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Abstract
Background: The genome sequencing projects have shown our limited knowledge regarding gene
function, e.g. S. cerevisiae has 5–6,000 genes of which nearly 1,000 have an uncertain function. Their
gross influence on the behaviour of the cell can be observed using large-scale metabolomic studies.
The metabolomic data produced need to be structured and annotated in a machine-usable form to
facilitate the exploration of the hidden links between the genes and their functions.

Description: MeMo is a formal model for representing metabolomic data and the associated
metadata. Two predominant platforms (SQL and XML) are used to encode the model. MeMo has
been implemented as a relational database using a hybrid approach combining the advantages of the
two technologies. It represents a practical solution for handling the sheer volume and complexity
of the metabolomic data effectively and efficiently. The MeMo model and the associated software
are available at http://dbkgroup.org/memo/.

Conclusion: The maturity of relational database technology is used to support efficient data
processing. The scalability and self-descriptiveness of XML are used to simplify the relational
schema and facilitate the extensibility of the model necessitated by the creation of new
experimental techniques. Special consideration is given to data integration issues as part of the
systems biology agenda. MeMo has been physically integrated and cross-linked to related
metabolomic and genomic databases. Semantic integration with other relevant databases has been
supported through ontological annotation. Compatibility with other data formats is supported by
automatic conversion.

Background
The genome sequencing projects have shown our limited
knowledge of gene function. For example, the sequencing
of the well-studied model organism Saccharomyces cerevi-

siae has resulted in its total number of protein-encoding
genes being estimated to be around 5,300 of which nearly
1,000 have a more or less unknown function [1]. Such
gene functions can be studied with different omics tech-
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nologies. While proteomics and transcriptomics have
been widely used for this purpose, only recently have
large-scale metabolomic experiments been applied [2,3].
These high-throughput technologies resulted in an expo-
nential increase in the volume and the complexity of the
omics data. Bearing in mind the limitations of a human
brain, which can simultaneously handle only a dozen
parameters [4], it becomes obvious that no significant
progress in this type of biology can be made by relying on
manual data analysis approaches alone.

The first step is to store such huge volumes of omics data
in a machine-usable form. Data need to be formally struc-
tured and annotated so as to present biologists with hid-
den information in a way that can improve their existing
knowledge [5]. Many biological DBs have been designed
to address the needs of specific bio-communities (see the
MBDC [6,7]). MBDC organises the given DBs hierarchi-
cally in order to simplify the process of finding a DB suit-
able for a given biological task. While other omics
resources are listed at the top level of this hierarchy,
metabolomic data sources are notably missing! In partic-
ular, no attempt has been made to store the growing flood
of experimental data emerging from high-throughput
metabolomic studies in some standardised format in a
public DB [8].

In spite of the flood of omics data, we do not have an inte-
grated understanding of cellular function, because exist-
ing research has mainly been focussed on individual
levels (e.g. genomic, transcriptomic, proteomic, metabo-
lomic, phenotypic) of the biological systems, neglecting
the relations between them. SB has emerged as the appro-
priately holistic study of biological systems [9], based on
a systematic integration of technology, biology and com-
putation [10]. In order to achieve the simulation and
functional prediction of complex biological systems and
not just their isolated parts, it is essential to integrate var-
ious omics data resources describing different levels of cell
organisation [11,12]. For example, EchoBASE [13] inte-
grates data resulting from different types of omics (but not
metabolomics) experiments and links them to informa-
tion on specific E. coli genes. Obviously, in order to inte-
grate all omics resources (including metabolomics), they
need to be available individually in the first place.

The very first step is to develop and standardise all omics
models and populate them with curated data. The tran-
scriptomics community has made significant progress in
this direction: the Microarray Gene Expression Data Soci-
ety was founded in 1999 to facilitate the exchange of
microarray data. These efforts resulted in a proposed
standard for the MIAME [14] and the Microarray Gene
Expression Markup Language [15]. Similarly, the Human
Proteome Organisation founded the Protein Standards

Initiative in 2002 [16] to coordinate the task of standard-
ising the MIAPE [17] based on the PEDRo schema [18]. It
is essential to take similar steps in metabolomics.

MIAMET has been suggested [19] in accordance with
MIAME and MIAPE. MIAMET represents a natural lan-
guage description or a checklist of the information neces-
sary to provide context for metabolomic data. In 2003, the
SMRS group was established with a similar agenda to
work on a standard way of specifying the reports of
metabolomic experiments [20]. As such, MIAMET and
SMRS represent first positive steps towards a metabolomic
data standard, but do not provide a complete formal
description of the required information necessary for the
development of supportive data handling systems. The
Metabolomics Society founded in 2004 represents the
most recent community-wide initiative to coordinate the
efforts in standardising reporting structures of metabo-
lomic experiments [21]. Five working groups have been
founded to cover the key areas for describing metabo-
lomic experiments: biological sample context, chemical
analysis, data analysis, ontology and data exchange. In
particular, the Metabolomics Society tries to build upon
the existing project-driven attempts at modelling metabo-
lomic experiments. For example, ArMet, originally pro-
posed as a model for the description of metabolomic
experiments specific for plants [22], is used to help define
a more general standard.

