721 442 24 171
user5_1B_2 0.848 0.915 0.79 484 45 129
user5_1B_3 0.848 0.969 0.754 462 15 151
user6_1B_1 0.857 0.912 0.809 496 48 117
user6_1B_2 0.858 0.907 0.814 499 51 114
user8_1B_1 0.921 0.950 0.894 548 29 65
user8_1B_2 0.910 0.950 0.873 535 28 78
user16_1B_1 0.897 0.951 0.848 520 27 93
user16_1B_2 0.899 0.966 0.840 515 18 98
user16_1B_3 0.897 0.951 0.848 520 27 93
user18_1B_1 0.904 0.94 0.871 534 34 79
user19_1B_1 0.773 0.646 0.962 590 324 23
user19_1B_2 0.77 0.642 0.962 590 329 23
user19_1B_3 0.763 0.661 0.902 553 284 60
user24_1B_1 0.897 0.917 0.878 538 49 75

Table 3: Task 1B Results on Fly gene list task

FLY F-measure Precision Recall True Positives False Positives Missed

Gold Standard 1.000 1.000 1.000 429 0 0
Noisy Training 0.834 0.863 0.807 346 55 83

Hi 0.815 0.831 0.841 361 684 266
Low 0.284 0.224 0.380 163 70 68
Median 0.661 0.659 0.732 314 146 115

user5_1B_1 0.661 0.592 0.748 321 221 108
user5_1B_2 0.612 0.659 0.571 245 127 184
user5_1B_3 0.602 0.693 0.531 228 101 201
user8_1B_1 0.665 0.638 0.695 298 169 131
user8_1B_2 0.726 0.692 0.765 328 146 101
user16_1B_1 0.781 0.728 0.841 361 135 68
user16_1B_2 0.815 0.831 0.800 343 70 86
user16_1B_3 0.787 0.744 0.834 358 123 71
user18_1B_1 0.417 0.463 0.380 163 189 266
user19_1B_1 0.284 0.224 0.389 167 580 262
user23_1B_1 0.440 0.315 0.732 314 684 115
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A second observation is that systems may have been lim-
ited by the quality of the noisy training data. For both
Yeast and Fly, the estimated training data quality was just
a shade higher than the final top performing systems.

Methods
This section discusses the methods used to prepare the
evaluation materials.

Data preparation
In order to evaluate the performance of the systems, the
organizers prepared a hand-coded gold standard, as
described in [3]. First, each abstract was associated with
the gene ID list from the appropriate model organism
database. Since we were using abstracts rather than full
text, the gene list from the model organism database then
had to be adjusted to conform to the names mentioned in
the abstract. This was done in several steps, as follows:

• Removing gene IDs that were not found in the abstract,
but were found in the underlying full text article. This was
done automatically, using the synonym list, to generate
large quantities of "noisy" training data. This corresponds
to the Noisy Training column on the tables for the model
organism performance data.

• Hand checking to make sure that the automatic proce-
dure did not eliminate genes that were present in the

abstract (development test set and blind test set only).
This could occur if, for example, the mention in the text
was a variant of the synonyms provided in the lexical
resource, e.g., "polgamma B" versus "polgamma 2".

• Adding in any additional genes mentioned "in passing"
in the abstract (development test set and blind test set
only). This was necessary because each model organism
database curates genes according to a certain set of criteria,
so not all genes mentioned are necessarily on the gene list.
There might, for example, be additional genes mentioned
"in passing," such as genes located near a gene of interest,
or possible homologues etc.

Overall, we estimate that it took between 1–2 staff weeks
of time from an experienced curator to edit and check a
250 abstract test set. The checking was particularly impor-
tant because we detected significant interannotator varia-
bility, particularly for the Mouse annotations – see [3] for
a detailed discussion of the data preparation and interan-
notation agreement studies.

