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Abstract
Background: Due to the strict relation between protein function and structure, the prediction of
protein 3D-structure has become one of the most important tasks in bioinformatics and
proteomics. In fact, notwithstanding the increase of experimental data on protein structures
available in public databases, the gap between known sequences and known tertiary structures is
constantly increasing. The need for automatic methods has brought the development of several
prediction and modelling tools, but a general methodology able to solve the problem has not yet
been devised, and most methodologies concentrate on the simplified task of predicting secondary
structure.

Results: In this paper we concentrate on the problem of predicting secondary structures by
adopting a technology based on multiple experts. The system performs an overall processing based
on two main steps: first, a "sequence-to-structure" prediction is enforced by resorting to a
population of hybrid (genetic-neural) experts, and then a "structure-to-structure" prediction is
performed by resorting to an artificial neural network. Experiments, performed on sequences
taken from well-known protein databases, allowed to reach an accuracy of about 76%, which is
comparable to those obtained by state-of-the-art predictors.

Conclusion: The adoption of a hybrid technique, which encompasses genetic and neural
technologies, has demonstrated to be a promising approach in the task of protein secondary
structure prediction.

Background
The strict relationship between protein structure and func-
tion, together with the increasing gap between the
number of sequences and known structures in bioinfor-
matics databases, has lead to the need of automatic pro-
tein structure prediction systems. Unfortunately, protein
structure prediction is a very difficult task. Chemical prop-

erties of aminoacids and complex interactions between
different parts of the same protein and/or the protein and
the surrounding environment should be taken into
account for an accurate folding reconstruction. On the
other hand, protein structure can be simplified by consid-
ering only the secondary structure, i.e. the local conforma-
tion which each residue belongs to, usually represented
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as: alpha-helix (α), beta-sheet (β), and random-coil (c).
Although the knowledge about secondary structure is less
informative than the tertiary one, an accurate secondary
prediction can help in building the complete protein fold-
ing [1,2]. Furthermore, it can be a useful starting point to
determine the protein function. In fact, most active sites
are associated to particular conformations (or combina-
tions) of secondary structures (motifs), more conserved
during the evolution than the corresponding primary
sequence.

Artificial neural networks (ANNs) are the most widely-
used technology for predicting secondary structures. Typ-
ically, the input required to predict the secondary struc-
ture of a target residue is extracted from a windows of
aminoacids centered on the residue itself, whereas three
(i.e., α, β, and c) or eight (i.e., H, E, G, S, T, B, I, and ".")
outputs represent the relevant structural classes. The pre-
diction accuracy is commonly measured by the percent of
residues correctly predicted versus the overall number of
residues in the dataset (Q3). It is worth pointing out in
advance that the typical output encoding adopts three val-
ues, and that the mapping between eight- to three-class
encoding is not unique. In this paper, we adopted the
"default" mapping proposed in [3], where α←{H, G, I},
β←{E, B}, and c represents everything else. The Q3 index
is evaluated in accordance with this choice.

There are a variety of secondary structure prediction meth-
ods proposed in the literature. Early prediction methods
were based on statistics headed at evaluating, for each
amino acid, the likelihood of belonging to a given second-
ary structure [4]. The main drawback of these techniques
is that, typically, no contextual information is taken into
account, whereas nowadays it is well known that second-
ary structures are determined by chemical bonds that hold
between spatially-close residues. A second generation of
methods exhibits better performance by exploiting pro-
tein databases, as well as statistic information about
amino acid subsequences. In this case, a limited window
of aminoacids (e.g., 11 continuous residues) is taken into
account, centered around the residue to be predicted. Sev-
eral methods exist in this category, which may be classi-
fied according to (i) the underlying approach, e.g.,
statistical information [5], graph-theory [6], multivariate
statistics [7], (ii) the kind of information actually taken
into account, e.g., physico-chemical properties [8],
sequence patterns [9], and (iii) the adopted technique,
e.g., k-Nearest Neighbors [10], Artificial Neural Networks
(ANNs) [11].

