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Abstract
Background: Analysis of genomes evolving via block-interchange events leads to a combinatorial
problem of sorting by block-interchanges, which has been studied recently to evaluate the
evolutionary relationship in distance between two biological species since block-interchange can be
considered as a generalization of transposition. However, for genomes consisting of multiple
chromosomes, their evolutionary history should also include events of chromosome fusions and
fissions, where fusion merges two chromosomes into one and fission splits a chromosome into
two.

Results: In this paper, we study the problem of genome rearrangement between two genomes of
circular and multiple chromosomes by considering fusion, fission and block-interchange events

altogether. By use of permutation groups in algebra, we propose an (n2) time algorithm to
efficiently compute and obtain a minimum series of fusions, fissions and block-interchanges
required to transform one circular multi-chromosomal genome into another, where n is the
number of genes shared by the two studied genomes. In addition, we have implemented this
algorithm as a web server, called FFBI, and have also applied it to analyzing by gene orders the
whole genomes of three human Vibrio pathogens, each with multiple and circular chromosomes, to
infer their evolutionary relationships. Consequently, our experimental results coincide well with
our previous results obtained using the chromosome-by-chromosome comparisons by landmark
orders between any two Vibrio chromosomal sequences as well as using the traditional comparative
analysis of 16S rRNA sequences.

Conclusion: FFBI is a useful tool for the bioinformatics analysis of circular and multiple genome
rearrangement by fusions, fissions and block-interchanges.

Background
For the past two decades, genome rearrangements have
been studied and can be modelled to learn more about

the evolution of mitochondrial, chloroplast, viral, bacte-
rial and mammalian genomes [1]. To evaluate the evolu-
tionary distance between two related genomes in gene
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order, various rearrangement events acting on genes
within or among chromosomes have been proposed, such
as reversals (also known as inversions) [1-10], transposi-
tions [11,12], block-interchanges [13-15], translocations
[16,17], and fusions and fissions [18,19]. Most genome
rearrangement studies in computation involve the issue of
solving the combinatorial problem to find an optimal
series of rearrangements required to transform one
genome into another.

Recently, the study on the genome rearrangement by
block-interchanges has increasingly drawn great atten-
tion, since the block-interchange event is a generalization
of transposition and, currently, its computational models
measuring the genetic distance are more tractable than
those modeled by transposition. Christie [13] first intro-
duced the concept of block-interchange, affecting a chro-
mosome by swapping two non-intersecting blocks
containing any number of consecutive genes. Block-inter-
change can be considered as a generalization of transposi-
tion, since any exchanged blocks via transposition must
be contiguous in a chromosome, whereas those via block-
interchange need not be. As a matter of fact, the occur-
rence of an exchange of two non-contiguous blocks has
been suggested in the previous studies related to the bio-
logical processes of bacterial replication [[20], and refer-

ences therein]. Christie also proposed an (n2) time
algorithm, where n is the number of genes, to solve the so-
called block-interchange distance problem that is to find a
minimum series of block-interchanges for transforming
one linear chromosome into another. Later, we [14]
designed a simpler algorithm for solving the block-inter-
change problem on linear or circular chromosomes with

time-complexity of (δn), where δ is the the minimum
number of block-interchanges required for the transfor-

mation and can be calculated in (n) time in advance.
We also demonstrated that block-interchange events play
a significant role in the genetic evolution of bacterial
(Vibrio) species. Very recently, based on this algorithm, we
have further implemented a tool, called ROBIN, for ana-
lyzing the rearrangements of gene orders via block-inter-
changes between two linear/circular chromosomal
genomes [15]. Not only gene-order data but also sequence
data are allowed to be input into the ROBIN system. If the
input is the sequence data, ROBIN can automatically
search for the common homologous/conserved regions
shared by all input sequences.

It should be noted that the above block-interchange stud-
ies were dedicated to genomes containing only one chro-

mosome (i.e., uni-chromosomal genomes) for evaluating
their evolutionary relationships. However, for biological
species with different numbers of chromosomes, the evo-
lutionary history must also consider events of chromo-
somal fusions and fissions. A fusion occurs when two
chromosomes merge into one and a fission takes place
when a chromosome splits into two. The reason is that
different chromosomes may as well exchange their genetic
material with each other and, moreover, this exchange can
only be achieved via inter-chromosomal operations such
as fusions and fissions, instead of intra-chromosomal
operations like block-interchanges. Hence, it is worth-
while to study genome rearrangements considering
fusions, fissions and block-interchanges altogether. In this
paper, we solve such a genome rearrangement problem by
designing an efficient algorithm to compute and obtain a
minimum series of all the events involving fusions, fis-
sions and block-interchanges that are required to trans-
form one circular multi-chromosomal genome into
another, when both have the same set of genes without
repeats. Although most eukaryotic genomes are linear,
most prokaryotic (e.g., bacterial) genomes are circular and
some of them consist of multiple circular chromosomes
and large plasmids1. For example, some important bacte-
rial pathogens like Brucella, Burkholderia, Leptospira and
Vibrio species fall into this category. Notably, our
approach is based on permutation group in algebra,
instead of breakpoint graph, a commonly used approach
in the study of genome rearrangement.

Recently, Yancopoulos et al. [21] used breakpoint graph to
design an algorithm to solve a genome rearrangement
problem in which the considered reversals, translocations
(including fusions and fissions) and block-interchanges
were given different weights. Unfortunately, their algo-
rithm cannot be applied to solving our problem in which
the events we considered are unweighted, because a series
of weighted events with minimum weights in total may
not be a minimum series of unweighted events, provided
the events are given different weights.

Results and discussion
Based on Algorithm Sorting-by-ffbi developed in this
study, we have implemented a web server, called FFBI
[22], in which biologists or scientists in genomics can
conduct comprehensive analyses of circular genome rear-
rangements by fusions, fissions and block-interchanges
for their scientific interests and needs. Furthermore, we
used this web server to conduct the rearrangement analy-
ses on the whole genomes of three pathogenic Vibrio spe-
cies, including V. vulnificus, V. parahaemolyticus and V.
cholerae, to infer their evolutionary relationships.

Each of these three Vibrio pathogens consists of two circu-
lar chromosomes, and all their genomic sequences have
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recently been reported in GenBank with protein-coding
genes annotated (see Table 1 for their sequence informa-
tion). As annotated in GenBank (as of April 2006), the
genomes of V. vulnificus, V. parahaemolyticus and V. chol-
erae contain 5098, 4992 and 4008 genes, respectively.
From these protein-coding genes, we identified a total of
2393 (one-to-one) orthologous genes that are physically
located in different positions on the chromosomes (see
the Method section for construction of orthologous
genes). Inevitably, there can be a high possibility that
some genes with mis-annotated or uncertain protein func-
tions are included in the genome annotation data. We
therefore used only those authentic genes whose protein
functions are not annotated as hypothetical or putative
proteins, or are conserved and not poorly characterized
(e.g., not those genes with only general function predic-
tion or unknown function) in the NCBI COGs [23] data-
base of orthologous genes. As a result, there are 1274
authentic orthologous genes in total remained for the fur-
ther study of genome rearrangement. The relative orders
of these orthologous genes along chromosomes, as well as
the annotated COGs of their coding proteins, are detailed
in the web site of our server.

