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Abstract
Background: The number of sequenced eukaryotic genomes is rapidly increasing. This means that
over time it will be hard to keep supplying customised gene finders for each genome. This calls for
procedures to automatically generate species-specific gene finders and to re-train them as the
quantity and quality of reliable gene annotation grows.

Results: We present a procedure, Agene, that automatically generates a species-specific gene
predictor from a set of reliable mRNA sequences and a genome. We apply a Hidden Markov model
(HMM) that implements explicit length distribution modelling for all gene structure blocks using
acyclic discrete phase type distributions. The state structure of the each HMM is generated
dynamically from an array of sub-models to include only gene features represented in the training
set.

Conclusion: Acyclic discrete phase type distributions are well suited to model sequence length
distributions. The performance of each individual gene predictor on each individual genome is
comparable to the best of the manually optimised species-specific gene finders. It is shown that
species-specific gene finders are superior to gene finders trained on other species.

Background
Hidden Markov models (HMMs) have been extensively
used for modelling genes. Ab initio HMM gene finders for
eukaryotes include Genscan [1], Augustus [2], HMMgene
[3,4], GeneMark.HMM-E [5], Genie [6], TigrScan and
GlimmerHMM [7], Unveil and Exonomy [8], SNAP [9],
and others. Examples of non-HMM approaches are
GeneID [10,11], GlimmerM [12], and MZEF [13]. GenelD
applies Markov models to score sequence content and sig-
nal in a hierarchical manner. GlimmerM uses decision
trees and Interpolated Markov Models. MZEF uses quad-
ratic discriminant analysis to predict internal exons. These
predictors all use a single genomic sequence. Examples of
approaches using two genomic sequences are SLAM [14],
SGP-2 [15], TWINSCAN [16], and DoubleScan [17].

These use homology information in alignments that
improves prediction accuracy relative to single genome
predictors. EHMM [18], Phylo-HMM [19], and N-Scan
[20] use more than two genomic sequences, taking advan-
tage of the fact that the molecular evolution of a sequence
position is governed by its function. Gene finders using
multiple genomes have a higher accuracy but training sets
with species of an appropriate evolutionary distance may
be hard to come by. Single-genome approaches have the
advantage that they do not require complex training mate-
rial and can predict non-conserved genes.

Ab initio gene finders are trained and customised for one
or a few organisms and may perform well on other organ-
isms that share characteristics such as sequence signals,
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length distributions of gene elements, and overall
sequence composition. These gene characteristics, how-
ever, vary substantially between species. Establishing to
what extent this is the case requires extensive knowledge
of gene structure that is not available in the early stages of
genome exploration.

The creation of a gene finder for a novel genome includes
two laborious and non-trivial tasks. First a training set of
reliable gene structures must be generated. Secondly, a
gene model must be built, customised, and trained.
TigrScan, SNAP, GlimmerHMM, GlimmerM, Unveil, and
Exonomy include tools to ease the task of re-training
model parameters. For TigrScan this involves some exper-
tise because individual parts of the model must be trained
separately. SNAP, GlimmerHMM, GlimmerM, Unveil,
and Exonomy have automated much of this task, but cre-
ating a training set is still left to the user. In addition, none
of the existing methods allow for easy adjustment of the
gene model. This is necessary in cases where the available
training material only supports a less detailed model.

The work involved in obtaining a training set as well as the
limited modelling expertise of most end users are in our
view the main obstacles to producing gene predictors for
novel genomes. As a result, genome projects often do not
have species-specialised gene finders. Apart from a novel
approach to length modeling of gene features, the
approach presented here is unique in the respect that it is
the only gene prediction package that fully integrates the
task of creating a training set, as well as adjusting the
detail of the model to the quality of the training material.
This allows a non-expert to produce a gene finder for a
novel genome directly from a set of mRNAs from the same
organism. Our implementation, Agene, thus fully auto-
mates the task of building and training a species-special-
ised gene finder from mRNA evidence. For the majority of
genomes the resulting gene finders do as well or better
than manually tuned gene finders. Automatic gene anno-
tation has already been implemented for prokaryotic
organisms. These methods include Easygene [21], Glim-
mer [22,23], and versions of GeneMark [24-26].