The most significant innovation introduced in prediction
systems was the exploitation of long-range and evolution-
ary information contained in multiple alignments. The
underlying motivation is that active regions of homolo-

gous sequences will typically adopt the same local struc-
ture, irrespective of local sequence variations. PHD [12] is
one of the first ANN-based methods that make use of evo-
lutionary information to perform secondary structure pre-
diction. In particular, after searching similar sequences
using BLASTP [13], ClustalW [14] is invoked to identify
which residues can actually be substituted without com-
promising the functionality of the target sequence. To pre-
dict the secondary structure of the target sequence, the
multiple alignment produced by ClustalW is given as
input to a multi layer ANN. The first layer outputs a
sequence-to-structure prediction which is sent to a further
ANN layer that performs a structure-to-structure predic-
tion aimed at refining it.

Further improvements are obtained with both more accu-
rate multiple alignment strategies and more powerful
neural network structures. For instance, PSI-PRED [15]
exploits the position-specific scoring matrix (called "pro-
file") built during a preprocessing performed by PSI-
BLAST [16]. This approach outperforms PHD thanks to
the PSI-BLAST ability of detecting distant homologies. In
more recent work [3,17], recurrent ANNs (RANNs) are
exploited to capture long-range interactions. The actual
system that embodies such capabilities, i.e., SSPRO [18],
is characterized by: (a) PSI-BLAST profiles for encoding
inputs, (ii) bidirectional RANNs, and (iii) a predictor
based on ensembles of RANNs. Further information
about protein secondary structure prediction can be
found, for instance, in [19].

Methods
In this paper a system that resorts to multiple experts for
dealing with the problem of predicting secondary struc-
tures is presented, whose performances are comparable to
those obtained by other state-of-the-art predictors. The
system, called MASSP3 (MultiAgent Secondary Structure
Predictor with Post-Processing), performs an overall
processing based on two main steps: first, a "sequence-to-
structure" prediction is performed, by resorting to a pop-
ulation of hybrid genetic-neural experts, and then a "struc-
ture-to-structure" prediction is performed, by resorting to
a feedforward ANN.

Sequence-to-Structure Prediction
In this subsection the module that has been devised to
perform the first step, which stems from the one proposed
in [20], will be briefly described -focusing on the internal
details that characterize an expert and on the behavior of
the overall population of experts.

Experts' "Internals"
In its basic form, each expert E can be represented by a tri-
ple <g, h, w> (as depicted in Figure 1), where: (i) g is a
function used to select inputs according to the value of
Page 2 of 7
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:S3
some relevant features, (ii) h is an embedded predictor
whose activation depends on g(x), and (iii) w is a weight-
ing function used to perform output combination. In par-
ticular, the output of E coincides with h(x) for any selected
input, otherwise it is not defined. In the case E contributes
to the final prediction (together with other experts), its
output is modulated by the value w(x) of its weighting
function, which represents the expert confidence (i.e., its
strength) about its own prediction.

In the proposed system, the guard g of an expert is imple-
mented by a "genetic" classifier able to match inputs
according to a set of selected features deemed relevant for
the given application. Matching is "flexible", meaning
that, for any given input x, g(x) � [0, 1], thus allowing
experts to show different "ranges of authority" on x. More-
over, an expert can participate to the output combination
activity only when the matching with x returns a value
greater than a given threshold µ. In so doing, experts do
not have complete visibility of the input space, i.e., they
operate on different regions with "soft" boundaries.

As for the embedded predictor h, it typically consists of a
feedforward ANN trained and activated on the inputs
acknowledged by the corresponding guard. Each embed-

ded predictor has three outputs corresponding to α, β, and
c, all normalized in [0, 1], to facilitate output combina-
tion. The value w(x), ranging over the interval [0, 1],
depends on the expert fitness, on the result of the match,
i.e. on g(x), and on the reliability of the prediction made
by the embedded predictor. The reliability r of a predic-
tion is evaluated as the difference between the two highest
values, as proposed in [12]. In the current implementa-
tion of the system, the weighting function of an expert E
is: wE(x) = fE*gE(x)*rE(x).

In the task of predicting secondary structures, genetic
guards are entrusted with processing some biological fea-
tures, normalized in [0, 1], deemed relevant for the given
task. This makes it possible to split the input space, with
the goal of simplifying the training of neural classifiers.
The corresponding features are reported in Table 1. For
each feature, the operation actually performed on the cur-
rent window r of residues, together with the underlying
conjecture, are reported. The "AAindex" database [21] has
been used for retrieving relevant information about resi-
dues, e.g., hydrophobicity, polarity, charge, and volume.