For each pair of these pathogenic Vibrio species, the varia-
tion in their gene orders has suggested that the genome
rearrangement events have occurred and their genomes
are closely related in evolution. To evaluate the contribu-
tion of fusions, fissions and block-interchanges to these
observed rearrangements, we used the server developed in
this study to compute the rearrangement distance
between the gene orders of any two Vibrio genomes. Con-
sequently, as shown in Table 2, the calculated rearrange-
ment distance between V. vulnificus and V.
parahaemolyticus is smaller than that between V. vulnificus

and V. cholerae and that between V. parahaemolyticus and
V. cholerae, suggesting that V. vulnificus is closer to V. para-
haemolyticus than to V. cholerae in evolutionary relation-
ship. Intriguingly, this result of genome-wide experiment
well coincides with those we obtained in the previous
chromosome-wide experiments [14,15]. Recall that our
previous experiments were conducted in a chromosome-
by-chromosome style of computing the block-inter-
change distance between the landmark orders of any two
large/small Vibrio chromosomes, where the used land-
marks are the maximal unique matches (MUMs) or the
locally collinear blocks (LCBs) that are commonly shared
by three large/small Vibrio chromosomes.

In fact, the evolutionary relationships of the three patho-
genic Vibrio species revealed in our experiment of analyz-
ing their genome rearrangements also confirms that
obtained by the biological community on the basis of the
traditional comparative analysis of 16S rRNA gene
sequences [24-26]. For confirmation, we here repeated
this comparative analysis as follows. The 16S rRNA gene
sequences of three Vibrios were first aligned using the
Clustal W program [27], from which the distance matrix
(as shown in Table 3) was then estimated by the algo-
rithm of Kimura's two-parameter model in PHYLIP pack-
age [28].

Conclusion
In this paper, we studied the genome rearrangement prob-
lem between circular genomes with multiple chromo-
somes by simultaneously considering fusion, fission and
block-interchange events. We have shown in the Method
section that an optimal series of events required to trans-
form one genome into another can be obtained in a
canonical order such that all fusions come before all

Table 1: The sequence information of three pathogenic Vibrio species, each with two circular chromosomes.

Accession NO. Species Chromosome Size (Mbps)

[GenBank:NC_005139] V. vulnificus YJ016 1 3.4
[GenBank:NC_005140] V. vulnificus YJ016 2 1.9
[GenBank:NC_004603] V. parahaemolyticus RIMD 2210633 1 3.3
[GenBank:NC_004605] V. parahaemolyticus RIMD 2210633 2 1.9
[GenBank:NC_002505] V. cholerae El Tor N16961 1 3.0
[GenBank:NC_002506] V. cholerae El Tor N16961 2 1.0

Table 2: The calculated rearrangement distances among V. vulnificus, V. parahaemolyticus and V. cholerae by fusions, fissions and block-
interchanges.

Species Compared V. vulnificus V. parahaemolyticus V. cholerae

V. vulnificus 0 174 364
V. parahaemolyticus 174 0 391
V. cholerae 364 391 0
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block-interchanges, which come before all fissions. Based
on this property as well as the concept of permutation
groups in algebra, we have successfully designed an

(n2) time algorithm to obtain the minimum number of
fusion, fission and block-interchange events for the trans-
formation and also to generate an optimal scenario of the
required rearrangement events. In addition, we have prac-
tically implemented this algorithm as a web server and
applied it to analyzing by gene orders the whole genomes
of three human Vibrio pathogens to infer their evolution-
ary relationships. As a consequence, our experimental
results well coincide with the previous results obtained
using the chromosome-by-chromosome comparisons by
landmark orders between any two Vibrio chromosomal
sequences as well as using the traditional comparative
analysis of 16S rRNA sequences. The algorithm, however,
should not be applied on linear multi-chromosomal
genomes, because as mentioned in the Method section, it
is not always possible to have an optimal scenario in a
canonical order for linear genomes. Further studies in
genome rearrangement can still be pursued to solve the
problem for linear multi-chromosomal genomes.

Methods
Permutations versus genome rearrangements
In group theory, a permutation is defined to be a one-to-
one mapping from a set E = {1, 2, ..., n} into itself, where
n is some positive integer. For example, we may define a
permutation α of the set {1, 2, 3, 4, 5, 6, 7} by specifying
α(1) = 4, α(2) = 3, α(3) = 1, α(4) = 2, α(5) = 7, α(7) = 6
and α(6) = 5. The above mapping can be expressed using
a cycle notation as illustrated in Figure 1 and simply
denoted by α = (1, 4, 2, 3) (5, 7, 6). A cycle of length k, say
(a1, a2, ..., ak), is simply called k-cycle and can be rewritten
as (ai, ai+1, ..., ak, a1, ..., ai-1), where 2 ≤ i <k, or (ak, a1, a2,
..., ak-1). Any two cycles are said to be disjoint if they have
no element in common. In fact, any permutation, say α,
can be written in a unique way as the product of disjoint
cycles, which is called the cycle decomposition of α, if we
ignore the order of the cycles in the product [29]. Usually,
a cycle of length one in α is not explicitly written and its
element, say x, is said to be fixed by α since α(x) = x. Espe-
cially, the permutation whose elements are all fixed is

called an identity permutation and is denoted by 1 (i.e.,
1 = (1) (2) ... (n)).

Given two permutations α and β of E, the composition (or
product) of α and β, denoted by αβ, is defined to be a per-
mutation of E with αβ(x) = α(β(x)) for all x ∈ E. For
instance, if we let E = {1, 2, 3, 4, 5, 6}, α = (2, 3) and
β = (2, 1, 5, 3, 6, 4), then αβ = (2, 1, 5) (3, 6, 4). If α and
β are disjoint cycles, then αβ = βα. The inverse of α is
defined to be a permutation, denoted by α-1, such that αα-

1 = α-1α = 1. If a permutation is expressed by the product
of disjoint cycles, then its inverse can be obtained by just
reversing the order of the elements in each cycle. For
example, if α = (2, 1, 5) (3, 6, 4), then α-1 = (5, 1, 2) (4, 6,
3). Clearly, α-1 = α if α is a 2-cycle.

