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Abstract
Background: Genetic markers hold great promise for refining our ability to establish precise
prognostic prediction for diseases. The development of comprehensive gene expression
microarray technology has allowed the selection of relevant marker genes from a large pool of
candidate genes in early-phased, developmental prognostic marker studies. The primary analytical
task in such studies is to select a small fraction of relevant genes, typically from a list of significant
genes, for further investigation in subsequent studies.

Results: We develop a methodology for predicting survival outcomes using subsets of significant
genes in prognostic marker studies with microarrays. Key components in this methodology include
building prediction models, assessing predictive performance of prediction models, and assessing
significance of prediction results. As particular specifications, we assume Cox proportional hazard
models with a compound covariate. For assessing predictive accuracy, we propose to use the
cross-validated log partial likelihood. To assess significance of prediction results, we apply
permutation procedures in cross-validated prediction. As an additional key component peculiar to
prognostic prediction, we also consider incorporation of standard prognostic factors. The
methodology is evaluated using both simulated and real data.

Conclusion: The developed methodology for prognostic prediction using a subset of significant
genes can provide new insights based on predictive capability, possibly incorporating standard
prognostic factors, in selecting a fraction of relevant genes for subsequent studies.

Background
Genetic markers hold great promise for refining our abil-
ity to establish precise prognostic prediction for diseases.
The development of comprehensive, gene expression
microarray technology has allowed the selection of rele-
vant marker genes from a large pool of candidate genes in
early-phased, developmental prognostic marker studies
for various cancers including diffuse large B-cell lym-

phoma [1], follicular lymphoma [2], acute myeloid leuke-
mia [3], lung adenocarcinoma [4], and metastatic kidney
cancer [5]. The selected genes will be further investigated
in subsequent studies using technically simpler, but more
reliable assays such as multiplexed quantitative reverse-
transcriptase polymerase chain reaction (RT-PCR) in for-
malin-fixed, paraffin-embedded tissue sections for rou-
tine clinical use [6,7]. Accordingly, the primary task in
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early-phased prognostic marker studies with microarrays
would be to select a small fraction of relevant genes for
subsequent studies. To this end, multiple testing to iden-
tify genes associated with prognosis is typically adopted as
primary analysis, which may provide a list of significant
genes.

Prediction analysis using subsets of significant genes may
supplement the primary analysis. It can provide informa-
tion regarding predictive capability for subsets of signifi-
cant genes. More importantly, provided that appropriate
measures of predictive accuracy for survival outcomes are
established, it may indicate another 'cut-off' for a list of
significant genes on the basis of predictive accuracy
through gene filtering other than the criteria to control
false positives in multiple testing. Despites many methods
for prediction analysis of survival outcomes proposed in
bioinformatics and biostatistics literature, including
application of partial least squares [8-10] and ridge regres-
sion [11,12], most methods intend to use the full set of
genes for prediction without regard to the primary analy-
sis.

In this article, we develop a methodology for predicting
survival outcomes using subsets of significant genes. Key
components in this methodology include building pre-
diction models, assessing predictive performance of pre-
diction models, and assessing significance of prediction
results. Here, given the first two components, we can per-
form gene filtering. For each component, we consider par-
ticular specifications or procedures to illustrate the
methodology. In building prediction models, we assume
Cox proportional hazard models with a compound cov-
ariate [13,14]. In assessing performance of prediction
models, measures of explained variation for Cox regres-
sion models [15-17] may not aim to measure the perform-
ance of prediction models on future patients, i.e.,
predictive accuracy. We propose to use the cross-validated
log partial likelihood [18,19] to measure predictive accu-
racy. To assess significance of prediction results, we apply
the permutation procedures in cross-validated prediction
proposed by Radmacher et al. [14]. As an additional key
component peculiar to prognostic prediction, we also
consider incorporation of standard prognostic factors,
because it is important to determine whether a new
genetic marker adds prognostic information to that
already contained in the more established prognostic fac-
tors [20]. The performance of the methodology will be
evaluated using simulated data and real data from a lym-
phoma study.