Methods
An HMM consists of a hidden layer of states that emit
observable events. In gene finding, the states in the hid-
den Markov chain correspond to intergenic regions and
gene structure elements, e.g. coding regions and introns.
Each state emits nucleotides that constitute the DNA
sequence in corresponding regions. The emissions of
bases may be conditional on the occurrence of neighbour-
ing bases within the sequence. This enables the HMM to
model higher order dependencies of base frequencies. A
second order model will thus model the frequencies of
base triplets in the sequence.

When applying an HMM to find genes, the task is to find
the most likely annotation of the sequence given the
model. This process is called decoding. Estimation of the
model parameters from known gene structures is referred
to as training. Here the parameters are optimised in an
iterative procedure. In each iteration the sequences of the
training set are decoded and all parameters are then
assigned the maximum likelihood estimates given the
sequences. This process is stopped when the change in
overall likelihood of the model becomes sufficiently
small. The theoretical aspects of HMMs are well covered
elsewhere [27].

Gene model
Agene generates a suitable gene model by automatically
customising HMM state structure to fit the information
supplied by the training set. Firstly, a gene model is assem-
bled by dynamically combining an array of different sub-
models. The automation of this task means that only gene
elements generally featured by eukaryotes are considered.
The model shown in Figure 1 is an outline of the most
detailed gene model generated by Agene. Each block
shown represents a sub-model of a gene feature. The sub-
models for initial, internal, last, and single coding exons
are obligatory whereas the sub-models for UTR elements
are not. In many cases the available training set does not
support all feature sub-models. UTRs are often not relia-
bly annotated and in these cases the gene model is
dynamically adjusted so that UTR exons and UTR introns
are modelled as part of the intergenic region. In cases
where only the coding regions are annotated the UTR-
parts of first and last exons are treated this way as well.

Secondly, sub-models of variable length gene features
include a length distribution of the modelled gene fea-
ture. This length distribution is implemented as state
structure customised for each feature (see below). In some
cases one or more of the obligatory sub-models are not
sufficiently represented in the training set to fit separate
length distributions. To remedy this situation Agene fits a
shared length distribution for one or more types of exons
by pooling length statistics. A shared distribution for
internal and single exons are fitted if either of these are
insufficient in number. This will happen in cases where
single exon genes are rare or when the majority of genes
have at most two exons. If all types of exons are insuffi-
cient in number, as when the training set is small, a shared
distribution is fitted for all types of exons. In cases where
only a small fraction of genes have more than one exon
the number of introns may be insufficient to fit a detailed
distribution. In this case Agene uses a less detailed length
distribution with only four phases (see below). In order to
be able to detect overlapping genes on the opposite
strand, genes are modelled one strand at a time.
Page 2 of 12
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:263 http://www.biomedcentral.com/1471-2105/7/263
Content modelling
The coding regions are modelled as inhomogeneous
Markov models with a three-periodicity and fourth order
emissions to capture information in codon statistics of the
three reading frames. The intergenic model and the intron
models share fourth order emission probabilities. Not
doing this will make the algorithm tend to predict genes
around regions in intergenic sequence with a sequence
composition similar to that of introns. This is not a severe
compromise assuming that the amount of gene related
information in deep intron sequence is small. Eight intron
models that share both transition and emission parame-
ters are synchronously trained. Two are used to model
introns in 5' and 3' UTRs, Three are used to keep track of
reading frames across introns. As in SNAP [9] it is ensured
that splice sites in coding regions are not predicted in such
a way that splicing generates stop codons. This is achieved
by special branching in the splice sites and an additional
three intron models not shown in Figure 1.