Meidanis and Dias [19,30] first noted that each cycle of a
permutation may represent a circular chromosome of a
genome with each element of the cycle corresponding to
a gene, and the order of the cycle corresponding to the
gene order of the chromosome. Figure 1, for example,
shows a genome with two circular chromosomes, one rep-
resented by (1, 4, 2, 3) and the other by (5, 7, 6). Moreo-
ver, they observed that global evolutionary events, such as
fusions and fissions (respectively, transpositions), corre-
spond to the composition of a 2-cycle (respectively, 3-
cycles) and the permutation representing a genome. For
instance, let α be any permutation whose cycle decompo-
sition is α1α2 ... αr. If ρ = (x, y) is a 2-cycle and x and y are
in the different cycles of α, say αp = (a1 ≡ x, a2, ..., ai) and



The illustration of a permutation α = (1, 4, 2, 3) (5, 7, 6) meaning that α(1) = 4, α(2) = 3, α(3) = 1, α(4) = 2, α(5) = 7, α(7) = 6 and α(6) = 5Figure 1
The illustration of a permutation α = (1, 4, 2, 3) (5, 7, 6) 
meaning that α(1) = 4, α(2) = 3, α(3) = 1, α(4) = 2, α(5) = 7, 
α(7) = 6 and α(6) = 5.
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Table 3: The calculated distances among V. vulnificus [GenBank:X76333], V. parahaemolyticus [GenBank:X56580] and V. cholerae 
[GenBank:X76337] by the traditional comparative analysis of their 16S rRNA gene sequences (accession numbers of 16S rRNAs are 
given in square brackets).

Species Compared V. vulnificus V. parahaemolyticus V. cholerae

V. vulnificus 0.000000 0.034524 0.050261
V. parahaemolyticus 0.034524 0.000000 0.076739
V. cholerae 0.050261 0.076739 0.000000
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αq = (b1 ≡ y, b2, ..., bj) where 1 ≤ p, q ≤ r, then in the com-
position ρα, αp and αq are joined into a cycle (a1, a2, ..., ai,
b1, b2, ..., bj), i.e., ρ is a fusion event affecting on α (and
also called a join operation of α here). If ρ = (x, y) is a 2-
cycle and x and y are in the same cycle of α, say αp = (a1 ≡ x,
a2, ..., ai ≡ y, ai+1, ..., aj) where 1 ≤ p ≤ r, then in the compo-
sition ρα, this cycle αp is broken into two disjoint cycles
(a1, a2, ..., ai-1) and (ai, ai+1, ..., aj), i.e., ρ is a fission event
affecting on α (and also called a split operation of α here).
If ρ = (x, y, z) is a 3-cycle and x, y and z are in the same cycle
of α, say αp = (a1 ≡ x, a2, ..., ai, b1 ≡ y, b2, ..., bj, c1 ≡ z, c2, ...,
ck) where 1 ≤ p ≤ r, then in the composition ρα, the cycle
αp becomes (a1, a2, ..., ai, c1, c2, ..., ck, b1, b2, ..., bj), i.e., ρ is
a transposition event affecting on α.

Recently, Lin et al. [14] further observed that a block-inter-
change event affecting on α corresponds to the composi-
tion of two 2-cycles, say ρ1 and ρ2, and α under the
condition that ρ1 is a split operation of α and ρ2 is a join
operation of ρ1α. More clearly, let αp = (a1, a2,..., ak) be a
cycle of α, ρ1 = (a1, ai) and ρ2 = (ah, aj), where 1 <i ≤ k,1 ≤ h
≤ i - 1 and i ≤ j ≤ k. Then ρ2ρ1α is the resulting permutation
by exchanging the blocks [ah, ai-1] and [aj, ak] of αp. That is,
ρ2ρ1 is a block-interchange event affecting on α by swap-
ping [ah, ai-1] and [aj, ak], two non-intersecting blocks in α.

As discussed above, any series of fusions, fissions and
block-interchanges required to transform one circular
multi-chromosomal genome α into another I can be
expressed by a product of 2-cycles, say ρkρk-1...ρ1, such that
ρkρk-1...ρ1α = I (hence, ρkρk-1...ρ1 = Iα-1). This property
implies that Iα-1 contains all information that can be uti-
lized to derive ρ1, ρ2,...,ρkfor transforming α into I.

It is well known that every permutation can be written as
a product of 2-cycles. For example, (1, 2, 3, 4) = (1, 4) (1,
3) (1, 2). However, there are many ways of expressing a
permutation α as a product of 2-cycles [29]. Given a per-
mutation α, let f(α) denote the number of the disjoint
cycles in the cycle decomposition of α. Notice that f(α)
counts also the non-expressed cycles of length one. For
example, if α = (1, 5) (2, 4) is a permutation of E = {1,
2,..., 5}, then f(α) = 3, instead of f(α) = 2, since α = (1, 5)
(2, 4) (3). Then the following lemma shows the lower
bound of the number of 2-cycles in any product of
2-cycles of a permutation.

Lemma 1 Let α be an arbitrary permutation of E = {1, 2,...,
n}. If α can be expressed as a product of m 2-cycles, say
α = α1α2...αm with each αi being 2-cycle, then m ≥ n - f(α).

Proof. We prove this lemma by induction on m. The
lemma is true if m = 0, since α = 1 then, meaning that f(α)
= n, and hence m = n - f(α) = 0. Suppose now that the
lemma holds for any permutation that can expressed as a

product of less than m 2-cycles, where m > 0. Let α' = α2α3,
...,αm. Then by the induction hypothesis, we have m - 1 ≥ n
- f(α'). Since α = α1α' and α1 is a 2-cycle, α1 operates on α'
either as a fusion by joining two cycles of α' into one cycle
(i.e., f(α) = f(α') - 1) or as a fission by splitting one cycle
of α' into two cycles (i.e., f(α) = f(α') + 1). Whichever α1
operates on α', we have f(α) ≥ f(α') - 1. As a result, m = (m
- 1) + 1 ≥ n - f(α') + 1 = n - (f(α') - 1) ≥ n - f(α).  

Optimal scenario in canonical order
As mentioned previously, each circular multi-chromo-
somal genome with n genes can be expressed by a permu-
tation of E = {1, 2,..., n}. Given two such genomes G1 and
G2 over the same gene set E, the genome rearrangement dis-
tance between G1 and G2, denoted by d(G1,G2), is defined
to be the minimum number of events needed to trans-
form G1 into G2, where the events allowed to take place are
fusions, fissions and block-interchanges. In this section,
we shall show that there is an optimal series of events
required to transform G1 into G2 such that all fusions
come prior to all block-interchanges, which come before
all fissions. Here, such an optimal scenario of genome
rearrangements is referred as in canonical order.