Results
Gene filtering
The simplest approach of gene filtering is based on the
marginal association between each gene expression and

survival time [1-5]. For patient i in the training set, let hi(t)
be the hazard function and xj,i be the expression level for
gene j. For gene j, we assume the univariate Cox regression
model,

hi(t) = hj,0(t) exp(βjxj,i)  (1)

where hj,0(t) is the baseline hazard function and βj is a

parameter. Gene filtering is based on a test of hypothesis

βj = 0 (e.g., a score or Wald test [21]). Genes are typically

ranked on the basis of the value of absolute standardized
test statistic. Gene filtering can be based on the number of
genes [4] or a P-value cut-off [1,2,5]. A standardized score

or Wald test statistic for testing hypothesis βj = 0 is asymp-

totically normal with unit variance and mean equal to D1/

2βjσj where  is the variance of expression levels across

patients for gene j and D is the expected number of events
[22]. The gene filtering is thus based on the hazard ratio
associated with a change of standard deviation in gene
expression for a given number of events.

Prediction model
For the set of K selected genes (j1, ..., jK), the compound
covariate for patient i is defined as

where  is the standardized test statistic obtained in the

gene filtering for the selected gene jk (k = 1, ..., K). The def-

inition of the compound covariates weights by means of
standardized test statistics has been suggested for general-
ized linear models in Radmacher et al. [14]. This weight-
ing policy reflects the criterion in the gene filtering step.

Another possible policy is to use an estimate of βj, in stead

of zj, as the weight for gene j (e.g., Beer et al. [4]). Our

weighting policy gives higher weight to genes with larger
variance, which would yield a more robust predictor for
subsequent validation studies because the expression pro-
files for genes with larger variance would be more repro-
ducible.

The compound covariate can be regarded as a prognostic
index; patients with large values of the compound covari-
ate may have poor prognosis. We assume the following
Cox model to relate the compound covariate to the sur-
vival time,

hi(t) = h0(t) exp(ψci)  (3)
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where h0(t) is the baseline hazard function and ψ is a

parameter. The compound covariate for a new patient

with the vector of expression level  for the

selected genes can be calculated by replacing  with

 in (2), which is used for the prediction of survival

time for that patient.

Predictive accuracy
We use the cross-validated log partial likelihood [18,19]
to measure predictive accuracy of Cox models. Specifi-
cally, the average M-fold cross-validated log partial likeli-
hood is given by

where lm(ψ) = lT(ψ) - l(-m)(ψ) is the difference between the

partial log likelihood for the entire training set and that
with the mth group of patients excluded as the test set, and

 is the value of ψ that maximizes l(-m)(ψ) for m = 1,

..., M. As to the number of cross-validation groups, M = 10
or 5 are reasonable choices especially for computationally
burdensome analyses for large samples [23]. A low value
of ACVL corresponds to high predictive accuracy. ACVL
reduces to the prediction residual error of sum of square
(PRESS) in normal linear models [18].

When using M-fold cross-validation, it is critical that all
aspects of model building including gene filtering are re-
performed for each of M rounds of cross-validation to
avoid selection bias [24,25]. If we choose the cut-offs in
gene filtering that minimizes ACVL, an independent vali-
dation set would be needed to have unbiased estimate of
predictive accuracy because of the optimization process in
model building for the training set. Matsui [26] demon-
strated that the bias due to the optimization can be sub-
stantial in a class prediction problem from gene
expression profiling using 6,000 genes for 48 bladder
tumors.