Exons in UTRs are modelled by two sub-models in each
UTR. The non-coding part of coding exons and fully non-
coding exons are modelled separately. All UTR exon mod-

els are homogeneous HMMs with shared third order emis-
sions. N-SCAN and DOUBLESCAN also predict UTRs but
use homology information and thus require cross-species
alignments for training and decoding. Agene uses the
same intron length distribution in UTRs as in coding
regions, whereas N-SCAN uses separate distributions. In
addition N-SCAN has separate models for first, internal,
last, and single exons in UTRs. We have chosen the sim-
pler UTR model because the amount of training material
is often limited.

Signal modelling
Splice sites are modelled with the HMM equivalent of first
order weight array matrices (WAMs) -3 to +8 nucleotides
from the donor site and -30 to +3 nucleotides from the
acceptor site. This includes the cytosine and thymine rich
region (CT-tract) upsteam of the acceptor splice site. For
maximal flexibility, no assumptions about splice site con-
sensus are used to prime the weight matrices. The splice
sites in UTRs seem to be very similar to the ones in the
coding region [28]. For this reason the intron parts of
these models share parameters with the splice site models
in coding regions. The exon parts of the splice sites are

Overview of gene modelFigure 1
Overview of gene model. Each box represents a separately modelled gene structure element. Red boxes are weight array 
matrices. Black boxes are length modelled elements. For clarity the intron models that assures that splicing does not introduce 
stop codons are not shown.
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modelled separately. Transcription start, CDS start, and
CDS end are modelled as first order weight array matrices
of length 7, 14, and 14 respectively. The six bases that con-
stitute the poly-A signal are modelled by a WAM with
order increasing from 0 to 5. For a few species including a
branch point would strengthen the model. To capture this
information, however, a WAM must be primed with a spe-
cies-specific consensus motif, a step that is not easily auto-
mated.

Length modelling
Length modelling of gene structure blocks contributes sig-
nificantly to gene finder performance. HMM gene finders
use geometric or explicit duration (ED) modelling [29] or
a combination of both. Geometric modelling is computa-
tionally cheap but ignores modality in length distribu-
tions of gene structure blocks. ED modelling can capture
arbitrary length distributions but is computationally
expensive. As opposed to geometric modelling where the
computation time is proportional to the sequence length
L, (O(L)), the computation time of ED modelling is at
least proportional to the square of the sequence length
(O(L2)). For this reason it is practically infeasible to
model long sequences unless the length distributions can
be bounded somehow. One solution is to truncate the
length distribution not allowing lengths above some rea-
sonable cutoff. Genscan uses ED modelling for coding
exons which are naturally bounded by the stop codons in
the reading frame. Even with a truncated distribution it is
not practically possible to use ED modelling for introns.
Many species, however, have a modal distribution of
intron lengths, with introns clustering around a certain
typical length. Augustus uses ED modelling for a first fixed
part of the intron and geometric modelling for the rest.
This allows for modality in the distribution of relatively
short introns.

In contrast to existing gene finders Agene models the full
length distribution for all gene structure elements, includ-
ing introns. The approach we take is to implement this
generalised HMM (GHMM) functionality within the
standard HMM framework. This is achieved by fitting an
HMM state structure to the length distribution of each
gene structure element. For this purpose we take advan-
tage of newly developed theory for acyclic discrete phase
type (ADPH) distributions [30]. An ADPH distribution
describes the probability of moving through a directed
acyclic graph with a number of phases (states) in a speci-
fied number of steps. For a special subset of sparse graphs
there is a one to one correspondence between graph and
ADPH distribution. An example of such a graph and its
distribution is shown in Figure 2. These graphs conform
to the following constraints: Phases are sequentially con-
nected and only the first phase has edges to all other
phases. All phases except the last absorbing phase has a

loop edge to itself. If the probability associated with the
loop edge of phase i is denoted qi then the relation q1 ≥ ...
≥ qi ≥ ... ≥ qn must apply for all n phases. For each variable-
sized gene element an ADPH distribution with 15 phases
is fitted to the length distribution of the element. The
graph underlying the fitted ADPH distribution is then
used as HMM state structure for the gene element. The
transition probabilities associated with the 15 states
(phases) are fixed and not part of the subsequent training.
The fitting is done using PhFit [31]. A set of example fit-
tings for D. melanogaster genes are shown in Figure 3. 