Lexical resources
An analysis of the lexical resources provides insight into
the differences in difficulty observed for the three organ-
isms. Table 5 gives a picture of the amount of synonymy
in the different lexicons. It shows the number of unique
identifiers (IDs), the number of terms in the lexicon, and

Table 4: Task 1B results on Mouse gene list task

MOUSE F-measure Precision Recall True Positives False Positives Missed

Gold Standard 1.000 1.000 1.000 540 0 0
Noisy Training 0.709 0.99 0.552 298 3 242

Hi 0.791 0.828 0.898 485 674 267
Low 0.571 0.418 0.506 273 69 55
Median 0.738 0.765 0.730 394 131 146

user5_1B_1 0.672 0.767 0.598 323 98 217
user5_1B_2 0.737 0.811 0.676 365 85 175
user5_1B_3 0.619 0.798 0.506 273 69 267
user6_1B_1 0.739 0.813 0.678 366 84 174
user6_1B_2 0.745 0.785 0.709 383 105 157
user8_1B_1 0.744 0.828 0.676 365 76 175
user8_1B_2 0.661 0.635 0.689 372 214 168
user16_1B_1 0.772 0.750 0.794 429 143 111
user16_1B_2 0.777 0.807 0.750 405 97 135
user16_1B_3 0.791 0.765 0.819 442 136 98
user18_1B_1 0.686 0.728 0.648 350 131 190
user19_1B_1 0.580 0.428 0.898 485 648 55
user19_1B_2 0.571 0.418 0.898 485 674 55
user19_1B_3 0.606 0.489 0.798 431 451 109
user24_1B_1 0.767 0.735 0.802 433 156 107
user24_1B_2 0.776 0.764 0.787 425 131 115
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the average number of terms per identifier (synonyms) for
each organism. We can see that the Yeast resources are the
most parsimonious (1.9 synonyms per ID). Fly is the rich-
est with 2.9 synonyms per ID, but note also the large
standard deviation of 3.9: 42% of Fly identifiers have only
one term and only 15% have more than 4 synonyms per
ID. In addition, the last column of Table 5 shows the aver-
age length (in words) for the terms. Again, Yeast is very
compact, with barely over one word per term; this almost
certainly contributed to the high performance on Yeast.
Mouse has the longest terms on average, at 2.77 words per
synonym, but with a large standard deviation (2.6) Over-
all, 58% of Mouse terms were one word long and 81% of
the terms were four words long or less. The complexity of
the Mouse terms (as measured by length) may have con-
tributed to recall problems in identifying gene mentions,
since longer names tend to be more descriptive and there-
fore, to show significant syntactic variation. Also, the task
1A results [1] indicate that longer names are more difficult
to identify.

The resources for these organisms also differ in amount of
ambiguity among the terms, as shown in Table 6. The 4th

column of this table lists the absolute number of terms
that were associated with multiple gene identifiers. Again
we observe that Yeast is the least ambiguous (168 terms
and an average of 1.013 identifiers per term, column 5),
while Fly, with the most terms on average per gene, is also
the most ambiguous, at 1.085 gene identifiers per terms.
Again, Fly has the largest standard deviation: only 3.6% of
Fly terms are ambiguous – the remaining 96.4 % of Fly
terms are associated with a single ID.

Figure 3 shows the distribution of terms associated with
multiple gene identifiers as a log-log plot of number of
terms plotted against degree of ambiguity for all three
organisms. For degree = 1 (no ambiguity), we see that
Mouse has the largest number of terms, then Fly, then
Yeast. For degree = 2 (number of terms associated with
two gene identifiers), Fly and Mouse are equal; and after
that, Fly has by far the most ambiguity, with some terms
over 100 ways ambiguous, while Yeast tails off very
quickly (one term is 8-ways ambiguous).

In addition, Table 6 shows the ambiguity between gene
terms and English vocabulary. The 6th column shows the
absolute number of synonyms that overlap with the 5000
most common English words, and the last column shows
the average number of ambiguities per synonym (meas-
ured against the list of 5000 common words). These num-
bers are low, but they are also an underestimate of the
English ambiguity problem, since some of the ambiguities
("Est" for "esterase-6" or "dorsal" as a gene name) can
overlap with specialized biology terminology. Again, we
see that there is very little overlap with English for Yeast (2
terms out of 15,000), it is much higher for Mouse (205
out of 53,000 terms) and higher still for Fly (396 terms
out of 28,000).