A limitation of AVCL is that it is difficult to interpret for
non-statisticians. Some graphical displays may be helpful
to interpret the results. If an independent validation set is
available, a simple way is to divide the validation set into
some groups based on the value of the prognostic index
and compare survival curves between groups using a log-
rank test. The same type of assessment can also be per-
formed for cross-validated test sets from the training set,
but a usual log-rank test is not valid because the groups
are not pre-specified independently of the survival time. A

permutation procedure which permutates survival time to
expression profile is available to have a correct P-value
[14,5]. In this procedure, the same cross-validated model
building process, with some optimization process such as
choosing optimal cut-off based on ACVL, if any, is per-
formed to permutated data to obtain a null distribution of
the log-rank statistic. This permutation procedure can also
be useful for assessing the statistical significance of (the
minimized) ACVL, in which one may obtain a null distri-
bution of (the minimized) ACVL.

Adjustment for prognostic factors
Let ui be a vector of prognostic factors for patient i. For
gene j, we assume the Cox model, instead of (1),

where ηj is a vector of parameters. Gene filtering is based

on a test of hypothesis βj = 0 in model (4). This is to select

genes after adjustment for the prognostic factors. For the
set of K selected genes (j1, ..., jK), we calculate the com-

pound covariate ci in (2) using a standardized test statistic

for the hypothesis . Then we assume the Cox

model, instead of (3),

hi(t) = h0(t) exp(γ'ui +ψci) (5)

where γ and ψ are parameters. We assess the predictive
accuracy based on ACVL for model (5). The prediction is

based on the prognostic index,  where  and

 are estimates of γ and ψ, respectively, obtained from

the training set.

Analyses should test whether new systems add predictive-
ness once outcome is adjusted for the effect of standard
prognostic factors [20]. For the validation set, a graphical
display similar to that described in the previous section
may be drawn for each stratum by prognostic factors and
compare survival curves using a log-rank test for each stra-
tum or a stratified log-rank test. For cross-validated test
sets, a stratum-adjusted permutation procedure would be
useful, in which the observed value of the log-rank statis-
tic or (the minimized) ACVL are referred to their null dis-
tribution obtained by permutating survival time to
expression profile within each stratum.

Simulated data
In this section, we assessed adequacy of choosing the cut-
offs in gene filtering for the training set based on ACVL for
the Cox model (3) through a small simulation study. We
simulated data on 2,000 genes for 100 patients. Of the
2,000 genes, 50 genes were configured to be informative,
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i.e., these genes are associated with survival time. For
informative genes, the distribution of expression was nor-
mal with mean 0 and standard deviation 1 (supposing a
standardized expression data across patients for each
gene). We considered exchangeable correlation matrices
with correlation coefficient ρ of 0.2 or 0.7. In addition, we
considered the correlation matrix obtained from the data
from the lymphoma study by Rosenwald et al. [1] for the
top 50 genes in the gene filtering with model (1). The
range of correlation was -0.53 to 0.98. The informative
genes were associated with survival time via a multivariate
proportional hazard model,

λ0(t) exp(β'x)  (6)

where λ0(t) denotes the baseline hazard function, β a vec-
tor of regression parameters, and x a vector of gene expres-
sion for the 50 informative genes. We assumed a constant
baseline hazard. We set the value of parameters to mimic
the lymphoma data; the baseline hazard was set equal to
0.13 (/year) and all the elements of β to 0.5 (= log(1.65)),
corresponding to a 1.65-fold in the hazard of failing with
a standard deviation increase in gene expression. Note
that the range of the absolute value of the estimate of β for
the top 50 genes obtained from a standardized lymphoma
data was 0.39 to 0.60. For parameter β, we also considered
an estimate of β from the top 50 genes in the lymphoma
data, which were mixture of positive and negative values,
but we obtained similar results. For non-informative
genes, the distribution of expression was normal with
mean 0 and variance-covariance equal to the identity
matrix. For each of simulated data, we calculated ACVL
with M = 5 for the Cox model (3) with the compound cov-
ariate for several values of K. For K ≤ 20, we also calculated
ACVL for a multiplicative model of the form of equation
(6) that included as covariates the K genes selected during
the gene filtering step. Note that using the full set of K
genes with K > 20 gave noninvertible covariance matrices
in maximizing the partial likelihood, which is an inherent
limitation of fitting multivariate Cox models with a
number of predictors. We considered a constant censoring
rate of 0.1 (/year), again, to mimic the lymphoma data.
Table 1 shows the averaged ACVL for each of several val-
ues of K across 100 simulations. The ACVL for the model
(3) was minimized in expectation when the cut-off in
terms of the number of selected genes (K) was set equal to
the number of informative genes, 50. The ACVL for the
model (3) was smaller than that for the multivariate Cox
model (6) for the top K (≤ 20) genes.