Lemma 2 d(G1, G2) = d(G2, G1).

Proof. Let Φ = <σ1, σ2,...,σδ> be an optimal series of events
required to transform G1 into G2. Clearly, Φ' = <σδ, σδ-

1,...,σ1> is an optimal series of events for transforming G2
into G1 by reversing the role of every event σi, where 1 ≤ i
≤ δ, such that σi is a fission (respectively, fusion) in Φ' if σi
is a fusion (respectively, fission) in Φ.

Lemma 3 There is an optimal series of events required to trans-
form G1 into G2 such that every fission occurs after every fusion
and block-interchange.

Proof. Let Φ = <σ1, σ2,...,σδ> be an optimal series of events

needed to transform G1 into G2. Of course, if every fission

occurs after every fusion and block-interchange in Φ, then
the proof is done. Now, suppose that not every fission

occurs after every fusion or block-interchange in Φ. Then

let i be the largest index in Φ such that σi is a fission pre-

ceding σi+1 that is either a fusion or a block-interchange.

We can then obtain a new optimal series Φ' = <σ1,...,σi-1,

, , σi+2,...,σδ> to transform G1 into G2 such that 

is a fusion or a block-interchange and  is a fission, as

discussed below. Suppose that σi splits a chromosome α

into α1 and α2. If σi+1 is a fusion, then we assume that it

joins two chromosomes β1 and β2into β; otherwise, if σi+1

′σ i ′σ i+1 ′σ i

′σ i+1
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is a block-interchange, then assume that it affects β1 such

that β1 becomes β through a block-interchange. Clearly, if

neither β1 nor β2 is created by σi, then the desired series Φ'

is obtained by swapping σi and σi+1 in Φ (i.e.,  = σi+1

and  = σi). If both β1 and β2 are created by σi, then

the net rearrangement of σi (a split operation) followed by

σi+1 (a joint operation) either has no effect on α or

becomes a block-interchange affecting α. By removing σi

and σi+1 from Φ or replacing them with an extra block-

interchange, we thus obtain a new optimal series of the

events transforming G1 into G2 with strictly less than δ
events, a contradiction. Hence, we assume that only one

of β1 and β2 is created by σi and without loss of generality,

let β1 = α1. Now, we consider the following two cases.

Case 1: σi+1 is a fusion. For simplicity of discussion, we let

α = (1, 2,..., x - 1, x,..., y - 1), β2 = (y, y + 1,..., z), σi = (1, x)

and σi+1 = (1, y), where 1 <x <y - 1 and y <z. Then the net

rearrangement caused by σi and σi+1 is to transform α and

β into α2 = (x,x+1,...,y - 1) and β = (1, 2,..., x - 1, y, y + 1,...,

z). In fact, this rearrangement can also be done by first

joining α and β2 into (1, 2,..., z) via σi+1 and then splitting

(1, 2,..., z) into α2 and β via (x, y). In other words, we can

obtain Φ' by letting  = σi+1 and  = (x, y).

Case 2: σi+1 is a block-interchange. Clearly, the net rear-
rangement caused by σi and σi+1 is to transform α into β
and α2, which is equivalent to the rearrangement by first
applying σi+1to α and then further splitting it into β and
α2 via σi. Then Φ' is obtained by swapping σi and σi+1 in Φ.

In other words, we can always obtain Φ' from Φ according
to the method described above. Repeating this process on
the resulting Φ', we can finally obtain an optimal series of
events that are required to transform G1 into G2 such that
all fissions come after all fusions and block-interchanges.

Lemma 4 There is an optimal series of events required to trans-
form G1 into G2 in a canonical order such that all fusions come
before all block-interchanges, which come before all fissions.

Proof. Let Φ = <σ1, σ2,..., σδ> be an optimal series of events

required to transform G1 into G2. If there are no fusions or

block-interchanges, then the proof is completed. If not,
according to Lemma 3, we may assume that all fusions
and block-interchanges occur earlier than all fissions. Let

i be the index of the last non-fission in Φ and also let G'

be the resulting genome after all σ1, σ2,...σi have affected

G1. Since Φ is optimal, it is straightforward to see that Φi

= <σ1, σ2,...,σi> is an optimal series of fusions and block-

interchanges needed to transform G1 into G'. As discussed

in the proof of Lemma 2,  = <σi, σi-1,...,σ1> is an opti-

mal series of fissions and block-interchanges for trans-
forming G' into G1. Moreover, by Lemma 3, we can obtain

 = < , ,..., > from  for transforming G' into

G1 such that all block- interchanges in  occur prior to

all fissions. Consequently, < , ,..., > is an optimal

series of fusions and block-interchanges needed to trans-
form G1 into G', and all its fusions occur before all its

block-interchanges. Therefore, there is an optimal series of
events needed to transform G1 into G2 such that all fusions

come earlier than all block-interchanges, which come
before all fissions.  

It is worth mentioning that an optimal scenario in a
canonical order does not necessarily exist for linear multi-
chromosomal genomes. For example, suppose that G1 and
G2 are two given linear multi-chromosomal genomes,
where G1 = (1, 4, 5) (2, 3) and G2 = (1, 2, 3) (4, 5). Then
the optimal scenario between them is a fission, splitting
(1, 4, 5) into (1) (4, 5), followed by a fusion, joining (1)
and (2, 3) to (1, 2, 3). However, this optimal scenario can
not be transformed into another in the canonical order
according to the steps as described in Lemmas 3 and 4.
Actually, there is no an optimal scenario between such
two linear genomes using any two rearrangement events
that begin with a fusion.

Algorithm
Let α and I be two given circular multi-chromosomal
genomes over the same gene set E = {1, 2,...,n}. Here, we
assume that the genes in I are sorted in the order of
increasing and consecutive numbers, and that gene i + 1 is
on the right side of gene i within the same chromosome,
where 1 ≤ i ≤ n - 1. For example, I = (1, 2) (3, 4, 5) (6, 7,
8, 9) if I has three circular chromosomes with two, three
and four genes, respectively. In this case, the computation
of d(α,I) and its corresponding optimal scenario can be
considered as a problem of sorting α using the minimum
set of operations, including fusions, fissions and block-
interchanges.

Suppose that ρλρλ - 1 ... ρ1 is a product of 2-cycles that cor-

responds to an optimal series Φ of fusions, fissions and

block-interchanges for transforming α into I. Then

′σ i

′σ i+1

′σ i ′σ i+1

′Φi

′′Φi ′σ i ′−σ i 1 ′σ1 ′Φi

′′Φi

′σ1 ′σ2 ′σ i
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Φ = ρλρλ - 1...ρ1 = Iα-1 and by Lemma 1, λ ≥ n - f(Iα-1). If

Φ' =  is another product of λ 2-cycles with

Φ' = Iα-1, then the number of 2-cycles in Φ' that function
as fusions or fissions must be greater than or equal to that

in Φ; otherwise, the total number of fusions, fissions and

block-interchanges in Φ' for transforming α into I must be

less than that in Φ, a contradiction. The reason is that a
fusion or fission requires only one 2-cycle for rearrange-
ment, whereas a block-interchange requires two 2-cycles.
In other words, the number of 2-cycles serving as the
fusions and fissions is minimum in any optimal series of
events.