These figures correlate with the differences in difficulty
between Yeast, Fly and Mouse. Yeast was relatively easy,
with few problems of ambiguity; Fly and Mouse were both
significantly harder, for somewhat different reasons. The
Fly lexical resources had the most terms per gene ID, and
were also the most ambiguous (with respect to gene iden-
tifiers and also with respect to overlap with regular English
words). Mouse, on the other hand, had longer names and
fewer synonyms. This may mean that there were variants
of complex names that did not appear in the lexicon,
requiring more complex procedures to match gene men-
tion and gene ID. However, this was offset in part by the
fact that Mouse had less ambiguity than in Fly. Finally,
Mouse had the most noisily annotated training data
(recall estimated at 55%), which may have contributed to
the difficulty of that task. The top scores for Mouse and Fly
were quite similar: for Fly, the high recall was 0.841, pre-
cision 0.831 and F-measure of 0.815 (all these scores were
from the same group, but not from the same run [7]); for
Mouse, high recall was 0.898, precision 0.828, and F-
measure 0.791; for Mouse, these three high scores came
from three different groups – see Table 4.

Discussion
There were eight groups participating in task 1B; 7 groups
submitted 15 systems for Yeast; 6 groups submitted 11
systems for Fly; and 7 groups submitted 16 systems for
Mouse.

Task 1B results for all organisms: precision vs. recallFigure 2
Task 1B results for all organisms: precision vs. recall.
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Of the eight participating groups, two groups did not sub-
mit extended write-ups and are not discussed in detail
here. Four systems are documented in articles in this issue
[7-10]. For descriptions of the other two systems, see
[11,12] in the BioCreAtIvE Workshop Handout [13]. The
remainder of this section discusses the challenges pre-
sented by task 1B and how the participating systems
approached these challenges.

Technical challenges for Task 1B
The requirements for task 1B can be divided into four
steps:

• Identifying gene mentions in the text

• Associating gene mentions to one or more unique gene
identifiers

• Selecting the correct gene identifier in cases of ambiguity

• Assembling the final gene list for each abstract

These steps were highly interdependent. There are com-
plex recall/precision trade-offs that occur in capturing can-
didate gene mentions and in assigning a unique (and
correct) gene identifier to these mentions. This is because
of significant ambiguity among gene terms (one word
might be a term for multiple genes) and also because of
significant overlap between gene synonyms ("white",
"dorsal") and English vocabulary. For example, the entry
for FBgn0000009 consists of the terms "A", "Abnormal"
and "Abnormal abdomen". Both "A" and "Abnormal"
appear as regular English words (not referring to a gene).
Furthermore, there are some 20 other genes that have the

term "A" as one of their allowed synonyms. Complicating
this further, the term lists provided by the model organ-
ism databases, while extensive, were by no means exhaus-
tive. As noted above, the lexical resources differed by
organism in number of terms per gene identifier and in
ambiguity of terms within the resource.

Precision errors could be caused by:

• False alarms for gene mentions (for example, taking an
English word to be a gene name);

• Incorrect disambiguation of ambiguous gene names
(which would also cause a recall error);

• Assignment of gene identifiers to genes from non-rele-
vant organisms (e.g., human genes are often discussed in
Mouse abstracts, but should not be entered into the gene
list).

Recall errors could be caused by:

• Failure to recognize a gene mention (perhaps due to
mismatch with the organism-specific synonym list)

• Incorrect disambiguation of ambiguous gene names

Finding gene mentions
The participating groups took a variety of approaches to
these challenges. For gene mentions, the approaches fell
into roughly two groups:

• Matching against the lexical resource; in many cases, an
approximate matching approach was used. For example,

Table 5: Lexical Resources: synonymy for Yeast, Mouse, Fly

# ID # Terms Terms per ID (St dev) Avg Length (wds) per Term (St dev)

Yeast 7,928 14,756 1.861 (1.01) 1.001 (0.05)
Mouse 52,594 130,548 2.482 (1.12) 2.772 (2.57)
Fly 27,749 81,711 2.944 (3.88) 1.470 (0.97)