It is relatively easy to fulfil the constraint that each feature
must be limited in [0, 1], although the specific technique
used to quantitatively evaluate a feature is strictly depend-
ant on the feature itself. For instance, feature 1 is obtained
by performing a matching – which may include a prelim-
inary shift between the actual window (representing resi-
dues according to their property of being hydrophobic or
not) and a prototypical "target" window in which hydro-
phobicity fulfils the hypothesis about periodicity. In this
case, the normalization in [0, 1] is included as part of the
matching activity. In other cases, e.g., feature 4, the nor-
malization is obtained by filtering with a suitable sigmoid
the difference between the value of charge averaged on the
given window and the corresponding expected value.

The micro-architecture of an expertFigure 1
The micro-architecture of an expert.
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Table 1: Features used for "soft" partitioning the input space (r denotes the length of the corresponding window)

Feature Conjecture

1 Check whether hydrophobic aminoacids occur in the current window 
(r = 15) according to a clear periodicity (i.e., one every 3–4 residues)

Alpha helices may sometimes fulfill this pattern

2 Check whether the current window (r = 13) contains numerous 
residues in {A,E,L,M} and few residues in {P,G,Y,S}

Alpha helices are often evidenced by {A,E,L,M} residues, whereas 
{P,G,Y,S} residues account for their absence

3 Check whether the left side of the current window (r = 13) is mostly 
hydrophobic and the right part is mostly hydrophilic (and viceversa)

Transmembrane alpha helices may fulfil this feature

4 Check whether, on the average, the current window (r = 11) is 
positively charged or not

A positive charge might account for alpha helices or beta sheets

5 Check whether, on the average, the current window (r = 11) is 
negatively charged or not

A negative charge might account for alpha helices or beta sheets

6 Check whether, on the average, the current window (r = 11) is neutral A neutral charge might account for coils
7 Check whether the current window (r = 11) mostly contains \small" 

residues
Small residues might account for alpha helices or beta sheets

8 Check whether the current window (r = 11) mostly contains polar 
residues

Polar residues might account for alpha helices or beta sheets
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In so doing, for each given position to be predicted, a vec-
tor m of values in the range [0, 1] is first evaluated, and
then supplied as input to the guard of each expert in the
population. Each guard may accept or not the input
depending on an embedded genetic pattern e, which is a
string in {0, 1,#}. In particular, the i-th component of a
genetic pattern being 0 (1) forces the corresponding fea-
ture to be close to 0 (1), whereas the dont-care symbol
(i.e., "#") allows the corresponding feature to be disre-
garded. In practice, the i-th component of e controls the
evaluation of the corresponding input features, so that
only non-"#" features are actually taken into account.
Hence, Hg≠ φ being the set of all non-"#" indexes in e, g(x)
can be defined, according to the Minkowski's L∞ distance
metrics, as:

Dealing with a Population of Experts
The overall population of experts is dealt with according
to the typical guidelines that hold for evolutionary envi-
ronments. As shown in Figure 2, experts interact with: (i)
a selector, (ii) a combination manager, (iii) a rewarding
manager, and (iv) a creation manager. The selector is
devoted to collect all experts whose guard covers the given
input, thus forming the match set M. The combination
manager is entrusted with combining the outputs of
experts belonging to M, so that a suitable voting policy
can be enforced on them. The main task of the rewarding
manager is to force all experts in M to update their internal
parameters, according to the reward obtained by the exter-
nal environment. The creation manager is responsible for
creating experts, when needed.

In the current implementation of the system, the training
activity encompasses two steps: (i) discover a population
of guards aimed at soft partitioning the input space, and
(ii) train the embedded predictors of the resulting popu-
lation.

In the first step, experts are generated and selected concen-
trating only on their soft-partitioning capability, rather
than on the precision of the system. In fact, in this phase,
embedded predictors play a secondary role, their training
being deferred to the second step. Until then, embedded
predictors output only the statistics (in terms of percent of
α, β, and c) computed on the subset of inputs acknowl-
edged by their guard (which, in this phase, does not
depend on the input x being processed).

Figure 3 illustrates the underlying training activity. The
system starts with an initial population of experts
equipped with randomly-generated guards. The popula-

tion undergoes several training epochs, until the maxi-
mum number of epochs (i.e., 40) has been reached. At
each epoch, the whole learning set is processed.

