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Abstract
Background: Protein topology representations such as residue contact maps are an important
intermediate step towards ab initio prediction of protein structure. Although improvements have
occurred over the last years, the problem of accurately predicting residue contact maps from
primary sequences is still largely unsolved. Among the reasons for this are the unbalanced nature
of the problem (with far fewer examples of contacts than non-contacts), the formidable challenge
of capturing long-range interactions in the maps, the intrinsic difficulty of mapping one-dimensional
input sequences into two-dimensional output maps.

In order to alleviate these problems and achieve improved contact map predictions, in this paper
we split the task into two stages: the prediction of a map's principal eigenvector (PE) from the
primary sequence; the reconstruction of the contact map from the PE and primary sequence.
Predicting the PE from the primary sequence consists in mapping a vector into a vector. This task
is less complex than mapping vectors directly into two-dimensional matrices since the size of the
problem is drastically reduced and so is the scale length of interactions that need to be learned.

Results: We develop architectures composed of ensembles of two-layered bidirectional recurrent
neural networks to classify the components of the PE in 2, 3 and 4 classes from protein primary
sequence, predicted secondary structure, and hydrophobicity interaction scales. Our predictor,
tested on a non redundant set of 2171 proteins, achieves classification performances of up to
72.6%, 16% above a base-line statistical predictor.

We design a system for the prediction of contact maps from the predicted PE. Our results show
that predicting maps through the PE yields sizeable gains especially for long-range contacts which
are particularly critical for accurate protein 3D reconstruction. The final predictor's accuracy on a
non-redundant set of 327 targets is 35.4% and 19.8% for minimum contact separations of 12 and
24, respectively, when the top length/5 contacts are selected. On the 11 CASP6 Novel Fold targets
we achieve similar accuracies (36.5% and 19.7%). This favourably compares with the best
automated predictors at CASP6.

Conclusion: Our final system for contact map prediction achieves state-of-the-art performances,
and may provide valuable constraints for improved ab initio prediction of protein structures. A suite
of predictors of structural features, including the PE, and PE-based contact maps, is available at
http://distill.ucd.ie.
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Background
De novo prediction of protein three-dimensional (3D)
structure from the primary sequence remains a fundamen-
tal and extraordinarily challenging problem [1]. Contact
maps, or similar distance restraints have been proposed as
intermediate steps between the primary sequence and the
3D structure (e.g. in [2-4]), for various reasons: unlike 3D
coordinates, they are invariant to rotations and transla-
tions, hence less challenging to predict by machine learn-
ing systems [4]; quick, effective algorithms exist to derive
3D structures from them, for instance stochastic optimisa-
tion methods [5,6], distance geometry [7,8], or algorithms
derived from the NMR literature and elsewhere [9-11].
Numerous methods have been developed for protein res-
idue contact map prediction [2-4,12] and coarse (second-
ary structure element level) contact map prediction [13],
and some improvements are slowly occurring (e.g. in
[12], as shown by the CASP6 experiment [14]).

Still, accurate prediction of residue contact maps is far
from being achieved and limitations of existing prediction
methods have again emerged at CASP6 and from auto-
matic evaluation of structure prediction servers such as
EVA [15]. There are various reasons for this: the number
of positive and negative examples (contacts vs. non con-
tacts) is strongly unbalanced; the number of examples
grows with the squared length of the protein making this
a tough computational challenge; capturing long ranged
interactions in the primary sequence is difficult, hence
grasping an adequate global picture of the map is a formi-
dable problem. For this reason simpler, alternative repre-
sentations of protein topologies are particularly
appealing, provided that they are informative and, espe-
cially, predictable (e.g. see [16]).

In this paper we focus on one such representation: the
principal eigenvector (PE) of residue contact maps. The PE
is a sequence of the same length as a protein's primary
sequence. A vast machinery of tools for sequence process-
ing is available (see e.g. [17] for a review). Moreover,
recently [18] a branch-and-bound algorithm was
described that is capable of reconstructing the contact
map from the exact PE, at least for single domain proteins
of up to 120 amino acids. This means that the PE contains
most of the information encoded in the contact map. Pre-
dicting the PE is thus interesting: it leads to a drastic reduc-
tion in the size of the problem compared to two-
dimensional contact maps, i.e. considerable data com-
pression, and also a reduction in the scale length of inter-
actions that need to be learned; contact maps may be
derived from the PE by modifying the reconstruction algo-
rithm in [18] to deal with noise in the PE; alternatively the
PE may be adopted as an additional input feature to sys-
tems for the direct prediction of contact maps (such as
[4]); information contained in the PE may be used, in

combination with other constraints, to guide the search
for optimal 3D configurations; predicted PE may prove
useful to identify domains, as in [19], and discussed in
[20].