Based on the above observation as well as Lemma 4,
below we design an efficient algorithm for computing

d(α,I) and its optimal scenario of rearrangement events in

a canonical order. Let χ(α) and χ(I) denote the numbers

of chromosomes in α and I, respectively, and let

α = α1α2...αχ(α) and I = I1I2...Iχ(I). Then, an undirected

graph (α,I) = ( α, I, ) is constructed from α and

I as follows.

• α = {α1, α2,...,αχ(α)}.

• I = {I1, I2,...,Iχ(I)}.

•  = {(αi, Ij) | 1 ≤ i ≤ χ (α), 1 ≤ j ≤ χ (I), and αi and Ij have

at least a common gene}.

For instance, suppose that α = α1α2...α5 = (1, 2, 10) (11, 8,

9, 3, 6) (7, 4, 5,12) (13, 15) (14, 16) and I = I1I2 ... I6 = (1,

2, 3) (4, 5) (6, 7, 8) (9, 10, 11, 12) (13, 14) (15, 16). Then

the induced graph (α,I) is shown in Figure 2, which is

a bipartite graph since α and I are independent sets

in (α, I) (i.e., no edge between any two vertices in α

or I). A connected component of (α,I) is defined to be

a maximal subgraph of (α,I) such that there exists a

path between any pair of vertices in this subgraph. For

example, the induced (α,I) as shown in Figure 2 has

two connected components. Notice that if in a chromo-
some Ik of I there are two genes that appear in two differ-

ent chromosomes αi and αj of α, then (αi, Ik) ∈  and (αj,

Ik) ∈ , and hence both αi and αj belong to the same con-

nected component in (α,I).

Let { 1, 2,..., ω} denote the collection of all con-

nected components in (α,I). For each 1 ≤ i ≤ ω, let βi

and Ji denote the chromosomes in α and I, respectively,

whose corresponding vertices belong to i in (α,I). Let

gene(βi) and gene(Ji) be the collections of the genes in all

chromosomes of βi and Ji, respectively. Then

gene(βi) = gene(Ji) and gene(βi) ∩ gene(βj) = ∅ for any 1

≤ j ≠ i ≤ ω. Let ni be the number of genes in gene(βi).

Clearly, n = n1 + n2 + ... + nω. In addition, it can be verified

that Iα-1 = (J1 ) (J2 ) ... (Jω ) and

f(Iα 1) = f(J1 ) + f(J2 ) + ... + f(Jω ).

According to the properties above, we then find a product

Φ of 2-cycles so that Φα = I as follows. We first find a prod-

uct Φi of 2-cycles that corresponds to an optimal series of

the rearrangement events required to transform βi into Ji

(i.e., Φiβi = Ji and hence Φi = Ji ) and then let

Φ = ΦωΦω-1 ... Φ1. Clearly, Φ = Iα-1 and hence Φ corre-

sponds to a feasible series of events for transforming α
into I. Actually, we shall show later that the number of 2-

cycles in each Φi is ni - f(Ji ), and in Φi the number of

2-cycles functioning as the fusions and fissions is mini-

mum. This causes that the number of 2-cycles in Φ equals

to , in which the

number of 2-cycles serving as the fusions and fissions is

minimum. As a result, Φ is an optimal series of events for

transforming α into I. The above description indicates
that the original problem can be conquered by independ-
ently solving the same problem on the smaller instance
whose induced bipartite graph is a connected component

of (α, I).

′ ′ ′−ρ ρ ρλ λ 1 1…

   








 

 
 










  


 

β1
1− β2

1− βω
−1

β1
1− β2

1− βω
−1

β j
−1

βi
−1

n f J n f Iii i i=
− −∑ − = −

1
1 1ω β α( ) ( )



The induced bipartite graph (α, I) with two connected com-ponentsFigure 2
The induced bipartite graph (α, I) with two connected 
components.

α1 α2 α3 α4 α5

I1 I2 I3 I4 I5 I6


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To simplify our discussion, throughout the rest of this sec-

tion we assume that the induced (α, I) of a given

instance α and I has exactly one connected component.

Let Φ = <σ1, σ2, ...., σδ> be an optimal series of events for

transforming α into I in which all fusions precede all
block-interchanges that further precede all fissions. Let nfu,

nbi and nfi denote the numbers of fusions, block-inter-

changes and fissions, respectively, in Φ. Then δ = nfu + nbi

+ nfi. In the following, we shall show that Φ can be

expressed by a product of n - f(Iα-1) 2-cycles in which the
number of 2-cycles functioning as the fusions and fissions
is minimum.

It should be noticed that the chromosomes considered
here are disjoint (i.e., without gene duplication). Hence,

for any two chromosomes αi and αj in α with (αiIk) ∈ 

and (αj, Ik) ∈ , there must exist a fusion in Φ that joins

αi and αj to one chromosome; otherwise, Ik can not be

formed from α by a fission later. Since all needed fusions

come together in the beginning of Φ, nfu = χ(α) - 1, which

is the lower bound of the number of fusions required in

any optimal series of events for transforming α into I.

After these nfu fusions, the resulting α becomes only one

chromosome. Since the next nbi block-interchanges are

intra-chromosomal mutations, we have nfi = χ(I) - 1. Actu-

ally, χ(I) - 1 is the minimum number of the required fis-

sions in any optimal series of events for transforming α
into I, since it is the minimum number of the fusions used
in the corresponding optimal series of events to transform

I into α.

Given any cycle ρ, we use x ∈ ρ to denote that x is a
number in ρ. For any two x ∈ ρ and y ∈ ρ, they are said to
be adjacent in ρ if ρ(x) = y or ρ(y) = x. Next, we show a way
to derive nfu 2-cycles from Iα-1 such that these 2-cycles
function as the fusions that join all chromosomes of α to
a single one, if α has multiple chromosomes, where
nfu = χ(α) - 1. For simplicity, later in the text we use "cycle
in Iα-1" to represent " cycle in the cycle decomposition of
Iα-1" in meaning, unless a possible confusion may arise.

Lemma 5 Let αi and αj be any two disjoint cycles in α. Then
there must exist a cycle in Iα-1 that contains two numbers x and
y such that x ∈ αi and y ∈ αj.