In this paper, we suggest MeMo as a similar model for the
formal representation of metabolomic data and the asso-
ciated metadata (important for comparison, reproducibil-
ity and re-use of the results), initially for yeast but with a
straightforward ability to extend it to other organisms.
MeMo has largely re-used the high-level structure of
ArMet. Some low-level components have been adapted or
introduced to: (1) support different types of metadata
needed for yeast studies, and (2) tackle practical issues of
metabolomic data management. We implemented MeMo
as an extended RDB to support the pressing need to store,
manage and disseminate large amounts of curated metab-
olomic data efficiently. The long-term goal is to mine the
content of the RDB using a variety of machine-learning
techniques in order to extract hidden associations
between genes and their functions implicitly represented
by the metabolomic data [23,24].

Construction and content
Metabolomics model overview
The structure of the metabolomic data needs to be
described by a suitable model, which can subsequently be
translated into a DB schema. Entity-relationship diagrams
[25] traditionally used to model RDBs have largely been
overtaken by UML models [26], especially for bioinfor-
matics applications. For example, UML has been used for
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the models described in [18,22,27-29]. UML is an OO
modelling language which uses classes and relations as its
main structuring mechanism. Classes are used to describe
structural aspects of homogenous sets of objects by means
of their attributes, operations and relations.

MeMo describes the framework for metabolomic experi-
ments in terms of the following seven components (Fig-
ure 1):

• Admin. Administrative and procedural data about an
experimental framework (e.g. protocols, personnel,
instruments).

• Biological sample. Metadata about the biological
source examined (e.g. genotype, phenotype, biological
sample).

• Chemical sample. Description of a sample prepared for
instrumental analysis.

• Instrumental analysis. The results (e.g. raw data, mass
spectrum) of analyzing a sample using an analytical
instrument.

• Data processing. Identification of metabolites based on
the results of instrumental analysis.

• Data analysis. Computational analysis of the analytical
data and the associated metadata.

• Background knowledge. The background knowledge
explicitly stored in the DB in a machine- readable form
(e.g. gene classification, compound properties such as
molecular weight, structure, reactions, etc.).

The experimental framework for metabolomics
(described by the package called Wet experiments) can be
divided into three components: biological, chemical and
analytical. A biological sample is extracted from the bio-
logical source studied. It is used to produce a chemical
sample to be employed in instrumental analysis.

To process the vast amounts of metabolomic data, addi-
tional analyses need to be performed in silico to extract
knowledge. Therefore, a separate package is used to model
Dry experiments, which covers the processing of raw ana-
lytical data (DataProcessing) and their computational
analysis (DataAnalysis). Finally, the background knowl-

Global overview of MeMoFigure 1
Global overview of MeMo. The global components of MeMo represented by UML packages.
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edge package is used not only to cover all data coming
from external sources covering different aspects of biolog-
ical/chemical knowledge, but also the information
inferred from the experimental data using different types
of data analysis methods.

Detailed metabolomics model
Figure 2 describes a more detailed version of the MeMo
model represented by UML classes and their relations.

Admin
The central class in the Admin package is ExperimentSet,
whose instances are used to represent a homogenous set
of scientific experiments. These experiments are per-
formed under the same conditions, which are formally
described using the ExperimentProtocol class and each
experimental protocol follows a certain Method. Group-
ing such experiments into sets removes the need to specify
these conditions repetitively for each individual experi-
ment. Also, a single Person is in charge of controlling
these experiments within a single Lab. Individual experi-
ments, represented by instances of the Experiment class,
differ only by their chronological features and in relation
to their subjects. Sets of experiments of different types are
grouped into an ExperimentalStudy, which summarises a
specific metabolomic study. The model does not explicitly
differentiate between different types of experiments (i.e.
biological sample preparation, chemical sample prepara-
tion, analytical experiment and data analysis) at the class
level. In other words, a single class is used to describe all
four types of experiments, because there are no structural
differences at this level. The differences arise only in rela-
tion to other classes. For example, an analytical experi-
ment is performed on an analytical Instrument, while

data analysis is performed using a Program. Since the
same instrument is used to perform a set of analytical
experiments, there is a link between the ExperimentSet
and Instrument classes. This is in contrast to the link
between a single Experiment and the biological sample
(the BioSample class in the Biological sample package) it
produces.

Biological sample
Each metabolomic study concentrates on a specific bio-
logical source. An instance of the Source class represents
an individual organism (e.g. a specific patient in the case
of clinical studies) or a genetically defined strain of a par-
ticular organism (e.g. a specific gene-knockout strain of S.
cerevisiae). In this model, we focus only on the latter case,
where each Source instance is linked to instances of the
Mutation class denoting the genes that were knocked out/
in from a given biological source. Large-scale genomics
studies investigate whole populations of related biologi-
cal sources rather than a single source. For example, there
is sometimes a mutant for each gene in functional genom-
ics studies using a model organism such as S. cerevisiae.
Instances of the Population class are used to describe a
studied group of related biological sources. Each Source is
used to produce a biological sample (e.g. metabolomic
footprint of a given S. cerevisiae strain [30]), which is rep-
resented using the BioSample class.

Chemical sample
A biological sample (BioSample) is prepared as a Sample
to be analysed using an analytical Instrument. Such sam-
ple is produced by a chemical sample preparation Experi-
ment, which in turn follows a specific
ExperimentProtocol.