In this paper, we model the problem of inferring the PE as
a classification task with multiple classes. We use machine
learning methods to map amino acids into their corre-
sponding component of the principal eigenvector. Simi-
larly to [21], we adopt bidirectional recurrent neural
networks (BRNNs) [22] with shortcut connections, accu-
rate coding of input profiles obtained from multiple
sequence alignments, secondary structure predictions,
second stage filtering by recurrent neural networks, and
finally large-scale ensembles of predictors. Our models
classify correctly up to 72.6% residues, 16% above a base-
line statistical predictor always assigning a residue to the
most numerous PE class.

To prove that these levels can lead to improved contact
maps, we incorporate the predicted PE into a state-of-the-
art system for contact map prediction [4,13]. Our tests
show that the PE yields sizeable gains, and that these gains
are especially significant for long-ranged contacts, which
are known to be both harder to predict and critical for
accurate 3D reconstruction.

Results and discussion
Principal eigenvector prediction

We evaluate model performances using different predic-
tion indices. If the task is the prediction of the eigenvector

components i (see the methods section for definitions)

in m classes, we measure: Qm, or overall percentage of cor-

rectly predicted amino acids; the set Q0, ..., Qm-1, where

each Qj is the percentage of correctly classified amino

acids whose eigenvector component belongs to interval
Ij+1; an analogous of the SOV measure [23] adapted for the

case of m classes. The intent in this case is to measure the
quality of prediction over contiguous segments of amino
acids belonging to the same class. Finally, we compare our
methodology with a base-line predictor that assigns each
amino acid to its most frequently occurring class (as for
instance in [24-26]).

We train different ensembles of BRNNs. Differences
depend on whether or not we use output filtering by sec-
ond stage networks (Eq.6) and whether or not the input
encoding includes predicted secondary structure from
Porter [21] and the hydrophobicity interaction scale in
[20] (Table I, column 2). Tables 1, 2 and 3 show respec-
tively estimated performance indices for classification in
two, three and four classes. The first three columns indi-
cate whether secondary structure, hydrophobicity profile
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and second stage filtering are employed in the network
ensemble (see table legends for details).

In all multi-class prediction cases, the best network
ensemble shows an increment of global predictive accu-
racy of ≈ 16% with respect to the base-line predictor. The
SOV and the overall accuracy increase using filters and
augmenting the number of input features with hydropho-
bicity scales (marginally) and secondary structure (signif-
icantly). Interestingly, predicted secondary structure is a
valuable feature: in all cases, using true secondary struc-
tures results in only moderate improvements with respect
to the performance obtained with secondary structure pre-
dicted by Porter [21] (data not shown).

In the 2-class problem, Q2 exceeds 72% with the two
classes almost equally well predicted. In this case, the net-
work with full features finds a nearly optimal (Bayesian)
decision threshold. This is not surprising because the
threshold on the eigenvector component was chosen so as
to divide the training set values in two equally distributed
halves. The 3- and 4-class prediction problems are more
difficult to solve, but the observed improvements over the
baseline predictor are roughly the same as in the 2-class
case. Strong improvements over the base-line predictor
are observed especially for the intermediate classes (Q1 in
Table 2, Q1 and Q2 in Table 3). Interestingly, these classes
are more difficult to predict even if all classes are nearly
equally distributed. This is possibly because boundary

classes (Q0 and Qm-1) correspond to well-defined situa-
tions, i.e. isolated residues or residues with high connec-
tivity, for which clear signal exists in the data. A typical
example of 4-class PE prediction is shown in figure 2.

Contact map prediction from predicted PE
As a final step, we test the possibility of directly using the
information encoded in the PE to improve state-of-the-art
residue contact map predictors. We choose the model
based on DAG-RNNs described in [4] and [13]. This
model was among the most successful contact map pre-
dictors at the CASP5 competition [27]. The architecture
we adopt is identical to the one described in [13] and used
at CASP5, except for the presence of shortcut connections
and for the ensembling technique (see methods section).
These differences allow a substantially (roughly 5-fold)
faster training, and yield marginally improved results
compared to [13] when the same input features and same
training/test sets are adopted (not shown).