ED modelling is implemented as drawing from a paramet-
ric fitting to a distribution. This means that no matter how
many or few parameters the function has, the complexity
of the GHMM will be O(L2) because all possible sequence
lengths must be considered for each sequence position.
When the parametric function is implemented as an
ADPH distribution directly in the HMM structure the
complexity is reflected by the number of parameters
(phases) of the fitted function. Since the number of
phases is a constant this allows for GHMM functionality
with a linear computational complexity in sequence
length (O(L)).

Example ADPH distribution and probability graphFigure 2
Example ADPH distribution and probability graph. 
ADPH distribution with four phases and associated probabil-
ity graph. The distribution describes the probability of pass-
ing from state one to the absorbing state, A, in a given 
number of steps. The example constitutes the special case of 
a mixture of an exponential and three negative binomial dis-
tributions. This arises when the loop probabilities are equal.
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In theory, an ADPH distribution can accommodate any
distribution given enough states. With L states it is equiv-
alent to fully-fledged ED modelling (O(L2)). In practice,
however, it is not feasible to fit an ADPH with so many
phases. ADPHs can give a good fit to a distribution if it
ultimately has an exponentially decaying tail and if the
modalities in the distribution is located in the first part of
the distribution. The non-geometric features modelled,
however, are not confined to a fixed interval as in an
Augustus type approach. These characteristics are well in
line with the nature of sequence length distributions and

we have been able to fit all sequence length distributions
encountered.

In some training sets there may not be enough examples
to fit length distributions for both single, first internal,
and last coding exons. There may be too few examples of
single coding exons in complex organisms and there may
be too few first and last coding exons in simple organisms.
In the first case we pool single and internal coding exons
in the fitting. In the second case all coding exons are
pooled. In cases with few intron examples we use only

Example fittingsFigure 3
Example fittings. Example ADPH fittings to length distribution of D. melanogaster gene structure elements. The plots each 
show actual length distribution in red and ADPH fit in blue.
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four phases to model the distribution to avoid over-fit-
ting.

Generation of training sets
A training set of reliable gene structures is crucial for a
machine learning approach to gene finding. It is often
unclear to what extent the gene structure annotation sub-
mitted to the various databases is based on prediction,
inference, or experimental validation. In addition, the
degree of curation and confirmation is not always obvi-
ous. For these reasons reliable training sets are hard to
come by for most organisms. To overcome some of these
issues, we generate our own set of gene structure annota-
tions by mapping experimentally obtained mRNAs to the
genome. For this study we have used RefSeq mRNA entries
with curation label "provisional" or better [32]. The
mRNAs are mapped to the genome using BLAT [33]. BLAT
is fast and accurate, and makes an effort to pick, among
large equivalently scoring gaps, the one conforming to the
GT-AG splice-site consensus. In cases where only one pos-
sible gap allows alignment of all surrounding mRNA
bases the GT-AG consensus is not required. For each
mRNA only the best match is considered and this is dis-
carded unless it accounts for 98% of the mRNA sequence
allowing for 1% mismatches and 0.5% bases inserted in
the mRNA.