Lymphoma data
We illustrated the developed methodology using the data
from Rosenwald et al. [1] for diffuse large B-Cell lym-
phoma http://llmpp.nih.gov/DLBCL/. Briefly, this study
collected gene expression data from cDNA microarrays

using pretreatment biopsy specimens and clinical data for
240 diffuse large B-Cell lymphoma patients. Clinical data
included the International Prognostic Index (IPI) Score
[27], which is a composite score reflecting age, tumor
stage, performance status, lactate dehydrogenase level,
and the number of sites of extranodal disease, before treat-
ment as a prognostic factor. 7399 microarray features were
subject to analysis for predicting the survival time after
treatment. In the prediction analysis, the patients were
randomly divided into two groups: the training set com-
prised 160 patients and the validation set comprised 80
patients. The number of events (the median survival in
year) was 88 (3.9) for the training set and 50 (3.6) for the
validation set.

Before demonstrating our methods, we assessed the prog-
nostic value of IPI Score. In the dataset, IPI score had three
levels, low, medium, and high in terms of the risk of
death. Because only 10 out of 80 patients were in the high
IPI risk stratum in the validation set, we combined the
medium and high IPI risk stratum into one stratum and
referred to it as the high IPI risk stratum. Figure 1 shows
estimated survival distributions for the low IPI risk stra-
tum (27 patients) and the high IPI risk stratum (46
patients) in the validation set (IPI Score was missing for 7
patients), which indicates a substantial prognostic capa-
bility of IPI Score (the P-value of a log-rank test was
0.0076).

First we performed prediction only using gene expression
data. We performed 5-fold cross-validation in building
prediction models with the compound covariate for the
training set. For each fold of cross-validation, we per-
formed gene filtering from scratch to select the top K genes
in terms of the significance level for a Wald test of βj = 0
for model (1) and then fitted the model (3) with the com-
pound covariate (2) from the top K genes. We chose the
optimal number of genes based on ACVL for model (3).
Figure 2 shows ACVL for a range of K, indicating that
ACVL is minimized when K = 75. The P-value for the min-
imized ACVL obtained by the permutation procedure
(2,000 permutations) for the training set was less than
0.0005, which was highly significant.

To compare the predictive capability of the compound
covariate from the 75 selected genes with that of IPI Score
for the validation set, we divided the validation set into
two groups based on the value of compound covariate
from the 75 selected genes using the division ratio of 27:
46, which is identical with the ratio when the patients in
the validation set is divided based on the two-leveled IPI
Score mentioned above. Figure 3 shows estimated survival
distributions for the two groups in the validation set with-
out and with stratification by IPI Score. The 75 selected
genes had a predictive capability by themselves (the P-
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value of a log-rank test was 0.0607), but it was rather
weak, especially, for the low IPI risk stratum (the P-value
of a log-rank test was 0.5530 for this stratum and the P-
value of a stratified log-rank test was 0.0941).

Next, we performed gene filtering after adjustment for IPI
Score and built prediction models using both IPI Score

and gene expression data. This analysis would be war-
ranted in the presence of substantial predictive capability
of IPI Score as indicated by Figure 1. Again, we performed
5-fold cross-validation for the training set. Gene filtering
was based on a Wald test of βj = 0 for model (4) with ui for
IPI Score (ui = 1 if IPI Score is high, and ui = 0 otherwise).
Figure 4 shows ACVL for model (5) as K is varied, indicat-
ing that ACVL is minimized when K = 85. The P-value
from the stratum-adjusted permutation procedure (2,000
permutations) to assess statistical significance of the min-
imized ACVL after adjustment for IPI Score was 0.024,
which was still significant at the significance level of 0.05.
This means that gene expression data have additional
prognostic information independent of IPI Score.