To ensure fairness, here we retrain DAG-RNNs from
scratch using the same training and testing sets used to
predict the PE. The sets are first processed to remove
sequences longer than 200 amino acids (for computa-
tional reasons, as in [13]), leaving 1275 proteins in the
training set and 327 proteins in the test set. Two amino
acids are defined as being in contact if the distance
between their Cα is below a contact threshold. We con-
sider two different contact thresholds: 8 and 12 Å. For

Table 1: PE prediction: two-class problem. Accuracy estimates with 95% confidence intervals and SOV. A * in the first three columns 
of a row indicates whether the results are obtained augmenting the network input with secondary structure predicted by Porter (P), 
hydrophobicity profile using the interactivity scale of [20] (H) and using second stage filtering network (F).

P H F Q2 Q0 Q1 SOV

- - - 72.0 ± .6 73.1 ± .6 70.8 ± .6 44.4
- - * 72.1 ± .6 73.4 ± .6 70.7 ± .6 46.0
* - - 72.3 ± .6 73.1 ± .6 71.4 ± .6 47.6
* - * 72.3 ± .6 72.8 ± .6 71.9 ± .6 49.6
* * - 72.5 ± .6 74.0 ± .6 71.0 ± .6 47.2
* * * 72.6 ± .6 73.8 ± .6 71.2 ± .6 49.8

baseline 56.8 ± .5 58.4 ± .5 55.1 ± .5 -

Table 2: PE prediction: three-class problem. Accuracy estimates with 95% confidence intervals and SOV. A * in the first three columns 
of a row indicates whether the results are obtained augmenting the network input with secondary structure predicted by Porter (P), 
hydrophobicity profile using the interactivity scale of [20] (H) and using second stage filtering network (F).

P H F Q3 Q0 Q1 Q2 SOV

- - - 55.8 ± .5 63.7 ± .5 35.5 ± .4 67.6 ± .6 38.3
- - * 56.2 ± .5 61.6 ± .6 40.6 ± .5 65.8 ± .6 40.3
* - - 56.3 ± .6 65.8 ± .6 36.9 ± .5 65.5 ± .6 42.1
* - * 56.6 ± .6 64.1 ± .6 41.1 ± .4 63.9 ± .6 43.6
* * - 56.4 ± .5 65.2 ± .6 36.8 ± .4 66.4 ± .6 42.6
* * * 56.7 ± .5 63.3 ± .6 41.4 ± .4 64.6 ± .6 44.0

baseline 39.8 ± .4 50.6 ± .5 8.5 ± .2 59.3 ± .6 -
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comparison purposes, we encode each pair (i, j) of amino
acids in the input by four different features: a 20 × 20
matrix representing the probability distribution of pairs of
amino acids observed in the two corresponding columns
of the alignment (MA); MA plus the actual discretised 4-
class PE component for both residue i and j (MA_PE); MA

plus the actual secondary structure (3 classes) and binary
thresholded (at 25%) relative solvent accessibility
(MA_SS_ACC); and finally, the previous feature plus the
actual 4-class PE components (MA_SS_ACC_PE). We
train 8 predictors, with the same architecture, one for each
input feature and contact threshold.

Table 3: PE prediction: four-class problem. Accuracy estimates with 95% confidence intervals and SOV. A * in the first three columns 
of a row indicates whether the results are obtained augmenting the network input with secondary structure predicted by Porter (P), 
hydrophobicity profile using the interactivity scale of [20] (H) and using second stage filtering network (F).

P H F Q4 Q0 Q1 Q2 Q3 SOV

- - - 45.6 ± .5 59.9 ± .6 29.4 ± .4 26.8 ± .4 65.0 ± .6 33.2
- - * 46.0 ± .5 58.5 ± .5 30.6 ± .4 30.5 ± .4 63.3 ± .6 34.6
* - - 46.2 ± .5 62.1 ± .6 30.5 ± .4 27.3 ± .4 63.1 ± .6 37.3
* - * 46.5 ± .5 60.7 ± .5 32.3 ± .4 29.6 ± .4 61.8 ± .5 37.4
* * - 45.9 ± .5 61.5 ± .5 30.0 ± .4 27.3 ± .3 63.3 ± .6 37.1
* * * 46.5 ± .5 60.0 ± .5 32.2 ± .4 30.4 ± .4 61.9 ± .6 37.8