Donor and acceptor splice site pairs across introns are
analysed to make sure that each pair constitute the only
possible set that accounts for the mRNA sequence. This
will not be the case if the donor and acceptor site can be
shifted in parallel to another G [TC]-AG position produc-
ing the same coding sequence. These unambiguous splice
sites are found using a tailored Smith-Waterman algo-
rithm similar to EST_GENOME [34] but allowing GC-AG
splice sites as well. This flexibility is relevant in at least C.
elegans [35] and H. sapiens [36]. Coding start and end are
obtained from CDS annotation of the RefSeq mRNAs. It is
checked that start and stop codons conform to the ATG
and (TAA, TAG, TGA) consensus and that each annotated
CDS in both the mRNA and the gene structure are open
reading frames. Finally, the resulting set of gene structures
is similarity reduced using the Hobohm 2 algorithm [37].
This reduction is based on WU-BLAST [38] DNA level
homologies with an e-value of at most le-03. To contain
sufficient information for training, the homology reduced
set must contain at least 200 gene structures, and prefera-
bly 300 or more (see below).

Training and decoding
The final model is trained as a Class Hidden Markov
model [3]. This allows training of the entire model in one
single step by specifying the sequence parts each state is
allowed to train on. This has the advantage that transi-

tions between sub-models and non-additive effects of
individual sub-models is also trained. 

For many new genomes, not enough full-length mRNAs
are available to generate a UTR annotated training set of
sufficient size. In these cases the training set is supple-
mented with gene structures without UTR annotation.
This presents a problem in training because unspecific
training on un-annotated UTR sequence pollutes the sig-
nal contributed by annotated UTRs. To solve this problem
two parallel UTR sub-models are introduced (not shown
in Figure 1). These parallel sub-models mirror the true
UTR models and allows the un-annotated UTRs to be
parsed without contributing to the training of the actual
UTR sub-models. This way the un-annotated UTR
sequence does not interfere with training of UTRs. Transi-
tions from the mirror models to the actual models allow
each UTR to contribute to the extent it is annotated. 

Training is done using the standard Baum-Welch algo-
rithm. For decoding we use an N-best algorithm [3]. This
finds the most probable prediction summed over all paths
yielding the same prediction. This is crucial to our length
modelling approach, since the phase type distributions
arise as a sum of probabilities of paths returning the same
length.

Some genomes such as H. sapiens and M. musculus are so
heterogeneous in GC content that parallel models must
be trained on subsets of the training set with different GC
content. This procedure is also automated in Agene. The
gene model is initially pre-trained on the entire training
set. The training set is then split into subsets according to
GC content and the pre-trained model is trained again on
each subset. Before decoding it is established which GC
subset the sequence belongs to and the corresponding
model is used for prediction.

Results
To assess the performance of Agene we have tested it on a
diverse set of eukaryotes. For a subset of these species-spe-
cific ab initio gene finders exist. A thorough evaluation of
the existing gene finders is not within the scope of this
paper. We have chosen Augustus, Genscan and GeneID
and tested these on the species they have been customised
for. Genscan, however, was tested on all vertebrates using
the Human/vertebrate version. The performance of the
most accurate predictor for each species is reported
together with the performance of Agene in Table 1. The H.
sapiens version is trained and decoded on the same GC
content subsets as Genscan (0% ≤ 41% ≤ 45% ≤ 53% ≤
100%). For the M. musculus version the subsets 0% ≤ 42%
≤ 46% ≤ 51% ≤ 100% are used. Genscan was run locally
with default settings. Augustus and GenelD where run on
their respective web servers with "forward strand only"
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settings. Table 1 also reflects how gene models and use of
training material differ for the listed organisms. Each ver-
sion of Agene was evaluated using six-fold cross valida-
tion. To make the evaluation reflect to what extent Agene
offers an alternative to non-experts we have not attempted
to re-train existing gene finders to the relevant species.