For the validation set, Figure 5 shows estimated survival
distributions between the two groups based on the prog-
nostic index without and with stratification by IPI Score.
The predictive capability of both IPI Score and the 85
selected genes was substantial (the P-value of a log-rank
test was 0.0063). The predictive capability for the IPI low
risk stratum was improved (the P-value of a log-rank test
was 0.0945 for this stratum and the P-value of a stratified
log-rank test was 0.0293).

Table 2 summarizes the selected genes by gene-expression
signatures. 43 genes were selected from both the gene fil-
tering with no adjustment for IPI Score and that with the
adjustment (Group I). 32 genes were selected from the
gene filtering with no adjustment, but not selected from
that with adjustment (Group II). 42 genes were not
selected from the gene filtering with no adjustment, but
selected from that with adjustment (Group III). It is inter-
esting that Group III contains 7 genes from major histo-

Table 1: The averaged ACVL for several values of K across 100 
simulations. Of the 2,000 genes, 50 genes were configured to be 
informative. The number of patients was 100.

Correlation matrix

Exchangeable Lymphoma data*

ρ = 0.2 ρ = 0.7

K CC† MC‡ CC MC CC MC

1 41.2 41.2 51.6 51.6 48.2 48.2
5 33.3 34.1 46.7 48.2 45.6 46.4
10 29.3 33.2 43.3 46.6 45.2 48.2
20 24.9 49.0 38.4 62.1 45.0 57.4
50 17.3 - 34.6 - 41.7 -
75 21.3 - 40.1 - 42.3 -
100 25.3 - 44.0 - 43.2 -
200 36.0 - 53.3 - 47.0 -
500 50.6 - 63.6 - 53.9 -
1000 56.6 - 70.3 - 58.8 -

*The correlation matrix obtained from the lymphoma data for the top 
50 genes in the gene filtering with model (1).
†Cox model with the compound covariate (model (3))
‡Multivariate Cox model (model (6)) for the top K (≤ 20) genes

Kaplan-Meier estimates of survival for the low IPI stratum (solid curves) and the high IPI stratum (dashed curves) in the validation setFigure 1
Kaplan-Meier estimates of survival for the low IPI 
stratum (solid curves) and the high IPI stratum 
(dashed curves) in the validation set. The P-value per-
tains to a two-sided log-rank test.
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Plot of ACVL as K is variedFigure 2
Plot of ACVL as K is varied. The ACVL is minimized when K = 
75.
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compatibility complex (MHC) class II, while Group II
contains only one gene from this gene-expression signa-
ture. The number of differential expressed genes evaluated
by a two-sample t-test to compare expressions between
the two levels of IPI Score at the significance level of 0.05
was 9 (21%), 16 (50%), and 0 (0%), for Group I, II, and
III, respectively. Group III has a potential to be genetic
markers independent of IPI Score.

Discussion
In this article, we have developed a methodology for pre-
dicting survival outcomes using subsets of significant
genes in early-phased, developmental prognostic marker
studies with DNA microarrays. Key components in this
methodology include development of prediction models,

assessment of predictive capability of prediction models,
and assessment of significance of prediction results. To
illustrate the methodology, we introduced a particular
prediction model, Cox regression models with a com-
pound covariate, and a particular measure of predictive
accuracy, ACVL. Although adequacy of them was indi-
cated through their application to simulated data and real
data, further studies to evaluate their performance
through comparison with other specifications or methods
would be warranted.