baseline 30.7 ± .4 48.1 ± .5 5.4 ± .2 8.5 ± .2 59.0 ± .6 -

Distribution of i values in the training setFigure 1

Distribution of i values in the training set. See text for details.
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Differently from the training phase, testing takes place by
encoding each pair (i, j) on input with the predicted 4-class
PE component as given by the filtered ensemble of BRNNs
using profiles, predicted secondary structure and hydro-
phobicity profiles (table 3, row P-H-F). Secondary struc-
ture and solvent accessibility information input into the
DAG-RNN is also predicted during testing. These predic-
tions are obtained from an architecture identical to the
one adopted to predict the PE, and trained on the same
training set. Hence the protocol we adopt leads to fully
realistic results, since no protein in the the test set shows
significant sequence similarity to any of the structures
used to train the contact map predictor and all the under-
lying feature predictors.

Tables 4, 5, 6 and 7 show performance indices for all the
8 networks. Indices considered are: accuracy P = TP/(TP +
FP), with TP = true positives and FP = false positives; cov-
erage R = TP/(TP + FN), with FN = false negatives; F1,
defined as the harmonic mean of accuracy and coverage
(F1 = 2PR/(P + R)); Pnc, the percentage of correctly pre-
dicted non-contacts. Performances are computed for three
different sets of contacts, based on the separation of two
residues in the linear sequence: |i - j| ≥ {6,12, 24}. In
tables 4 and 6 we report P, R and F1 when the threshold
between contacts and non-contacts is set to 0.5. In tables
5 and 7, for consistency with CASP assessment rules [14],
we report P and R when only the top N/5 and N/2 con-
tacts are considered, N being the length of the protein. In
this case contacts are ranked, and top contacts are selected,

4-class principal eigenvector prediction for protein 1A2P (108 amino acids)Figure 2
4-class principal eigenvector prediction for protein 1A2P (108 amino acids). Solid line: exact eigenvector class. 
Dashed line: predicted eigenvector class. The class value is averaged over a moving window of 5 residues.
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based on their expected probability as estimated by the
predictor.

As evident from the tables, the introduction of PE predic-
tions increases the F1 measure in all cases. This is true for
both 8 and 12 Å maps, and for all separation thresholds.
An improvent is observed both in the MA_PE vs. MA case
and in the MA_SS_ACC_PE vs. MA_SS_ACC case. In all
cases the introduction of the predicted PE yields larger
performance gains than secondary structure and solvent
accessibility combined. Interestingly, the gains become
more significant for longer range contacts. For instance for
|i - j| ≥ 24 F1 grows from 0.3% to 4.1% at 8Å and from
5.3% to 16.8% at 12Å (MA_SS_ACC_PE vs. MA_SS_ACC).
PE-based networks are more confident away from the
main diagonal (a typical example is shown in figure 3),
with a better balance between false positives and false neg-
atives.

When we take into account only small numbers (N/5 and
N/2) of contacts considered most likely by the predictor,
the gains become less marked, but remain significant,
especially for longer range contacts: for |i - j| ≥ 24 at 8Å,
when considering the top N/5 contacts, P grows from
14.1% to 19.6% in the MA vs. MA_PE case and from
17.8% to 19.8% in the in the MA_SS_ACC vs.
MA_SS_ACC_PE case. Similar gains (from 43.3% to

47.9% and from 43.7% to 49.9%, respectively) are
observed for the 12Å predictors.

Residue contact map predictors at CASP6 [14] were evalu-
ated on a small set (11) of Novel Fold targets. The per-
formances of the best system (group RR301) on the top
N/5 contacts were 24% and 22% (accuracy) and 5.6% and
5% (coverage) for minimum residue separations of 12
and 24, respectively. Although the statistical relevance of
a set of only 11 targets is limited, our predictor's accuracy
on it compares favourably with the best CASP6 predictors,
achieving 36.5% accuracy and 9.8% coverage for separa-
tion of at least 12 and 19.6% accuracy and 5.4% coverage
for separation of at least 24.

Conclusion
We developed sophisticated predictors of a novel sequen-
tial feature of protein structure: the principal eigenvector
of residue contact maps. Our predictors classify correctly
up to 72.6% of residues, and show large gains over simple
base-line statistical predictors.

We showed that predicted principal eigenvectors can be
effectively used as an additional input feature to a state-of-
the-art method for contact map prediction, yielding sizea-
ble gains especially for long-range contacts which are par-
ticularly critical for accurate protein 3D reconstruction.