Detailed overview of MeMoFigure 2
Detailed overview of MeMo. The detailed components of MeMo represented by UML classes.
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Instrumental analysis
An instance of the Analysis class refers to the results of
analyzing a Sample using an analytical Instrument. URL
references are used to specify the location of the raw data
files. Different classes are used to model different types of
data depending on an analytical technique used, e.g. GC,
MS, FT-IR, Raman and NMR spectroscopy. Depending on
the analytical method, different instruments produce dif-
ferent kinds of spectra (e.g. GCPeakList, MassSpectrum,
FTIRSpectrum, RamanSpectrum, NMRSpectrum). Each
spectrum is modelled as a list of peaks. Different types of
peaks are used for different analytical techniques (e.g.
GCPeak, MassPeak, FTIRPeak, RamanPeak, NMRPeak)
and they differ in the names and types of x and y values
recorded. No generalisation [e.g. where peak tables con-
sist of generalised x (generalising wave number, m/z, etc.)
and y (generalising absorbance, intensity, etc.) data] has
been attempted here in order to prevent the loss of specific
semantics allowing more detailed representations of spe-
cific techniques and the ways in which they can be com-
bined (e.g. for hyphenated techniques such as GC-MS).
Different types of peaks will also have different types of
additional information attached depending on the analyt-
ical Instrument used. For example, GC peaks detected by
a GC-MS instrument produced by Leco or Agilent will
have different features and these differences are modelled
by the corresponding subclasses LecoPeak and Agilent-
Peak of the GCPeak class. In this manner, the model can
be extended easily to support new instruments. Similarly,
new types of spectra can be supported by adding new sub-
classes to the Analysis class as recommended in [31].

Data processing
The results of an Analysis can be used to identify different
metabolites and their concentrations within the Sample
analysed. For example, definitive identification of metab-
olites detected by a GC-MS instrument is performed by
matching chromatographic peaks. This can be performed
either using external mass spectra libraries or internal
libraries obtained by analysing samples of pure chemical
standards. In the latter case, the relevant details are
recorded and stored as usual: the samples are described
using the ChemicalSample component, the experimental
protocols and instrument settings are stored using the
Admin component, and the analytical results (e.g. the
actual peaks produced) are stored using the appropriate
classes (depending on the method/instrument used) in
the InstrumentalAnalysis component. In addition, each
Analysis produced as a characterisation of a given metab-
olite is used to create a new item in a MetaboliteLibrary.
This item corresponds to an instance of MetaboliteLocal-
Desc, i.e. a local description of a given metabolite. Each
local description of a metabolite is further mapped to its
global description (class MetaboliteGlobalDesc), where
the general information about the metabolite is stored: its

identifiers in other resources, its names, molecular for-
mula and weight, SMILES strings, etc.

When performing metabolite identification, using either
an external or an internal library, different parameters
quantifying the quality of a match are used depending on
a specific instrument and software. These attributes are,
therefore, recorded in the instrument-specific classes. For
example, when a Leco instrument is used for GC-MS anal-
ysis, spectrum similarity and reverse matches are used as
such attributes in the LecoPeak class. The actual metabo-
lites identified are modelled by the Metaboliteldentifica-
tion class, which links the analytical results directly to a
local description of a metabolite and indirectly to its glo-
bal description.

Data analysis
Finally, both quantitative (modelled by Analysis and its
subclasses) and qualitative (modelled by Metabolitelden-
tification) data can be further analysed to produce DataA-
nalysisResults. Such an analysis is performed as an
Experiment using some Program, similarly to an analyti-
cal Experiment being performed using an Instrument.

Utility
Technologies
Once the schema has been developed, it needs to be
implemented as a DB. The most commonly used DBs are
relational, OO and XML. A UML model can be translated
straightforwardly into an OO DB. For example, such an
approach has been taken in the development of the GIMS
DB used to store genomic and functional data [27,29]. It
can also be relatively easily translated into a relational or
XML DB. For instance, the OO model for functional
genomics described in [28] has been implemented as an
RDB. The PEDRo model for proteomics [18] is used to
convert data into the corresponding XML format, and the
XML files so produced can be stored in a DB of the user's
choice. The ArMet model for plant metabolomics exists in
parallel as both an XML version and an RDB [22].

OO DBs have never really gained widespread acceptance.
On the other hand, XML [32] as an exchange format has
become a predominant means of information modelling
in biosciences [33], allowing the design of customised
markup languages, web-enabled data exchange and full
data management including modelling (schemas defined
by DTD or XML Schema), storing (XML documents which
can be stored as files or in DBs) and querying (XML query
languages, e.g. XQuery, XPath).

XML is particularly suitable for structurally complex data
that cannot be easily represented by tabular structures. In
an RDB, an additional table is usually created to support
equivalents of nested XML elements in order to represent
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variable hierarchical structures. This could significantly
increase the number of tables required, thus negatively
affecting the transparency of the DB and consequently its
maintenance and performance. The most natural way to
store XML data is in an XML-native DB, which can store
and index XML documents directly (unlike XML-enabled
DBs, which require their mapping to the underlying rela-
tional or OO format). However, XML DBs currently can-
not deliver the necessary speed of access [34], which is
critical for many bioinformatics tasks involving huge vol-
umes of data, as is the case in large-scale metabolomic
studies. On the other hand, RDBs represent a mature tech-
nology when it comes to speed of access. Indeed, the vast
majority of biological DBs are implemented using the
classic RDB management systems [5,35], e.g. PostgreSQL,
MySQL, Oracle, DB2, SQL Server, etc., and this fact needs
to be taken into account when interoperability with the
existing DBs needs to be supported. Other features used to
determine a specific choice of a DB type include flexibility
in terms of generality, extensibility, ease of access and
portability.