Proof. Since we assume that the induced (α, I) contains

exactly and only one connected component, and αi and αj

contain some numbers u and v, respectively, such that

both u and v are in a cycle Ik of I. Notice that u ∉ αj and v

∉ αi. Suppose that there is no cycle in Iα-1 that contains

two numbers x and y such that they are in these two differ-

ent cycles of α, say x ∈ αi and y ∈ αj. Then all numbers in

any cycle of Iα-1 are contained in some cycle of α. Without

loss of generality, let Ik = (u ≡ a1, a2, ..., ap ≡ v, ..., aq) and let

p <q for simplifying the discussion. For each 1 ≤ x ≤ p, let

α(ax) = bx. Then we have Iα-1(bx) = ax+1 (since Iα-1α = I),

which means that both bx and ax+1 are in the same cycle of

Iα-1 and hence they are also in the same cycle of α. If ax is

in αi, then bx is also in αi, which further leads to ax+1 ∈ αi.

Since u = a1 is in αi, all a2, a3, ..., ap are in αi. As a result,

both of u and v are in αi, a contradiction. Hence, there

exists a cycle in Iα-1 that contains x and y such that x ∈ αi

and y ∈ αj.

The following lemma can be easily verified.

Lemma 6 (a1, a2,..., ai,..., aj) = (a1, a2,..., ai) (ai+1,..., aj) (ai,
aj), where 1 ≤ i <j.

According to Lemma 5, for any two cycles αi and αj of α,

we can find two numbers x and y in a cycle of Iα-1, say β,

such that x ∈ αi and y ∈ αj. Let β = (a1, a2,..., aq), where q

≥ 2. Then we consider the following two cases. Case 1: x

and y are adjacent in β. For simplicity, let x = aq-1 and

y = aq. Then by Lemma 6, β = (a1, a2,..., aq-1) (aq) (x, y).

Case 2: x and y are not adjacent in β. Let x = ap and y = aq,

where 1 ≤ p <q - 1. Then β = (a1, a2,..., ap) (ap+1,..., aq) (x,y)

according to Lemma 6. In other words, we can derive a 2-

cycle (x, y) from β such that it can join αi, and αj to one

cycle. After αi and αj are joined together via (x, y), the

number of the cycles (including 1-cycles) in the resulting

Iα-1 increases by one. Repeatedly based on the procedure

above, we can derive consecutive nfu 2-cycles from Iα-1, say

φ1, φ2,..., , that can join χ (α) cycles in α to a single

one, where nfu = χ(α) - 1. In other words, φ1, φ2,...,

function as χ(α) - 1 fusions that transform genome α with

χ(α) chromosomes into a genome, denoted by α', with a
single chromosome. Clearly, we have

α' = ...φ1α, Iα'-1 = Iα-1 φ1φ2 ... , and f(Iα'-








φnfu

φnfu

φnfu
φnfu −1 φnfu
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1) = f(Iα-1) + nfu. Hence, we can immediately claim the fol-

lowing.

Claim 1 α' = ...φ1α, Iα'-1 = Iα-1 φ1φ2 ... , and

f(Iα'-1) = f(Iα-1) + nfu, where nfu = χ(α) - 1.

Without loss of generality, we now suppose that χ(I) > 1.
Similarly as the discussion above, we can derive consecu-

tive nfi 2-cycles from α'I-1, say ψ1, ψ2, ..., , such that

they serve as the fusions to transform I with χ(I) chromo-
somes into a genome, denoted by I', with only one chro-

mosome, where nfi = χ(I) - 1 and α'I-1 is the inverse of Iα'-

1 (i.e., α'I-1 = (Iα'-1)-1). Then we have I' =  ... ψ1I

(hence ψ1ψ2 ... I' = I), α'I'-1 = α'I-1ψ1ψ2 ...  and

f(α'I'-1) = f(α'I-1) + nfi. Conversely, we can use ,

…, ψ1 as fissions to split I' with one chromosome

into I with nfi chromosomes. Since α'I-1 is the inverse of

Iα'-1, it can be easily obtained from Iα'-1 by just reversing

the order of the numbers in each cycle of Iα'-1 and hence

f(α'I-1) = f(Iα'-1), which leads to f(α'I'-1) = f(Iα'-1) + nfi. As

a result, we have f(I'α'-1) = f(α'I-1) = f(Iα'-1) + nfi since I'α'-

1 = (α'I-1)-1. Therefore, the following claim can be
obtained.

Claim 2 ψ1ψ2 ... I' = I, α'I'-1 = α'I-1ψ1ψ2 ... and

f(I'α'-1) = f(Iα'-1) + nfi, where nfi = χ(I) - 1.

Notice that both α' and I' now are the genomes with only
one chromosome. Then based on the algorithm proposed

by Lin et al. [14], we can find  block-

interchanges from I'α'-1 to transform α' into I'. Certainly,
these nbi block-interchanges can be further expressed by a

product of 2nbi 2-cycles, say , such

that every two consecutive 2-cycles act as a block-inter-

change in the process of transforming α' into I', where I'α'-

1 = . Hence, we have the follow-

ing claim immediately.

Claim 3 I' = α'.

Now we let Φ = ψ1ψ2... .

Then the result of Φα = I (hence Φ = Iα-1) can be easily ver-
ified by Claims 1, 2 and 3 as follows.

In other words, Φ is a product of (nfu + (n - f(I'α'-1)) + nfi)

2-cycles that can transform α into I. More clearly, Φ first

uses φ1, φ2,...,  (acting as nfu fusions) to transform α

into α', then uses  (acting as nbi block-

interchanges) to transform α' into I', and finally uses ,

,..., ψ1 (acting as nfi fissions) to transform I' into I.

By Claims 1 and 2, we can show that (nfu + (n - f(I'α'-1)) +

nfi = n - f(Iα-1) as follows.

nfu + (n - f(I'α'-1)) + nfi

= nfu + (n - f(Iα'-1) + nfi) + nfi  (by Claim 2)

= nfu + (n - f(Iα-1) + nfu - nfi) + nfi  (by Claim 1)

= n - f(Iα-1)

As mentioned before, χ(α) - 1 and χ(I) - 1 are the lower
bounds of the numbers of fusions and fissions, respec-
tively, required in any optimal series of rearrangement

events for transforming α into I. Hence, the number of 2-

cycles in Φ that function as the fusions and fissions is min-

imum. Along with that Φ = Iα-1 can be expressed as a prod-

uct of n - f(Iα-1) 2-cycles, we thus conclude that Φ is an

optimal series of the events that transform α into I with
first nfu fusions, then nbi block-interchanges and finally nfi

fissions, where nfu = χ(α) -1,

, and nfi =

χ(I) - 1.