Table 4: Performance results for contact map prediction. Contact threshold: 8 Å. Accuracy, coverage and F1 (as %) for 8 Å contact 
map predictor for distance separations greater than 5, 11 and 23 amino acids.

|i - j| ≥ 6 |i - j| ≥ 12 |i - j| ≥ 24

P R F1 Pnc P R F1 Pnc P R F1 Pnc

MA 0 0 0 97.2 0 0 0 97.6 0 0 0 97.9
MA_PE 39.4 12.2 18.6 97.5 36.2 8.4 13.5 97.7 27.8 2.0 3.7 97.9

MA_SS_ACC 50.5 7.4 12.9 97.4 48.8 4.0 7.4 97.6 25.7 .2 .3 97.9
MA_SS_ACC_PE 43.3 11.3 17.9 97.5 38.9 7.2 12.1 97.7 25.5 2.2 4.1 97.9

Table 5: Performance results for contact map prediction. Contact threshold: 8 Å. Accuracy and coverage (as %) for 8 Å contact map 
predictor for distance separations greater than 5, 11 and 23 amino acids, when the top N/5 and top N/2 contacts are considered (where 
N is the length of the protein).

|i - j| ≥ 6 |i - j| ≥ 12 |i - j| ≥ 24

N/5 N/2 N/5 N/2 N/5 N/2

P R P R P R P R P R P R

MA 30.8 3.9 26.2 8.5 23.9 3.8 19.2 7.8 14.1 3.3 11.1 6.6
MA_PE 43.0 5.5 34.6 11.2 34.2 5.5 26.6 10.8 19.6 4.6 15.0 8.9

MA_SS_ACC 44.4 5.7 36.0 11.6 34.2 5.5 26.6 10.8 17.8 4.2 14.7 8.7
MA_SS_ACC_PE 46.4 5.9 36.6 11.8 35.4 5.7 27.0 11.0 19.8 4.6 15.7 9.3
Page 6 of 12
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:180 http://www.biomedcentral.com/1471-2105/7/180
These results suggest a number of futher points to investi-
gate:

• The algorithm in [18] may be directly tested in noisy
contexts, and extended to increase its robustness. This
may give rise to an alternative pipeline for the prediction
of contact maps.

• The PE could be used directly to improve protein
domain predictors [19,20].

• PE-based maps may be adopted to guide the ab initio
reconstruction of quick, draft Cα traces, for instance using
a stochastic search algorithm similar to [5].

• Residue coordination number correlates well with the
PE – as such, predicted coordination number [26] may
yield similar gains to contact map prediction, while pro-
viding a more intuitive structural representation of a pro-
tein.

Ultimately, the third point is the most crucial test of the
validity of our approach. Even if the 3D models produced
were fairly coarse, they might be provide a valuable source
of information, for instance to identify protein functions
more accurately than it would be possible by sequence
alone [28]. Although training a contact map prediction
system is computationally expensive, once training is
over, generating predictions is fast. Even on a small cluster

of machines, this may allow multi-genomic scale struc-
tural prediction efforts in manageable times.

Methods
The contact map of a protein with N amino acids is a sym-
metric N × N matrix C, with elements Cij defined as:

We define two amino acids as being in contact if the dis-
tance between their Cα is less than a given threshold. For
the definition of the PE we adopt a fixed 8 Å threshold,
while in the contact map prediction stage we test 8 Å and
12 Å thresholds. Alternative definitions are possible, for
instance based on different mutual Cα distances (normally
in the 7–12 Å range), or on Cβ-Cβ atom distances (nor-
mally 6.5–8 Å), or on the minimal distance between two
atoms belonging to the side-chain or backbone of the two
residues (commonly 4.5 Å).

Let λ(C) = {λ : Cx = λx} be the spectrum of C, λ = {x :

Cx = λx} the corresponding eigenspace and  = max{λ ∈
λ(C)} the largest eigenvalue of C. The principal eigenvec-

tor of C, , is the eigenvector corresponding to .  can
also be expressed as the argument which maximises the
Rayleigh quotient:

Cij = ( )



1

0
1

if amino acid i and j are in contact

otherwise


λ

x λ x

Table 6: Performance results for contact map prediction. Contact threshold: 12 Å. Accuracy, coverage and F1 (as %) for 12 Å contact 
map predictor for distance separations greater than 5, 11 and 23 amino acids.