The current state of computer technology does not offer a
perfect solution. One needs to weigh carefully the pros
and cons of each technology in the context of typical uses
of the given model. Thus, the MeMo model has been
implemented using two formalisms, XML and SQL, which
can be used in parallel for different tasks, but most impor-
tantly have also been combined in a hybrid approach that
has enabled us to unify their benefits.

Implementation
The XML version of the MeMo model is an XML schema
[36] written in the XML Schema language. It defines the
structure of XML documents that can be used to store the
metabolomic data in a file or XML DB, or to support data
exchange in the XML format (e.g. similar to [37]). The
schema has been developed using a modular approach
and taking full advantage of XML namespaces to resolve
the problems of ambiguity and name collision. The over-
all XML schema follows the global structure of the MeMo
model shown in Figure 1, i.e. there is a separate schema
for each component. The administrative schema further
includes the schemas describing the structure of experi-
mental procedures as well as instrument settings for each
of the supported analytical techniques (MS, GC, FT-IR,
Raman and NMR spectrometry, etc.). The modularity of
the schema makes it more manageable, since it enables
independent development of different modules and the
possibility of their independent usage (e.g. on their own
or as part of other schemas). Currently, the XML schema
is used to improve the usability of the implemented RDB
(explained later). Further work is underway to configure
the Pedro tool [38] to capture the metabolomic metadata
in the XML format according to the given schema. As

Pedro is XML-schema driven, its flexibility allows instant
changes in the schema to be reflected in the data capture
forms.

In parallel to the XML schema, we implemented MeMo as
an SQL schema and thence as an RDB using PostgreSQL.
Many biological DBs contain a large number of tables
causing difficulties in locating information [39]. One of
the principles which can be used to reduce the number of
tables is generalisation, where a single table is used to rep-
resent similar entities leading to a smaller and more flexi-
ble schema. For example, we use the same set of tables to
structure administrative information related to all four
types of experiments: biological and chemical sample
preparation, instrumental and in silico analysis. In order to
support a user-friendly interface to the RDB, the
maxdLoad2/maxdBrowse suite [40] is being configured to
reflect a user-orientated representation of the MeMo
model (Figure 3).

Nelson et al. [39] recommend leaving a subset of data in
a flat file format as opposed to parsing them into the tab-
ular structures. This decision should be reviewed with
respect to the ways in which the data will be typically
used. For example, if the data are primarily accessed in
their entirety, then parsing them into the DB may be
unnecessary. We use a similar approach in the MeMo DB,
namely, we use an RDB with XML extensions where
appropriate. Tables are used to represent fixed structures,
while XML is used to model highly variable structures.
Instead of using flat files we store XML documents in the
table fields. Most entities are represented directly by
tables. Other entities are represented by textual fields fur-
ther structured by XML. The criteria used to choose
between the two representation approaches include struc-
tural stability, hard vs. soft coding, querying vs. browsing,
access speed and ease of maintenance.

Tabular format
In a well-designed RDB, each row in a table should repre-
sent a single instance of the entity type modelled by the
table. In the case of metabolomics, when modelling the
analytical spectra of various types one is faced with a deci-
sion of viewing a peak as an entity on its own or simply as
an attribute of a spectrum. In the latter case, a spectrum
would be represented by the following structure described
in SQL (all data types provided in the SQL definitions are
used for illustrative purposes only; different types of spec-
tra may require different data types):

CREATE TABLE spectrum

(

ID VARCHAR(50) NOT NULL,
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y_1 INT,

y_2 INT,

...

y_n INT,

PRIMARY KEY(ID)

);

Each row represents a spectrum, where "y-columns" are
used to store the y-values for the corresponding "x-coordi-
nates" (see Figure 4). Although this is a "natural" repre-
sentation for human users, who are used to seeing spectra
displayed in such a format, it does not represent good
design practice when it comes to the RDBs. First, the x-val-
ues are implicitly represented by the column names and
not by their own values. Such an approach would be
acceptable if, across different spectra: (1) the increment of
the x-values was constant, and (2) the range of x-values
was constant. In that case the total number of the x-values
would be fixed as well. However, in order for such a table
to be easily manipulated the total number of the x-values
should also be relatively small. Still, the user would not be
able to take the advantage of the aggregate functions (e.g.
summation – SUM(), finding minimal – MIN(), average –

AVG() or maximal – MAX() value in SQL to process a
spectrum (e.g. in the case of mass spectrometry determin-
ing the total ion current by summing all intensity (y) val-
ues), because these functions operate over multiple rows
and not columns as required.