Triggered by an input x of class tx� {α,β,c}, the match set
M is built, consisting of all experts whose guards cover x.
When M is empty a new expert is created, whose genetic
guard is able to cover the current input. In this case, an
embedded pattern (built upon the alphabet {0, 1,#} able
to match x is generated using a greedy algorithm driven by
the goal of maximizing the percent of inputs that share the
class txwithin the inputs covered by the guard itself. The
overall prediction (in terms of α, β, and c) is evaluated by
averaging for each class, the output of all experts in M and
then selecting the class with highest value. Let us note that
the contribution of each expert E is weighted according to
wE.

After that, the reward from the environment is calculated
and the parameters that characterize each expert in M,
including fitness, are updated according to the guidelines
of Wilson's XCS systems [22]. If the average time elapsed
from the last mating operation (evaluated on the experts
in M) exceeds a predefined threshold, a pair of experts is
selected in M according to a probability that increases
with fitness. These experts are used to generate a new pair
of experts using genetic operators (single-point crossover
and possibly mutation, with probability 0.08), to be
inserted in the population. Single-point crossover and
mutation operate on the embedded patterns of the par-
ents. If the population limit has been reached, a pair of
experts to be deleted is selected. The probability of delet-
ing a given expert is proportional to the estimated average
size of the match sets in which it occurred, and increases
for experts with low fitness.

It is worth pointing out that, at the end of the first step, a
globally-scoped expert (i.e., equipped with a guard whose
embedded pattern contains only "#") is inserted in the
population, to guarantee that the input space is com-
pletely covered in any case. Upon completion of the first
step, no further creation of experts is performed.

In the second step, the focus moves to embedded predic-
tors, which are actually multi-layer perceptrons (MLPs)
trained using the backpropagation algorithm on the sub-
set of inputs acknowledged by their corresponding guard.
In the current implementation of the system, all MLPs are
trained in parallel, until a convergence criterion is satis-
fied or the maximum number of epochs (i.e., 20) has been
reached. In its basic form, MLP training is performed by
enforcing backpropagation on the set of inputs acknowl-
edged by the corresponding guard. A further training tech-
nique has also been experimented, explicitly devised for
this specific application: Given an expert consisting of a

g x e m x
i H

i i
g

( ) max{| ( )|}= − −
∈

1

Page 4 of 7
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:S3
guard g and its embedded predictor h, h is trained on the
whole training set in the first five epochs. The visibility of
the training set is restricted on the subsequent epochs
according to the inputs filtered in by g. In this way, a
mixed training technique is performed, whose rationale
lies in the fact that experts must find a suitable trade-of
between the need of enforcing diversity (by specializing
themselves on a relevant subset of the input space) and
the need of preventing overfitting.

Structure-to-Structure Prediction
Technologies that adopt a simple residue-centric
approach, in which secondary structures are predicted
independently, often generate inconsistent and unrealis-
tic secondary structure assignment -e.g., isolated alpha-
helices. To deal with this problem, a suitable post-process-
ing is usually performed, aimed at improving the predic-
tion accuracy. The post-processing module can be either
hand-coded or automatically generated. In the former
case, it follows the guidelines of suitable empirical rules,
whereas in the latter an architecture typically based on
ANNs is devised and trained on the inputs generated by
the subsystem responsible for the sequence-to-structure
processing. In the implementation of MASSP3 we adhered
to the latter approach. In particular, post-processing is
performed by a single MLP fed with the sequence-to-struc-
ture prediction expressed in terms of α, β, and c propen-
sions. To augment the autocorrelation of the input signal,
a suitable "low-pass" filtering is also preliminarily per-
formed by resorting to a suitable gaussian shape (for each
class, a value averaged over a window of three residues is
evaluated). In so doing, the MLP takes as input the result-
ing three-dimensional signal on a window of 21 residues

and generates three outputs in [0, 1] -to be considered as
pseudo-probabilities. Each aminoacid of the given
sequence is then labelled with α, β, or c according to a cri-
terion of maximum-likelyhood.