|i - j| ≥ 6 |i - j| ≥ 12 |i - j| ≥ 24

P R F1 Pnc P R F1 Pnc P R F1 Pnc

MA 60.4 10.6 18.1 87.2 55.8 0.1 0.1 87.8 38.9 0.03 0.06 88.8
MA_PE 49.5 24.5 32.8 88.6 39.4 16.8 23.6 89.3 34.5 13.6 19.5 89.9

MA_SS_ACC 61.6 19.6 29.7 88.2 48.9 7.5 13.1 88.5 40.2 2.8 5.3 89.0
MA_SS_ACC_PE 54.2 23.5 32.8 88.6 42.2 14.6 21.7 89.2 36.7 10.9 16.8 89.7

Table 7: Performance results for contact map prediction. Contact threshold: 12 Å. Accuracy and coverage (as %) for 12 Å contact map 
predictor for distance separations greater than 5, 11 and 23 amino acids, when the top N/5 and top N/2 contacts are considered (where 
N is the length of the protein).

|i - j| ≥ 6 |i - j| ≥ 12 |i - j| ≥ 24

N/5 N/2 N/5 N/2 N/5 N/2

P R P R P R P R P R P R

MA 79.6 2.0 71.9 4.6 50.1 1.6 46.2 3.8 43.3 1.9 38.1 4.2
MA_PE 87.5 2.2 81.6 5.2 59.8 1.9 54.1 4.4 47.9 2.1 42.4 4.7

MA_SS_ACC 89.7 2.3 85.3 5.5 61.3 2.0 54.9 4.5 43.7 1.9 39.4 4.4
MA_SS_ACC_PE 89.9 2.3 85.5 5.5 62.5 2.0 55.6 4.6 49.9 2.2 43.8 4.9
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Eigenvectors are usually normalised by requiring their

norm to be 1, e.g. ||x||2 = 1 ∀x ∈ λ. Since C is an adja-

cency (real, symmetric) matrix, its eigenvalues are real.
Since it is a normal matrix (AHA = AAH), its eigenvectors
are orthogonal. Other basic properties can also be proven:
the principal eigenvalue is positive; non-zero components
of  have all the same sign [29]. Without loss of general-
ity, we can assume they are positive, as in [18].

Ideally, prediction of the PE should be formulated as a
sequential regression task in which each amino acid is
mapped into its corresponding component of the PE.
Here we consider two variations to the original problem.
First, we model it as a classification task with multiple
classes. Second, we predict the magnified eigenvector, i.e.

 instead of . Modelling regression problems as
multi-class classifications is common practice, for
instance in closely related tasks such as the prediction of
protein solvent accessibility [26,30,31]. Predicting magni-
fied eigenvector components has some advantages: by
doing so we are simultaneously estimating the eigenvector

components and the corresponding eigenvalue (as the
norm of  is equal to 1); the main eigenvalue correlates
well with the protein length (correlation of 0.62 on our
training set), hence it is likely predictable. An estimate of
the eigenvalue will in general be needed when attempting
to predict contact maps from the PE, either by using an
algorithm similar to the one in [18], or more in general by
attempting to satisfy the constraint:

Formally, the PE prediction task consists in learning a

mapping f(·) :  →  from the space  of labelled

input sequences to the space  of labelled output
sequences. In practice, we want to predict a sequence of
labels O = (o1, ..., oN), for a given sequence of inputs I = (i1,

..., iN), where each ij ∈ I is the input coding of the amino

acid in position j. For PE prediction, we assume that there
is a range R including all magnified eigenvector compo-

nents, i.e. ∀j, j ∈ R, and we divide the range R into a

series of m disjoint intervals, i.e. . We can

represent each output label oj as belonging to an alphabet

∀ ∈ ≤ ( )x
x Cx

x x

x Cx

x x

T

T

T

T
λ : 2



x

λx x

x

| |C x xij j i
j

− = ( )∑ λ 0 3

  


λx

R Rkk
m= =1∪

Examples of contact map predictions at 12 Å for protein 1A2P (108 amino acids)Figure 3
Examples of contact map predictions at 12 Å for protein 1A2P (108 amino acids). Exact map in the top-right half, 
predicted map in the bottom-left half. Prediction by MA_SS_ACC on the left, MA_SS_ACC_PE on the right (see text for 
details).
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of m symbols, i.e. oj ∈ Σ = {1, ..., m}, and oj corresponds to

the class or interval Rk in which the value of the j-th mag-

nified eigenvector component falls: oj = k ⇔ j ∈ Rk.