Since a peak itself has internal structure (x and y values,
e.g. m/z and intensity in the case of mass spectrometry), we
are in favour of a representation in which a peak is treated
as an entity and represented by a separate table (peak) dif-
ferent from the one used to represent a spectrum. This is
formally described by the following definitions in SQL:

CREATE TABLE spectrum

(

ID VARCHAR(50) NOT NULL,

x_min INT,

x_max INT,

PRIMARY KEY(ID)

);

CREATE TABLE peak

Screenshot of the MeMo schema in maxdLoad2Figure 3
Screenshot of the MeMo schema in maxdLoad2. The maxdLoad2 interface hides the complexity of the schema and 
some implementation details from the user in order to allow user-friendly data capture and dissemination of metabolomic data.
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(

spectrum_ID VARCHAR(50) NOT NULL,

x INT NOT NULL,

y INT NOT NULL,

PRIMARY KEY(spectrum_ID, x),

FOREIGN KEY(spectrum_ID) REFERENCES spec-
trum(ID)

);

Given an x-value, a single peak is efficiently retrieved by
the following query:

SELECT *

FROM peak

WHERE spectrum_ID = 'given spectrum'

AND x = x_value;

A whole spectrum of x- and y-values is retrieved via a sim-
ple SQL query:

SELECT *

FROM peak

WHERE spectrum_ID = 'given spectrum';

However, the high-dimensional nature of analytical data
can cause efficiency problems. For example, mass spectra
produced by a method such as DIMS [30] tend to produce
a vast array of data, e.g. a y-value for all integer x-values
between 45 and 999. Some instruments that give so-called
"accurate mass" measurements have many more m/z val-
ues. This can pose considerable memory requirements to
handle the retrieved data and consequently prolong the
retrieval time. For example, the first query took only ≈30

ms compared to ≈140,000 ms consumed by the second
query. (All times reported have been obtained for DIMS
data, m/z ranging from 45 to 999, stored in a PostgreSQL
DB. The exact times will vary on different systems. They
are provided only to illustrate the relative differences in
executing the given queries.) The retrieval time is addi-
tionally extended (≈147,000 ms in total) when it is
required for the x-values to be ordered:

SELECT *

FROM peak

WHERE spectrum_ID = 'given spectrum'

ORDER BY x;

When a large number of spectra need to be processed, they
need to be retrieved much faster. We adopted a caching
approach, where some of the features are extracted in
advance and stored for future use providing a quick snap-
shot of a spectrum. For example, we extend the definition
of the spectrum table as follows:

CREATE TABLE spectrum

(

ID VARCHAR(50) NOT NULL,

x_min INT,

x_max INT,

avg_peak FLOAT,

max_peak INT,

total_peaks INT,

PRIMARY KEY(ID)

);

Horizontal spectrum representationFigure 4
Horizontal spectrum representation. Each row represents a spectrum, where "y-columns" are used to store the y-values 
for the corresponding "x-coordinates".
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Additional attributes avg_peak, max_peak, total_peaks
store the values for the average and maximal y-value and
the total number of peaks recorded. Other attributes may
be stored as well depending on the nature of the analytical
technique used (e.g. total ion current for mass spectrome-
try). These attributes are redundant in the sense that they
can be calculated from the peaks table, e.g. total_peaks
can be calculated as:

SELECT COUNT (*)

FROM peaks

WHERE spectrum_ID = 'given spectrum';

However, these values are often accessed and it makes
sense to store them in advance and simply retrieve them
when necessary:

SELECT total_peaks

FROM spectrum

WHERE spectrum_ID = 'given spectrum';

since the latter query consumes considerably less time
(≈30 ms) compared to the former one (≈141,000 ms).

Compact ASCII format
When a whole spectrum needs to be retrieved and proc-
essed, it is useful to treat it as a bundle of data as opposed
to a collection of data items (i.e. peaks). For this purpose,
we use a compact (or compressed) spectrum representa-
tion, which is stored in the spectrum table as a single
attribute (peaks). The following assumptions apply to an
individual spectrum: (1) the range of x-values is known,
and (2) all x-values are recorded with the same precision
p (the number of digits to be recorded after the decimal
point). The compact format takes advantage of the fact
that all x-values can be generated from the initial value
using 10-p as an increment: xn = x0 + n·10-p, and therefore
need not be explicitly stored. Instead, only the initial
value and the increment are stored, while the y-values are
stored in correspondence to the ascending order of x-val-
ues. In addition, when a spectrum is sparse (e.g. mass
spectra obtained through GC-MS), instead of storing the
NULL values explicitly, they can simply be skipped by
recording the number of consecutive NULL values. We
define a compact spectrum format by the following regu-
lar expression:

(<separator> <value>)+ <separator>

where <value> is a numerical value and <separator>
stands for any of the following characters: |, #, + and -. The

separators indicate how the y-values can be constructed
from the given numerical values. The vertical bar (|) is
used to separate the actual y-value from the previously
stored value. For n consecutive NULL values, the hash sign
(#) is used as a separator followed by n. The plus (+) and
minus (-) signs are used when the difference between the
y-value to be stored and the last stored y-value is shorter
(in the number of digits) than the actual y-value to be
stored. In such case, + or - are followed by the absolute
value of the difference (so that additional space can be
saved) and they indicate that the current y-value can be
obtained by adding or subtracting the current value from
the last recorded y-value. When decimal numbers are
used, they should be multiplied by 10p (where p is the
number of digits recorded after the decimal point) in
order to remove the decimal point and, more importantly,
the leading zeros, thus reducing the number of digits to be
stored. Additional space can be saved by recording the
numbers using a bigger base (e.g. 16 to record x- and y-val-
ues as hexadecimal numbers), since fewer characters (i.e.
bytes) are needed to represent individual numbers (the
programs for packing and unpacking the compact spec-
trum representation are available at the MeMo web site).