The set of species listed in Table 1 represents a diverse
selection of gene structures. These vary with respect
sequence signals, overall sequence composition, and
length of gene elements. The mean GC content of the
genes in our training sets ranges from 36% for C. glabrata
to 53% for U. maydis. To illustrate the variation of

Table 1: Performance evaluation. NSN: nucleotide sensitivity, NSP: nucleotide specificity, ESN: exon sensitivity, ESP: exon specificity, 
ME: missed exons, WE: wrong exons. NSN is defined as the percentage of annotated coding bases predicted as coding and NSP as the 
percentage of predicted coding bases annotated as as coding. ESN and ESP reflect analogously how well the methods predict exons 
exactly right. Superscripts on the species names indicate the type of generated gene model. 1: Full model. 2: 3' UTR exons and introns 
not modelled. 3: No UTR exons and introns modelled. 4: UTR exons and introns as well as UTR part of first and last exons not 
modelled. Subscripts indicate whether shared length distributions are used. 1: No shared distributions. 2: Internal and single coding 
exons share distribution. 3: all coding coding exons share distribution

Species Predictor NSN NSP ESN ESP ME WE

Agene 95 92 86 85 5 9

GeneID 95 86 75 68 6 16

Agene 87 87 64 68 13 15

Augustus 85 91 67 72 15 11

Agene 85 89 67 74 14 11

Genscan 82 83 49 51 17 18

Agene 76 95 57 76 25 7

GeneID 24 95 14 83 76 8

Agene 84 93 59 70 19 9

GeneID 88 86 49 50 18 19

Agene 63 56 47 40 38 48

Genscan 87 60 63 47 14 39

Agene 73 88 56 68 28 14

Genscan 88 82 69 68 14 17

Agene 88 89 67 70 13 13

Genscan 91 87 67 69 12 10

Agene 81 83 52 63 18 15

Agene 82 85 64 68 17 19

Agene 78 91 69 79 21 11

Agene 91 94 82 82 9 9

Agene 87 94 61 69 14 9

C elegans. 2
3

D melanogaster. 1
1

A thaliana. 1
1

N crassa. 1
4

A nidulans. 2
4

H sapiens. 1
1

M musculus. 1
2

D rerio. 2
3

A gambiae. 1
3

D hansenii. 2
4

K lactis. 3
4

C glabrata. 3
4

U maydis. 1
4
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sequence signals, sequence logos [39] for donor and
acceptor splice sites are shown in Figure 4. It is evident
that species-specific training of a flexible model is
required to accommodate this level of diversity. To further
emphasise the importance of species-specificity we have
tested the C. elegans version of Agene on a few of the other
test species. The differences in performance between the
C. elegans version and the versions created for each species
are shown in Table 2.

The sizes of the training sets used range from 266 for D.
rerio and 700 for U. maydis to 7152 for N. crassa and 7914
for A. nidulans. The training sets are available as additional
files [see Additional file 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28]. To investigate how training set size influences per-
formance the U. maydis version of Agene was generated
using different sized training sets. Performance as a func-
tion of training set size is shown in Figure 5. A size of at
least 200 gene structures is required to accommodate the
large number of parameters in the model. The perform-
ance benefits strongly from larger training sets up to a size
of about 500 gene structures. Larger training sets only

improve performance slightly. These relationships may
vary depending on the heterogeneity of gene structures of
the species in question. Agene is accessible through our
web interface [40].

Discussion
For the majority of test species the performance of Agene
is comparable or slightly better than the alternative gene
finders we have tested. We have aimed at developing a
method as flexible as possible to accommodate a large
variety of genome characteristics and to work with typical
sized training sets. This choice, however, does not seem to
allow for an effective modelling of gene structures in spe-
cies with very long introns like H. sapiens and M. musculus.
Our specificity for these species is comparable to that of
the remaining test species but the sensitivity is lower.
Though important, this category of species does not repre-
sent the type of species where automated gene finder gen-
eration is most in demand. Species such as H. sapiens and
M. musculus are subject to so much attention that several
high quality gene finders already exist. Our focus is on the
large number of eukaryotes that do not receive the same
attention. The performance of our gene finders are much

Logos of donor and acceptor splice sitesFigure 4
Logos of donor and acceptor splice sites. A graphic representation of aligned donor and acceptor splice sites. The relative 
heights of letters correspond to frequencies of bases at each position. The degree of sequence conservation is reflected in the 
total height of a stack of letters, measured in bits of information.
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higher for the genomes they are customised to than for
other genomes. These results emphasise the value of a spe-
cies-specific approach.