Table 6: Lexical resources for Yeast, Fly and Mouse: identifiers, terms, and ambiguity

# IDs # Terms Ambiguous Terms Avg # IDs per Term
(St dev)

# Terms Overlap
w English

Avg Eng Amb
per Term

Yeast 7,928 14,756 168 1.013 (0.14) 2 0.00014
Mouse 52,594 130,548 1919 1.017 (0.18) 205 0.00171
Fly 27,749 81,711 2736 1.085 (1.03) 396 0.00650
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[8] used exhaustive pattern matching against the synonym
lists to generate a high recall/low precision set of candi-
dates (91% for fly; 79% for mouse; and 90% for Yeast).
This was followed by application of a classifier to select
the candidates to appear on the final normalized gene list.
The approach described in [12] used an enriched lexical
resource to achieve high recall (but lower precision)
results for Mouse and Yeast.

• Gene mention identification as done for task 1A,
adapted to the three specific organisms in 1B [11]. To do
this, Hachey et al used a technique to generate "noisy"
training data similar to that described in [14].

Association with unique gene identifier
The second stage, association with a unique identifier, was
essentially a table look-up. For groups that used a task 1A-
type gene mention tagger, they were then able to use the
table look up to filter out erroneous gene mention candi-
dates. However, recall at this step was limited by the com-
pleteness of the synonym list from the model organism
database. While the term lists contained many variant
forms (see the example with Est-6 in Figure 1), there were
still more variations that had to be handled. The incom-
pleteness of the lexical resources could lead to recall
errors.

This was also the stage at which ambiguity was flagged,
since some terms could refer to multiple genes (see Table
6). A number of groups chose to edit the lexical resources,
removing highly ambiguous or uninformative terms and
adding additional variants or descriptions [7-10]. The sys-
tematic editing and expansion of the underlying lexical

resources was at the core of two high performing systems
[7,9]. Both Tamames [10] and Liu [12] used the same
tokenization for the lexicon as was used for the gene men-
tion identification; both systems also used stemming to
improve the matching between lexicon terms and candi-
date gene names in the text.

For several groups, the gene mention tagging, gene identi-
fier look-up and disambiguation were interleaved; for
example, Hanisch et al [7] accrued evidence during the
process of identifying candidate gene mentions that was
then used to disambiguate the gene mention to a specific
gene identifier. For Tamames [10], these stages were also
combined.

Disambiguation
The next stage, disambiguation for gene synonyms associ-
ated with multiple identifiers, turned out to be the most
interesting feature of task 1B. The extensive ambiguity of
gene names, particularly for Fly and to a lesser extent, for
Mouse (see Figure 3), required that systems include tech-
niques for disambiguation. These included pruning the
lexicon or accumulating multiple sources of contextual
evidence for use in a classifier. Pruning the lexicon was an
attractive option, given the highly skewed distribution of
ambiguity in both Mouse and Fly. For Mouse, there were
1900 ambiguous terms (out of 126,000 – 1.5%); for Fly,
there were 2700 out of 75,000 ambiguous terms (3.6%).
Hanisch et al. [7] used a multi-stage process that included
correlating abbreviations with their long forms and also a
filter for abstracts based on organism specificity. Liu [12]
used features derived from rich lexical resources to create
feature vectors used in word sense disambiguation. Crim
et al. [8] followed their high recall pattern matching sys-
tem with a maximum entropy classifier trained to distin-
guish correct matches from bad matches. Hachey et al [11]
used information retrieval techniques to associate candi-
date gene identifiers with term frequencies in a document.
They used this to filter gene identifiers for a given abstract,
based on similarity to term occurrences associated with
the gene identifiers in abstracts from the training data.

Generating the final gene list
Once these stages were completed, the systems assembled
the final gene list for each abstract as output. For some
groups, this stage was parameterized in terms of a cer-
tainty threshold. Increasing the threshold traded recall for
precision, e.g., in [7] and [12]. One group [8] was able to
achieve reasonable performance (well above the median
of the reported systems) using a single approach across all
three organisms, based on high recall pattern matching,
followed by a maximum entropy classifier for remove bad
matches. Many groups found that it was possible to use
much simpler techniques for Yeast than for Mouse or Fly,
due to the more tightly constrained nomenclature.