We use an example to illustrate the compact format. Given
a mass spectrum (see Figure 5), where m/z values are inte-
gers (which implies that the increment to be used is 1)
ranging from 30 to 600, the compact representation is as
follows:

#l|1020|2847#6+785 ... |1661-47|402#327|

A more compact representation is obtained using 36 as a
base:

#1|SC|273#6+LT ... |1A5-1B|B6#93|

The compact spectrum representation is stored as a text
field (peaks) in the spectrum table from which it is
retrieved in ≈30 ms as follows:

SELECT peaks

FROM spectrum

WHERE spectrum_ID = 'given spectrum';

We mentioned earlier that the same time is required to
retrieve a single peak from the peak table. However,
accessing a specific peak in the compact spectrum repre-
sentation requires additional time for the compact repre-
sentation to be parsed. We therefore see justification for
storing the spectra in both formats and using one or the
other depending on a specific application. For example, if
a spectrum needs to be presented graphically, then the
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compact representation is more suitable, since the peaks
are already ordered by the x-values and the spectrum
would be sequentially processed peak by peak so no ran-
dom access to peaks is actually required.

Let us contrast our compact spectrum representation with
the binary representation, which is similarly used to save
space when storing spectra. For example, the mzData [41]
format supports storing mass spectra in the binary format.
The x- and y-values are stored separately as byte arrays for
the recorded peaks. Depending on the precision (single or
double), 4 or 8 bytes are used for each x or y-value, which
is 8, 12 or 16 bytes per peak. In this format, the number
of bytes used per peak is constant, while in our format it
varies depending on the number of digits (each repre-
sented as an ASCII character) in the y-value of the peak.
Therefore, none of the formats generally outperforms the
other in terms of the space requirements. In general, it is
expected that the binary format will do better when the y-
values are represented as floating point numbers with
high precision. We compared the space requirements of
the two formats using the mass spectra from two studies

using GC-MS and DIMS, respectively. Mass spectra
obtained through GC-MS tend to be sparse as opposed to
mass spectra obtained through DIMS. For 223,601 mass
spectra (m/z ranging from 30 to 600) obtained through
GC-MS, the binary format and our compact representa-
tion required 743 and 450 bytes on average, which means
that our format saved 39% of the binary format. When 36
is used as a base for the compact representation, the aver-
age number of bytes used goes down to 362, which saves
51% of the binary format. For 762 mass spectra (m/z rang-
ing from 45 to 999) obtained using DIMS, the binary for-
mat and our compact representation required 7640 and
3154 bytes on average, which means that our format
saved 59% of the binary format. When 36 is used as a base
for the compact representation, the average number of
bytes used goes down to 2537, which saves 67% of the
binary format. Judging by these data, our format works
better for some types of the mass spectrometry data,
though this is not the case in general. Therefore, both for-
mats should be used sensibly, depending on the nature of
the data and specific applications.

Embedded XML format
As explained earlier, a spectrum is a series (usually several
hundreds) of data points ordered by the x-values, each
mapped to the y-value registered, for which a tabular
structure (e.g. a table with separate columns for x and y) is
a natural choice of format. The structure of this type of
data is thus fixed and can be hard-coded into the DB using
the tabular format. Further, in a data-mining scenario, the
peaks need to be accessed many times in order to make
not only comparisons within a single spectrum but also
across spectra acquired for different samples analysed.
RDBs excel at accessing well-defined tabular structures
containing multiple elements with identical features [5].
In the metabolomic studies, the spectral data are actively
queried rather than simply being browsed, and hence fast
access is not only desirable but is in fact necessary for real-
time applications. We conclude that the tabular format is
suitable for the spectral type of data.

We now consider the experimental protocols as a type of
data with a significantly different nature. First, there are
four types of experiments whose protocols are defined in
a different manner. For example, biological and chemical
sample preparation experiments typically consist of cer-
tain steps, each of which corresponds to some actions per-
formed on input material in order to produce an output
(Figure 6). On the other hand, experimental protocols for
analytical experiments refer to particular instrument set-
tings, which vary significantly across different analytical
techniques and instruments. Similarly, experimental pro-
tocols for data-mining experiments describe the parame-
ter settings for the particular data mining approach
applied.

Compact spectrum representationFigure 5
Compact spectrum representation. An example of 
compacting a mass spectrum.
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In the intended metabolomic studies, such types of data
would be used for documentation and teaching purposes
in order to allow the experiments to be reproduced and
their results compared. In such cases, the given data are
browsed as a single object rather than being queried
parameter by parameter [31]. It is possible to use a single
table (e.g. with two fields for each parameter referring to
its name and value) to encode such information. How-
ever, different parameters may have values of different
types. It is also difficult to restrict the values applicable to
specific parameters when a single field is used as a generic
holder for all parameters. Consequently, various types of
internal inconsistencies may arise, which otherwise could
be prevented by enforcing the data integrity automatically
through typing, referencing, normalisation, etc.