φnfu
φnfu −1 φnfu

ψnfi

ψnfi
ψnfi −1

ψnfi
ψnfi

ψnfi

ψnfi −1

ψnfi
ψnfi

n
n f I

bi = − ′ ′( )α −1

2
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1

1
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2
2 1 2, , , , , ,… n nbi bi
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2 1
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1

1
1
2
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1

− − …

τ τ τ τ τ τn n n nbi bi bi bi

2 1
1

2
1

1
1
2

1
1

− − …

ψ τ τ τ τ φ φ φn n n n nfi bi bi fu fu

2 1
1
2

1
1

1 1… …−

Φα ψ ψ ψ τ τ τ τ φ φ φα

ψ ψ ψ τ

=

=

−1 2
2 1

1
2

1
1

1 1

1 2
2

… … …

…

n n n n n

n n

fi bi bi fu fu
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ττ τ τ α

ψ ψ ψ

n

n
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fi
I
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1
1
2

1
1

1 2

…

…

′

= ′

=

( )

( )

(

by Claim 1

by Claim 3

by Cllaim 2)

φnfu

τ τ τ τ1
1

1
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n
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Lemma 7 There is an optimal series of the events needed to

transform α into I in a canonical order such that all nfu fusions

come before all nbi block-interchanges that come before all nfi

fissions, where nfu = χ(α) - 1,

and nfi = χ(I) - 1.

Let us take α = (1, 2,10) (11, 8, 9, 3, 6) (7, 4, 5, 12) and I
= (1, 2, 3) (4, 5) (6, 7, 8) (9, 10, 11, 12) for an example.

It should be straightforward to see that (α,I) is a con-

nected bipartite graph with χ(α) = 3 and χ(I) = 4, and Iα-

1 = (1, 11, 7, 9, 6) (3, 10) (4, 8, 12) and hence f(Iα--2) = 5,
since two 1-cycles (i.e., (2) and (5)) are not explicitly

shown. First, we are to find two 2-cycles φ1 and φ2 (since

nfu = χ(α) -1 = 2) from Iα-1 to transform genome α with

three chromosomes into genome α' with exactly one chro-

mosome. To this purpose, we let φ1 = (3,10) and

φ2 = (4,8), since Iα-1 = (1, 11, 7, 9, 6) (4, 12) (4, 8) (3, 10).

Then by Claim 1, α' = φ2φ1α = (4, 5, 12, 7, 8, 9, 10, 1, 2, 3,

6, 11) and Iα'-1 = Iα-1φ1φ2 = (1, 11, 7, 9, 6) (4, 12). Next,

we need to find three 2-cycles ψ1, ψ2 and ψ3 (since

nfi = χ(I) - 1 = 3) from α'I-1, which is equal to (Iα'-1)-1 = (6,

9, 7, 11, 1) (12, 4) = (1, 7, 11) (1, 9) (1, 6) (12, 4), to
transform I into I' with only one chromosome. By letting

ψ1 = (12, 4), ψ2 = (1, 6) and ψ3 = (1, 9), we have

I' = ψ3ψ2ψ1 = (1, 2, 3, 6, 7, 8, 9, 10, 11, 4, 5, 12) and α'I'-1

= α'I-1ψ1ψ2ψ3 = (1, 7, 11) according to Claim 2. Finally, we

will find two 2-cycles  and  (since n - f(Iα-1) - nfu - nfi

= 12 - 5 - 2 - 3 = 2) from I'α'-1 that act as a block-inter-

change to transform α' into I', where I'α'-1 = (α'I'-1)-1 = (11,

7, 1) = (11, 1) (11, 7). By letting  = (11, 7) and

= (11, 1), we have α' = (11, 1) (11, 7) (4, 5, 12,

7, 8, 9, 10, 1, 2, 3, 6, 11) = (11, 4, 5, 12, 1, 2, 3, 6, 7, 8, 9,
10), which indeed equals I'. Consequently, we find an

optimal series of events Φ= ψ1ψ2ψ3 φ2φ1 that trans-

form α into I (i.e., Φα = I).

Based on the idea above, we have designed Algorithm
Sorting-by-ffbi (meaning sorting by fusions, fissions and
block-interchanges) to compute the genome rearrange-

ment distance d(α, I) between two given circular multi-

chromosomal genomes α and I, and also to generate an
optimal scenario of the required rearrangement events in

a canonical order. In Algorithm Sorting-by-ffbi, the pur-
pose of Step 2.3.3 (respectively, Step 2.4.4) is to find two

numbers x and y that are both in some cycle of γ = Ji

(respectively, γ = ), but in different cycles in βi. By

Lemma 5, such x and y exist. In fact, they can be found

using the following simple approach. For simplicity, let γk

= ( ) be a cycle in γ that contains two numbers

x and y such that they are in different cycles in βi. Then we

only need to check whether  and , where 2 ≤ j ≤ lk,

are in different cycles in βi or not. If so, we let x =  and

y = . The reason is as follows. Suppose that both  and

 for all 2 ≤ j ≤ lk are in the same cycle in βi. Then all of

numbers  in γk are in the same cycle in βi,

which contradicts the above assumption that γk contains x

and y that are in different cycles in βi.

Algorithm sorting-by-ffbi
Input: Two circular multi-chromosomal genomes α and I.

Output: d(α,I) and a minimum series Φ of events required
to transform α into I.

1: Find all connected components 1, 2,..., ω in

graph (α,I);

/* Denote by ni the number of genes in i. */

2: for each i, 1 ≤ i ≤ ω,do

/* Denote by βi (resp. Ji) the collection of chromo-

somes in α (resp. I) whose corresponding vertices are in

i. */

2.1: Compute Ji  and let γ = Ji ;

2.2: nfu = χ(βi) - 1, nfi = χ(Ji) -1,

 and δi = nfu + nbi + nfi;

2.3: if χ(βi) > 1 then /* To compute φ1, φ2,...,  */

n
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2.3.1: for each cycle of βi do

Create a set to contain all the numbers in this cycle;

endfor

2.3.2: /* Let γ1γ2 ... γp be the cycle decomposition of the
current γ and

let γq = ( ), where 1 ≤ q ≤ p and lq ≥ 2 */

k = 1 and h = 2;

2.3.3: for j = 1 to nfu do

S = find-set ( );

while S = find-set( )) do

if h <lk then h = h + 1; else k = k + 1, h = 2 and S =

findset ( );

endwhile

x =  and y = ;

φj = (x, y) and union(x, y);

endfor

2.3.4:  = ...φ1βi and γ = γφ1φ2... ; /*

Currently, γ is Ji  */

endif

2.4: if χ(Ji) > 1 then/* To compute ψ1, ψ2,...,  */

2.4.1: γ = γ-1/* New γ becomes  */

2.4.2: for each cycle of Ji do

Create a set to contain all the numbers in this cycle;

endfor

2.4.3: /* Let γ1γ2...γp be the cycle decomposition of the
current γ and

let γq = ( ), where 1 ≤ q ≤ p and lq ≥ 2 */

k = 1 and h = 2;