Predictive architecture for the PE

To learn the mapping between our inputs  and outputs

 we use a two-layered architecture composed of Bidirec-
tional Recurrent Neural Networks (BRNN) [22] (also
known as 1D-RNN, e.g. in [13]) of the same length as the
amino acid sequence. Similarly to [21] we use BRNNs
with shortcut connections. In these BRNNs, connections
along the forward and backward hidden chains span more
than 1-residue intervals, creating shorter paths between
inputs and outputs. These networks take the form:

where  and  are forward and backward chains of

hidden vectors with . We parametrise the

output update, forward update and backward update
functions (respectively (O), (F) and (B) using three
two-layered feed-forward neural networks. In our tests the
input associated with the j-th residue ij contains amino

acid information, secondary structure information, and
hydrophobicity interaction values described in [20].
Amino acid information is obtained from multiple
sequence alignments of the protein sequence to its homo-
logues to leverage evolutionary information. Amino acids
are coded as letters out of an alphabet of 25. Beside the 20
standard amino acids, B (aspartic acid or asparagine), U
(selenocysteine), X (unknown), Z (glutamic acid or
glutamine) and (gap) are considered. The input presented
to the networks is the frequency of each of the 24 non-gap
symbols, plus the overall frequency of gaps in each col-
umn of the alignment. I.e., if njk is the total number of

occurrences of symbol j in column k, and gk the number of

gaps in the same column, the jth input to the networks in
position k is:

for j = 1...24, while the 25th input is:

This input coding scheme is richer than simple 20-letter
schemes and has proven effective in [21]. The secondary
structure part of the input is encoded using a three-letter
scheme (helix, strand, coil). We adopt both true second-
ary structures, and secondary structures predicted by Por-
ter [21]. When using predicted secondary structure, we
carefully design our tests so that no sequence used for test-
ing the PE prediction system is similar to sequences in
Porter's training set. A single real-valued input is used to
encode hydrophobicity interaction values. In [20] an opti-
mised version of the scale is shown to be highly correlated
to the PE. A further unit is used to encode the protein
length (normalised by a factor 0.001).

Based on this encoding, a total of 30 units are used to rep-
resent each residue.

We adopt a second filtering BRNN, similarly to [21]. The
network is trained to predict the PE given the first-layer PE
predictions. The i-th input to this second network
includes the first-layer predictions in position i aug-
mented by first stage predictions averaged over multiple
contiguous windows. I.e., if cj1, ... cjm are the outputs in
position j of the first stage network corresponding to esti-
mated probability of eigenvector component j being in
class m, the input to the second stage network in position
j is the array Ij:

where kf = j + f(2w + 1), 2w + 1 is the size of the window
over which first-stage predictions are averaged and 2p + 1
is the number of windows considered. In the tests we use
w = 7 and p = 7. This means that 15 contiguous, non-over-
lapping windows of 15 residues each are considered, i.e.
first-stage outputs between position j-112 and j+112, for a
total of 225 contiguous residues, are taken into account to
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generate the input to the filtering network in position j.
This input contains a total of 16m real numbers: m repre-
senting the m-class output of the first stage in position j;
15m representing the m-class outputs of the first-stage
averaged over each of the 15 windows.

Five two-stage BRNN models are trained independently
and ensemble averaged to build the final predictor. Differ-
ences among models are introduced by two factors: sto-
chastic elements in the training-protocol, such as different
initial weights of the networks and different shuffling of
the examples; different architecture and number of free
parameters of the models. Averaging the 5 models' out-
puts leads to classification performance improvements
between 1% and 1.5% over single models. In [32] a slight
improvement in secondary structure prediction accuracy
was obtained by "brute ensembling" of several tens of dif-
ferent models trained independently. Here we adopt a less
expensive technique: a copy of each of the 5 models is
saved at regular intervals (100 epochs) during training.
Stochastic elements in the training protocol (similar to
that described in [33]) guarantee that differences during
training are non-trivial. When an ensemble of 9 such cop-
ies for all the 5 models is used (45 models in total) we
obtain a further slight improvement over the ensemble of
5 models.

Predictive architecture for contact maps
We build a system for the prediction of contact maps
based on 2D-RNN, described in [4] and [13]. This is a
family of adaptive models for mapping two-dimensional
matrices of variable size into matrices of the same size.
2D-RNN-based models were among the most successful
contact map predictors at the CASP5 competition [27].