Distribution of ambiguous synonyms in Fly, Mouse and Yeast task 1B lexical resourcesFigure 3
Distribution of ambiguous synonyms in Fly, Mouse and Yeast 
task 1B lexical resources.
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Conclusion
BioCreAtIvE demonstrated the ability of automated sys-
tems to do gene normalization for a range of organisms,
given a simple lexical resource consisting of the set of
unique gene identifiers and their names and synonyms,
and a corpus (5000 abstracts) of noisy training data. The
actual performance depended more on the organism than
on the kind of system. Factors included the number of
genes, the number of synonyms per gene identifier, the
consistency of naming conventions, the length and com-
plexity of names, and the degree of ambiguity in the nam-
ing conventions. The more ambiguity (among genes,
between genes and English) and the more complex the
names (descriptions versus simple gene symbols), the
harder the problem. Yeast naming is relatively simple and
regular – and good performance could be achieved with
relatively simple methods (such as expanded lexical look-
up). Fly is hard because of ambiguity of short names, both
with English words and among gene names; the Flybase
lexicon is quite large, with many synonyms per gene; for
this task, editing the synonym lists turned out to be a use-
ful technique for reducing ambiguity. Mouse is hard
because names are often long and descriptive, subject to
many variants (grammatical as well as syntactic and typo-
graphic). Mouse was also harder because of our decision
to simplify that task to include all gene mentions; this
required that the annotators add many genes in by hand,
which made training and test data preparation difficult
(and somewhat less reliable than other organisms).

Overall, we judged that the BioCreAtIvE task 1B evalua-
tion was a success. We attracted 8 groups from five
countries with participation from some of the major
groups involved in information extraction in biology.
Results demonstrated that the generation of normalized
gene lists is well within the range of current technology,
although further experiments are needed to determine
what performance would be required for a production
system used in some semi-automated curation pipeline.

The task raised some interesting research questions:

1. How to achieve high recall – achieving high precision
seems relatively easy, but only one system achieved high
recall, at the expense of precision [12].

2. How to disambiguate ambiguous synonyms, including
both abbreviations or short forms of gene names, and
longer forms. This problem requires word sense disam-
biguation, but this is a new way of framing the problem
that should provide an interesting testing ground for vari-
ous approaches to the problem.

3. How to do rapid adaptation to different task domains,
given appropriate lexical resources (synonym list for the

organism gene identifiers). Some of the successful systems
found that the different organisms benefited from some-
what different approaches. And several systems made use
of additional lexical resources. Only one group tried to
apply a uniform method across all three organisms [8],
with interesting results.

Our approach to using "noisy" training data worked rea-
sonably well, although the noisy data may have imposed
limitations on system performance. This reduced the cost
of data preparation significantly, but the cost of preparing
the training and test sets was greater than we expected: 1–
2 person weeks of expert annotator time for a 250 abstract
test set. And the difficulties of achieving reliable interan-
notator agreement were greater than we expected [3]. The
training and test data are now available for other groups
to use in further experiments.

As we begin to think about a follow on evaluation, the
question arises: should this task be repeated? The real task
that curators perform uses full text articles (not abstracts,
although the Yeast curators do curate from abstracts most
of the time). Furthermore, the real task involves a biolog-
ically complex set of criteria about which genes to list and
which genes that fall outside the scope of what is curated
(for example, they belong to another organism, or they
are only mentioned in passing). It would be far easier for
the organizers to prepare "real" data sets, because it would
require none of the editing that was performed for this
year's BioCreAtIvE task 1B. On the other hand, it would be
harder for the participants, because they would have to
handle full text and they would have to replicate biologi-
cal decisions in terms of which genes to list.

In conclusion, we look forward to receiving feedback from
the participants in defining follow-on tasks for the next
BioCreAtIvE evaluation.
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