With respect to specification of prediction model, Bair
and Tibshirani [28] recently developed a semi-supervised
method that adopted principal components analysis for
developing a compound index using subsets of significant

Kaplan-Meier estimates of survival for the two groups based on the compound covariate (CC) (the low CC group (solid curves) and the high CC group (dashed curves) for all patients (Panel A) and for each stratum by IPI Score (Panel B) in the val-idation setFigure 3
Kaplan-Meier estimates of survival for the two groups based on the compound covariate (CC) (the low CC 
group (solid curves) and the high CC group (dashed curves) for all patients (Panel A) and for each stratum by 
IPI Score (Panel B) in the validation set. The P-value in graph pertains to a two-sided log-rank test. The P-value for a 
stratified log-rank test is 0.0941.
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All patients 

Low IPI risk stratum  High IPI risk stratum  
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genes from the supervised, univariate Cox regression anal-
ysis with model (1). They used the first principal compo-
nent, in stead of the compound covariate ci in (2), as a
single covariate in the Cox model (3). The semi-super-
vised method using subsets of significant genes performed
well compared with various methods using a combina-
tion of all of the genes for some cancer datasets and sim-
ulated datasets. More recently, Li and Gui [10] considered
the application of partial least square and proposed mul-
tivariate Cox regression models using the first few orthog-
onal compound covariates for a full set of genes. The use
of the second or higher orthogonal compound covariates
proposed by Li and Gui, in addition to the first compound
covariate like ci in (2), for subsets of significant genes has
the potential to improve predictive accuracy. A compari-
son study for several prediction methods including those
described above using subsets of significant genes is ongo-
ing and the result will appear in a future report. Our
method with the compound covariate ci in (2) and the
method proposed by Li and Gui using subsets of signifi-
cant genes are expected to perform well because they are
purely supervised. One potential drawback for applying
principal components and partial least squares in practice

is that they need a complete expression dataset with no
missing values for the set of K selected genes. Because
there is generally a large number of missing values in the
dataset, a complete case analysis [29] will entail a substan-
tial efficiency loss. As such, these methods may necessitate
a data imputation step prior to model fitting. Meanwhile,
the univariate standardized test statistics as the weights in
compound covariate ci in (2) can be calculated using all
the observed expression levels for the set of K selected
genes, i.e., an available data analysis [29] can be per-
formed.

As to measure of predictive accuracy for survival out-
comes, methods based on the time-dependent ROC
curves and area under the curves [30] can be useful for
microarray data [10].

The significance of integrating gene expression profiling
into prognostic prediction studies is to improve the pre-
dictive capability attainable only using standard prognos-
tic factors. However, it is rare that prognostic factors are
incorporated in the prediction analysis using gene expres-
sion data in the literature. As an additional key compo-
nent of our methodology, we considered selection of
relevant genes with the adjustment for prognostic factors.
The selected genes have the potential to be genetic mark-
ers unrelated to the prognostic factors. In such analysis, it
is crucial to demonstrate additional information gain
from genetic markers. We provided ways to assess this
gain both for an independent validation set and cross-val-
idated test sets. Comparison of the selected genes between
without and with adjustment for prognostic factors would
provide some insights in understanding biological mech-
anisms in the disease progression and help determine a
set of genes for further investigation in subsequent stud-
ies. It is advisable that the comparison is supplemented by
analyses of differentially expressed genes across different
levels of prognostic factors.

Conclusion
We develop a methodology for predicting survival out-
comes using a subset of significant genes in prognostic
marker studies with microarrays. The adequacy of the
methodology was demonstrated through its application

Plot of ACVL as K is varied after adjustment for IPI ScoreFigure 4
Plot of ACVL as K is varied after adjustment for IPI Score. The 
ACVL is minimized when K = 85.
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Table 2: The selected genes from the gene filtering with no adjustment for IPI Score and from that with the adjustment by gene-
expression signature.

Group Gene filtering Gene class

No Adjust. Adjust. MHC-II Proliferation Lymph-node Unknown Total

I Selected Selected 16 20 1 6 43
II Selected Not Selected 1 20 0 11 32
III Not Selected Selected 7 23 0 12 42
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to simulated and real data. Our methodology can provide
new insights based on predictive capability, possibly
incorporating standard prognostic factors, in selecting a
fraction of relevant genes for subsequent studies.
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