2.4.4: for j = 1 to nfi do

S = find-set( );

while (S = find-set( )) do

if h <Ik then h = h + 1; else k = k + 1,h = 2 and S =

find-set( );

endwhile 

x =  and y = ;

ψj = (x, y) and union(x, y);

endfor

2.4.5:  = ... ψ1Ji and γ = γψ1ψ2... ; /*

Currently, γ is  */

endif

2.5: /* To compute  */

2.5.1: γ = γ-1;/* New γ becomes  */

2.5.2: ;

2.5.3: for j = 1 to nbi do

Arbitrarily choose two adjacent elements x and y in γ;

/* Let  = (a1,a2..., ) */

Circularly shift (a1, a2,..., ) such that a1 = x and

assume y = ak;

 = (x, y);

for h = 1 to ni do

a a aq q q
lq1 2, , ,…

ak
1

ak
h

ak
1

ak
1 ak

h

′βi φnfu
φnfu −1 φnfu

′−βi
1

ψnfi

′ ′−βi Ji
1

a a aq q q
lq1 2, , ,…

ak
1

ak
h

ak
1

ak
1 ak

h

′ −1Ji ψnfi
ψnfi −1 ψnfi

′ ′−βi Ji
1

τ τ τ τ1
1

1
2 1 2, , , ,… n nbi bi

′ −1Ji ′−βi
1

n
n f

bi
i=

− ( )γ
2

′βi ani

ani

τ j
1
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index (ah) = h;

end for

Find two adjacent elements u and v in γ (x, y) such that

index(u) ≤ k - 1 and index(v) ≥ k;

 = (u, v);

 =  and γ = γ ;

endfor

3: Let  for each 1 ≤ i

≤ ω;.

4: Output d(α, I) =  and Φ = Φ1Φ2...Φω;

Theorem 1 Given two circular multi-chromosomal genomes α
and I over the same gene set E = {1,2,..., n}, the problem of

computing the genome rearrangement distance between α and
I using fusions, fissions and block-interchanges can be solved
and an optimal series of such events in a canonical order can be

obtained in (n2) time.

Proof. As discussed above, Algorithm Sorting-by-ffbi trans-

forms α into I using the minimum number of fusions, fis-
sions and block-interchanges. Next, we follow to analyze
its time-complexity. Notice that given an undirected graph
with p vertices and q edges, all the connected components

in this graph can be found in (p + q) time using depth-
first search or breadth-first search [31]. As a result, Step 1

can be done in (n2) time for computing the connected

components in the induced bipartite graph (α, I), since

in the worst case, the number of edges in (α,I) is χ(α) ×

χ(I) and χ(α) = (n) and χ(I) = (n). In Step 2, there are

ω outer iterations, each computing the minimum series of

events needed to transform βi into Ji, where 1 ≤ i ≤ ω.

Clearly, Steps 2.1 costs (ni) time for computing Ji

and Step 2.2 takes only a constant time. The time cost of
Step 2.3 is mostly contributed from that of Step 2.3.3.
There are nfu inner iterations in Step 2.3, each with the pur-

pose of finding two numbers x and y that are both in the

same cycle in γ and, however, in the different cycles in βi.

In the worst case, Step 2.3 needs ni find-set operations and

nfu union operations to finish its overall process. Note that

Step 2.3.1 can be implemented by initially creating a set

for each number in gene(βi) and then performing ni - χ(βi)

union operations to generate χ(βi) sets with each corre-

sponding to a cycle in βi, where χ(βi) = nfu + 1. Hence, the

total number of union operations is ni - 1 in Step 2.3. In

fact, these find-set and union operations can be imple-

mented in (ni) time using the so-called "static disjoint

set union and find" algorithm proposed by Gabow and

Tarjan [32]. In other words, Step 2.3 can cost only (ni)

time. By the same principle, it can be verified that the time

cost of Step 2.4 is (ni). As for Step 2.5, adopted from our

previous work [14], it takes (nbini) time, where

 = ni). As a result, the time cost of

Step 2 is (ζn), where ζ is the maximum nbi among all

iterations in Step 2 and ζ <n. Clearly, Steps 3 and 4 cost
constant time. Therefore, the total time-complexity of

Algorithm Sorting-by-ffbi is (n2).

Construction of orthologous genes
To analyze the rearrangement of three Vibrio genomes, we
identified and constructed a table of orthologous genes
that are putatively not involved in horizontal gene trans-
fer (HGT) events by adopting the so-called symmetrical
best hits (SymBets for short). In principle, two genes
match and give SymBets if they are more similar to each
other than they are to any other genes from the compared
genomes [33,34]. Detection of such SymBet genes is, yet
arguably, the simplest and most suitable method for iden-
tification of probable orthologs for closely related
genomes [33,34]. Particularly, this prediction of orthologs
holds to be applicable even when sequence similarity
between the compared proteins is relatively low [33,34].
For the purpose of excluding paralogous genes derived
from lineage-specific gene duplications, we here consid-
ered only one-to-one orthologous genes, which actually
have been demonstrated as a major pattern in prokaryotic
genome evolution [34]. Therefore, we used the following
steps to identify an HGT-free table of one-to-one ortholo-
gous genes from the three complete Vibrio genomes. First,
the GenePlot [35] program offered by NCBI was utilized
to find and construct a table of SymBet genes between
each pair of Vibrio genomes. Next, after removing all one-
to-many or many-to-many SymBets, the three resulting
tables of SymBet genes were joined to give a new one of
one-to-one orthologous genes for all the three Vibrio
genomes by using a rule as follows. If genes a (from
genome A) and b (from genome B),b and c (from genome

τ j
2

′βi τ j
2 τ j

1 ′βi τ j
1 τ j

2

Φi n n n nfi bi bi fu
= ψ ψ τ τ τ τ φ φ1

2 1
1
2

1
1

1… … …

δω
ii=∑ 1









 

 βi
−1








n
n f J

bi
i i=

− ′ ′( )β −
i

1

2





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C), and c and a are all one-to-one SymBet pairs, then a, b
and c are considered as one-to-one orthologous genes for
the genomes A,B and C. In other words, the SymBet rela-
tionships among a, b and c result in a triangle. Finally,
those genes that were involved in the putative HGT events
detected and available in the Horizontal Gene Transfer
Database [36] were then deleted from the table of one-to-
one orthologous genes.
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Note
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site of Comprehensive Microbial Resource (CMR) that
provides information on all of the publicly available and
complete bacterial genomes.
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