Results
To perform experiments, the same datasets adopted in
[18] have been adopted. The training set (i.e., the TRAIN
dataset) contains 1180 sequences, obtained from the PDB
database [23] by disregarding proteins with more than
25% of identity with the test set. The test set (i.e., the
RS126 dataset) contains 126 non-redundant proteins (no
pairs of proteins can be found in the set with more than
25% of similarity over a length of more than 80 residues).
Let us point out in advance that MLP inputs are evaluated
on a moving window of 15 aminoacids centered on the
aminoacid to be predicted (i.e., 7+1+7), each position in
the window beng represented by a vector of 21 values in
[0, 1] (i.e., 20 for amino acids and one for representing the
gap).

Several experiments have been performed, aimed at
assessing the impact of different aspects on the behavior
of the system: (i) optimization of genetic experts, (ii)
input encoding, (iii) experts' specialization technique,
and (iv) post-processing technique. Let us stress that post-
processing (i.e., structure-to-structure prediction) has
been deferred to the final experiment.

The first experiment has been performed using a popula-
tion of 600 experts with randomly-generated guards.
MLPs were supplied with inputs obtained by enforcing a
BLAST-based encoding of aminoacids, and were equipped
with one hidden layer of 10–25 neurons, depending on
the amount of inputs that can be selected by the corre-
sponding guards. Each MLP has been trained using back-
propagation and considering only the inputs filtered in by
the corresponding guard. Since no selective pressure has
been enforced, "good" experts have in fact been counter-
balanced by "bad" ones, giving rise to a Q3= 69,1%. This
result, considered as a reference, is comparable to the one
obtained by a single MLP trained on the whole training
set.

The second experiment was aimed at evaluating the
impact of the genetic selection on the performance of the
system. In this case, the above population has been
evolved using covering, single point crossover and muta-
tion operators. The underlying genetic algorithm per-
formed 60 epochs and the final population contained 550
experts (after removing the ones that were unable to
match more than 0.1% of the overall inputs used for train-
ing). MLPs have been trained using backpropagation and
considering only the inputs filtered in by the correspond-
ing guard. Results obtained in this case (71.8%) show an

The architecture of the module that performs the sequence-to-structure processingFigure 2
The architecture of the module that performs the sequence-
to-structure processing.
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improvement of about 2%, seemingly dependent on the
domain knowledge embodied by the most "successful"
experts.

In the third experiment, MLPs were trained using back-
propagation with a two-tiered policy: in the first 5 epochs
each expert was trained on the overall dataset, whereas in
the subsequent epochs only the subset of inputs selected
by the corresponding guards was used for training. The
underlying rationale is that "specialization" may not nec-
essarily occur from scratch; rather, it can originate from a
common starting point, obtained by allowing experts to
have a global visibility over the input space.

Results (Q3= 73.2) show an improvement of about 1.5%.
In the fourth experiment, the position-specific scoring
matrices that characterize PSI-BLAST profiles [16] have
been adopted to encode MLP inputs. MLPs have been
trained using using backpropagation, together with the
two-tiered policy described above. Results (Q3= 74.7%)
show an improvement of about 1.5%.

Final experiments have been performed by adopting a
post-processor, consisting of a single MLP with a moving
window 21 aminoacids. To better highlight the correla-
tion among neighbor residues, a preliminary encoding
through a lowpass gaussian filter (σ = 0.5) has been per-
formed on the output supplied by the module based on
multiple experts. These experiments allowed to reach a
Q3= 76.1%. A 7-fold cross-validation performed on the
selected training set essentially confirmed this result, with
an average Q3= 75.9.

Table 2 summarizes all experimental results described so
far, pointing to the accuracy of each specific training strat-
egy or encoding technique. Moreover, Table 3 reports the
accuracy of the system and the SOV score [24] for the three
secondary structure states and the overall Q3 and SOV

score. Let us recall that SOV measures the accuracy of the
prediction in terms of secondary structure segments rather
than on individual residues.

Conclusion
In this paper, an approach for predicting protein second-
ary structures has been presented, which relies on an
architecture based on multiple experts. In particular, a
population of hybrid experts – embodying a genetic and a
neural part – has been devised to perform the given appli-
cation task. Experimental results, performed on sequences
taken from well-known protein databases, point to the
validity of the approach. As for the future work, we are
investigating the applicability of more powerful features,
to be embedded within genetic guards, able to improve
their ability of performing context identification. Further-
more, the task of implementing a community of heteroge-
neous experts is currently being investigated.
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