Further, some parameters may have specific attributes
(e.g. units) and an approach in which a separate column
is used for each of them, would lead to a high number of
NULL values. It is also difficult to maintain the groups of
related parameters in tabular representations: a separate
table for each group of highly variable data would lead to

an explosion of tables. For example, GC-MS parameters
can be divided into 5 groups (gas chromatograph, mass
spectrometer, autosampler, electronics operating, data
processing), each containing 12 parameters on average
[42], which can further be structured resulting in a hierar-
chy of 5 levels. A fully structured representation of the cur-
rent GC-MS instrument model would require around 25
tables. When this number is multiplied by the number of
different analytical techniques, it demonstrates how the
complexity of the DB can easily scale out of control by
adding new features, some of which cannot be predicted
during the DB design. This could obscure the focus of a
DB for metabolomics, making it unmanageable by both
the administrator and the user.

On the other hand, hierarchically organised data can be
stored naturally and conveniently in XML. Moreover, the
XML Schema language supports a referencing mechanism
[43] analogous to the foreign keys used in RDBs, which
can be used to support even more complex structures. Fur-
ther, XML Schema enables strong typing by supporting
not only the standard data types, but also sophisticated

An embedded XML documentFigure 6
An embedded XML document. Embedding an XML document representing an experimental protocol into the MeMo data-
base. The XMLSchema entity is not included in the model (Figures 1 and 2), because it is a part of the implementation. The 
given schema is depicted using XMLSpy 2005 http://www.xmlspy.com/.
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constraining mechanisms such as a range of values, enu-
meration, or even a regular expression describing the
allowable patterns.

Once defined, XML schemas can be used to validate the
content of the corresponding XML documents. This is a
huge advantage for storing some types of data as a single
structured entity as opposed to using a flat file. Other gen-
eral advantages of embedding XML documents to repre-
sent variably structured entities into the RDB include easy
manipulation (i.e. storing and retrieval) of such entities,
readability by both users and XML-aware computer appli-
cations, extensibility, etc. For example, in order to retrieve
the instrument settings used in a specific experimental
protocol, one would simply need to select the correspond-
ing field from the given table:

SELECT parameters

FROM ExperimentProtocol

WHERE ID = 'given protocol';

without the need to join multiple tables describing differ-
ent types of instrument settings, which would be cumber-
some if different tables were used for different types of
instruments (i.e. it would require the user to resort to the
DB documentation frequently). Further, the XML infor-
mation presented to the user is more readable than is a
long row of attribute-value combinations due to the self-
descriptive property of XML. For example, even a novice
user would be able to interpret the following XML content
intuitively:

<temperature unit="C">250</temperature>

as a temperature of 250°C. Moreover, the relation
between individual elements can be retained by observing
their nested organisation. Consider, for example, the XML
excerpt shown in Figure 6: step is part of a block, inputs
and actions are parts of a step, etc. Even the order among
the elements of the same type can be used to infer, for
instance, that the mixture of inputs should be first mixed
(with a vortex mixer) and then heated (to 30°C).
Although reasonably intelligible to humans, the given
information is still machine-readable. XML data can be
parsed, queried and processed by computer applications.
Therefore, metadata stored in the XML format can be
automatically processed (parameter by parameter) to
account for effects of methodological changes on the ana-
lytical data. Of course, the access to XML elements will
still be comparably slower than accessing specific fields in
a table of an RDB [44], but the metadata would need to be
accessed only once per large set of data proceeding from it

(e.g. one protocol used in a single study of thousands of
gene knockouts).

Further, in order to support an additional instrument
type, the corresponding XML schema can be defined inde-
pendently (thus not causing any rippling effects), stored
in the table of XML schemas, the parameters field re-used
to store specific instrument settings and linked to the
schema according to which the content of the parameters
field is structured (Figure 6). Note that the latter is not
important for the DB user, who can read the given XML
document without the schema. It is given in order to sig-
nal to computer applications how to parse the document.
Also note that these changes affect only the content of the
RDB and not its structure. Neither the user nor the admin-
istrator would be affected by these extensions to the DB
although its scope would definitely increase.

External references
Another important decision made during the implemen-
tation was not to store the raw data directly into the DB for
reasons similar to those used to suggest that images
should not be stored physically into a DB [39]. Although
storing the raw data into the DB would prevent their loss
during any file system reorganisation, it would signifi-
cantly increase the size of the DB. In that case, larger serv-
ers and a more powerful DB management system would
be required in order to handle the sheer amount of data.
A more practical solution is to store only a reference to the
raw data file, which itself should be stored externally.