The fact that ab initio gene prediction methods require a
training set limits their use in cases where no mRNA has
been sequenced yet. The SNAP gene finder [9] addresses
this problem applying a bootstrapping approach that uses
a gene finder for a foreign species to create a first predic-
tion. This is then used as virtual training set for the final
gene finder. In order to reliably choose a suitable foreign
gene finder for bootstrapping extensive information on
genome and gene structures is required. This amount of
information is often not available for newly sequenced
genomes. GeneMark.HMM-ES [5] uses an iterative self-
training procedure where the predictions from a previous
round serve as training material for the next. Short of spe-
cies-specific training data these are valid approaches, but
bootstrapping methods suffer from the drawback that it is
difficult if not impossible to establish what confidence to
put in predictions when a reliable and representative test
set for the target species is not available.

It has been reported that 40% of H. sapiens genes have at
least one completely non-coding first exon [41]. Among
the other species used in this study UTR exons are com-
mon in both A. thaliana, D. malanogaster, and M. musculus.
For this reason, Agene returns UTR predictions as an inte-
gral part of the gene predictions. This is only possible,
however, if the training set used to generate the gene
finder contains sufficient UTR annotation. The modelling
of the UTR component of the first and last coding exons
improves predictions slightly by helping to delineate the
start and end of the coding region. We expected that
including UTR exons in the model would improve predic-
tions by ensuring that the model does not wrongly predict
UTR exons as coding exons. We have tested to what extent
this is the case (data not shown) and found the effect on
performance is not significant.

The length modelling approach taken in this paper has
proved to be an effective way to implement the powers of
GHMMs. By integrating length modelling into the HMM
state structure computational complexity is linear in the
sequence length. This allows for full length modelling of
all gene structure elements, including introns.

A problem in evaluating gene predictions stems from the
fact that gene finders only predict one full transcript at a
time whereas the majority of genes have multiple tran-
scripts. This may account for many of the inconsistencies
in predictions. The N-best algorithm, used by Agene, is
able to return a number of sub-optimally scoring paths
together with the optimal one. It is likely that alternative
transcripts are among these sub-optimal predictions. For
genes with many alternative exon borders, however, the
number of combinations of these is so large that only a
subset of these are likely to be be real transcripts. In con-
sidering such suboptimal paths a post-processing step is
required where the biological sensibility is evaluated.

Conclusion
A procedure to automatically generate species-specific
gene finders for novel genomes is presented. This includes
generation of a training set from a set of mRNAs as well as
dynamic building and training of an HMM that fits the

Performance as a function of training set sizeFigure 5
Performance as a function of training set size. The 
plot shows the nucleotide and exon sensitivity and specificity 
as well as missed and wrong exons as a function of the 
number of genes in the training set.
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Table 2: Cross-species performance. Performance of Agene for C. elegans on a selection of other test species. The percentages shown 
are the differences in performance relative to the versions of Agene that are generated for the species on question. NSN: nucleotide 
sensitivity, NSP: nucleotide specificity, ESN: exon sensitivity, ESP: exon specificity, ME: missed exons, WE: wrong exons

Species NSN NSP ESN ESP ME WE

A. thaliana -21 0 -29 -10 22 1
D. melanogaster -8 -5 -21 -17 8 8
N. crassa -7 -19 -34 -45 5 25
D. hansenii -26 -3 -52 -27 16 6
D. rerio -33 -2 -33 -8 31 1
C. glabrata -21 -7 -58 -38 13 13
Page 9 of 12
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:263 http://www.biomedcentral.com/1471-2105/7/263
organism gene structure and the amount annotation
available in the training set. Acyclic discrete phase type
distributions implemented as HMM state structure are
well suited to model sequence length distributions and
are very cost effective in terms of complexity. The auto-
matically customised gene finders perform as well or bet-
ter than most existing manually customised gene finders.
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