As in the PE prediction case, we use 2D-RNNs with short-
cut connections, i.e. where lateral memory connections
span N-residue intervals, where N > 1. If oj,k is the entry in
the j-th row and k-th column of the output matrix (in our
case, it will represent the estimated probability of residues
j and k being in contact), and ij,k is the input in the same
position, the input-output mapping is modelled as:

where  for n = 1, ..., 4 are planes of hidden vectors

transmitting contextual information from each corner of
the matrix to the opposite corner. We parametrise the out-
put update, and the four lateral update functions (respec-
tively (O) and (n) for n = 1, ..., 4) using five two-
layered feed-forward neural networks, as in [13].

In our tests the input ij,k contains amino acid information,
secondary structure and solvent accessibility information,
and PE information for the amino acids in positions j and
k in the sequence. Amino acid information is again
obtained from multiple sequence alignments.

Implementation
Data set generation and input data
The data set used in the present simulations is extracted
from the December 2003 25% pdb_select list [34]. We use
the DSSP program [35] (CMBI version) to assign relevant
structural features (true secondary structure, used in pre-
liminary tests, and Cα coordinates – the latter also directly
available from the PDB files) and remove sequences for
which DSSP does not produce an output due, for instance,
to missing entries or format errors. After processing by
DSSP, the set contains 2171 protein and 344,653 amino
acids. Multiple sequence alignments for the 2171 proteins
are extracted from the NR database as available on March
3 2004 containing over 1.4 million sequences. The data-
base is first redundancy reduced at a 98% threshold, lead-
ing to a final 1.05 million sequences. The alignments are
generated by three runs of PSI-BLAST [36] with parame-
ters b = 3000, e = 10-3 and h = l0-10.

Experimental Protocol
For our experiments we split the data into a training set
containing 1736 sequences and a test set of 435 (1/5 of
the total). The test set sequences are selected in an inter-
leaved fashion (i.e. every fifth sequence is picked) from
the whole set sorted alphabetically by PDB code – this is
meant to avoid biases.
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For the prediction of contact maps the sets are further
selected, by excluding proteins longer than 200 residues.
This leaves 1275 proteins in the training set and 327 pro-
teins in the test set.

To define the PE, two segments are considered in contact
if the distance between their Cα is smaller than 8 Å. As in

[18], the main diagonal of the contact map (|i - j| < 3) is
removed before computing the principal eigenvectors.
The distribution of the components of the magnified

eigenvectors i is shown in Figure 1. We attempt three

distinct classification schemes: in 2, 3 and 4 classes. The
class thresholds are assigned so that the examples in the
training set are equally split among them: 0.179195 for
the 2-class case (classes of roughly 138, 000 examples

each), 0.0688848 and 0.38165 for three classes (≈ 92,000
examples each) and 0.0358246, 0.179195 and 0.541445

for 4 classes (≈ 69, 000 examples each). Both BRNNs are
trained by minimising the cross-entropy error between
the output and target probability distributions, using gra-
dient descent with no momentum term or weight decay.
The gradient is computed using the Back-propagation
through structure (BPTS) algorithm (for which, see e.g.
[37]). We use a hybrid between online and batch training,
with 580 batch blocks (roughly 3 proteins each) per train-
ing set. Thus, the weights are updated 580 times per
epoch. The training set is also shuffled at each epoch, so
that the error does not decrease monotonically. When the
error does not decrease for 50 consecutive epochs, the
learning rate is divided by 2. Training stops after 1000
epochs. First-layer and filtering BRNNs are trained simul-
taneously, but supervised independently.

The DAG-RNNs composing the contact map predictors
are trained by minimising the cross-entropy error between
the output and target probability distributions. This is
obtained by a modified form of gradient descent where
the update for a network weight is piecewise linear in
three different ranges, to avoid initial plateau problems
(for a more detailed description see [13]). The gradient is
computed using the BPTS algorithm [37]. Similarly to the
PE case, we use a hybrid between online and batch train-
ing, with 600 batch blocks (roughly 2 proteins each) per
training set. Training runs for 120 epochs, with a fixed
learning rate, and the training set is shuffled after each
epoch. Three networks are saved, at epoch 110, 115 and
120, and ensemble averaged to produce the final predic-
tor.

Training the 8 predictors described in the paper took
approximately a month on a cluster of 8 2.8 GHz CPUs.
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