Data integration and interoperability
The scope of any biological DB should be clearly defined
and aimed at providing the essential information for a
specific problem [5]. It does not mean that a single DB
would be sufficient to solve any problem at hand. For
example, the MeMo DB will be used to learn to classify
individual genes in S. cerevisiae based on the correspond-
ing metabolomic data and the associated metadata. The
metabolomic data (e.g. mass spectra) on their own do not
necessarily provide the information needed to learn the
gene functions. Supervised learning algorithms need an
annotated set of data together with some knowledge
about at least some of the genes and their functions [24].
In addition, knowledge about the metabolites identified
from the spectra should help the automatic reasoning
process. Obviously, the metabolomic data need to be inte-
grated with the background knowledge sources. Our
model includes a background knowledge module
intended to be used for this purpose and the DB currently
integrates data from several external sources (SGD [45],
CYGD [46], KEGG/LIGAND [47] and PubChem Sub-
stance [48]).
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While it is useful to integrate multiple DBs physically in
order to build a comprehensive subject-oriented DB, not
all relevant DBs can be integrated in this manner bearing
in mind their growing number and frequent changes to
their content [7]. Still, the inherently integrative nature of
biology [11] requires the content of apparently diverse
DBs to be correlated [39,49]. Therefore, various DBs need
to be semantically integrated in a more flexible frame-
work. The absolute minimum for practical DB integration
is maintaining the cross-reference information (e.g. SGD
identifiers, EC and CAS numbers are used for this purpose
in MeMo). By contrast, a more sophisticated semantic
integration is based on an ontological description of DBs
(including both their structure and the content) [50]. For
instance, SEMEDA [51] provides semantically integrated
access to DBs based on the ontologies and controlled
vocabularies, which can be collaboratively edited [35].
The basic principle used in SEMEDA consists of semantic
DB definitions, which map DB tables, attributes and
attribute values to the concepts in the ontology. These def-
initions are used to generate cross-references for all
attributes that share the same semantics and use the same
vocabulary. The generated cross-references can then be
used to link DBs automatically, which can be queried
through SEMEDA without requiring knowledge of the
structure or any technical details about the underlying
DBs.

We have used SEMEDA's own custom ontology to anno-
tate the MeMo DB semantically. The actual integration of
MeMo into SEMEDA only requires JDBC (a Java applica-
tion programming interface that provides connectivity to
a wide range of SQL DBs [52]) access to be granted to our
DB. Meanwhile, a detailed metabolomics ontology is
needed to provide formal semantic support for experi-
mental metadata aspects. The MSI-Ontology Working
Group [53] has been appointed by the Metabolomics
Society [21] in order to facilitate consistent semantic
annotation of metabolomics experiments, which will con-
sequently provide a basis for the integration of data across
disparate metabolomics databases.

Apart from integrating the MeMo DB with other relevant
data resources, there is a need to make it compatible with
relevant data formats so that the data can be exported
from the DB and shared in fairly standardised formats,
which can be interpreted not only by human users but,
more importantly, the software tools that support such
formats. We currently support an export option to the
mzData format [41] (the source code is available at the
MeMo web site). This format focuses on the data exchange
issues in the field of mass spectrometry, a technique
directly related to metabolomics. We plan to support
other emerging standards related to metabolomics, either
partially (i.e. covering certain aspects of metabolomics,

e.g. mzXML [54], which also relates to mass spectrometry
or CCPN for NMR [55]) or fully (e.g. any format emerging
from the SMRS group [20] and the Metabolomics Society
[21]).

Discussion
We have described MeMo, a metabolomics model and
data format for yeast, which is MIAMET-compliant [19],
i.e. supports the description of the minimum information
that should be reported about metabolomic experiments
including biological and experimental metadata, a variety
of analytical techniques and metabolite specifications. An
effort will be made to make MeMo compliant with the
emerging standards [20,21]. As a model, it is closest to
ArMet [22], which offers an analogous model for plants.
The two models have been developed in parallel with
occasional collaboration. Thus, MeMo conforms to the
standard proposed in ArMet, which is seen as a formal
means of metabolomic experiment tracking and manage-
ment. Although ArMet is currently being used as one of a
number of inputs to the MSI, its utility has originally only
been demonstrated for plant-based experiments. MeMo
shows how a new organism can be incorporated into
ArMet's basic framework. In addition, ArMet puts no
emphasis on any specific implementation. On the other
hand, strong emphasis is given to the actual implementa-
tion of MeMo (using SQL and XML) with a specific goal of
associating metabolomic data with S. cerevisiae genes in
order to provide insight into their functions through com-
putational analysis. While data modelling represents the-
oretical research, an implementation of a data model puts
a specific model into practice.

During the development of the MeMo DB, we followed
the best practices recommended for the design of biologi-
cal DBs [39]. A distinct characteristic of the MeMo DB is
the way in which the problem of scope creep is tackled:
structurally complex and variable entities (e.g. experimen-
tal protocols) are soft-coded into the DB through the use
of XML in order to represent them as a single DB object
(table column) whose structure can be formally inter-
preted via an extensible set of XML schemas. This
approach both greatly reduces the complexity of the RDB
and facilitates its scalability.

Semantic annotation of the MeMo DB facilitates its inte-
gration with other related biological DBs as the first step
towards realizing the goals of SB. The next issue would be
to support the integration at the model level as well. In
general, the existing omics models (e.g. [15,18,44] as well
as MeMo) share a crude structure that enables the storage
of both experimental data and associated metadata. There
is thus room for standardising common parts across dif-
ferent omics models and re-using them in a single omics
model (e.g. SysBio-OM [56]). FuGE-OM [57] is under
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construction to enable common data standards for all lev-
els of functional genomics to be developed [28].

Conclusion
The MeMo schema is fully operational and has been in
use to support the pressing need to store, manage and dis-
seminate large amounts of curated metabolomic data effi-
ciently. However, it needs to support the ongoing
standardisation efforts as well as to make room for the
incoming methods, instruments and data resources.
Therefore, it is not only desirable, but absolutely necessary
for MeMo to evolve together with the domain it describes.
The key traits of MeMo, its modularity and extensibility,
make it highly adaptable to the inherent fluidity of metab-
olomics and related omics domains.
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