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Abstract

Background: More and more disordered regions have been discovered in protein sequences, and
many of them are found to be functionally significant. Previous studies reveal that disordered
regions of a protein can be predicted by its primary structure, the amino acid sequence. One
observation that has been widely accepted is that ordered regions usually have compositional bias
toward hydrophobic amino acids, and disordered regions are toward charged amino acids. Recent
studies further show that employing evolutionary information such as position specific scoring
matrices (PSSMs) improves the prediction accuracy of protein disorder. As more and more
machine learning techniques have been introduced to protein disorder detection, extracting more
useful features with biological insights attracts more attention.

Results: This paper first studies the effect of a condensed position specific scoring matrix with
respect to physicochemical properties (PSSMP) on the prediction accuracy, where the PSSMP is
derived by merging several amino acid columns of a PSSM belonging to a certain property into a
single column. Next, we decompose each conventional physicochemical property of amino acids
into two disjoint groups which have a propensity for order and disorder respectively, and show by
experiments that some of the new properties perform better than their parent properties in
predicting protein disorder. In order to get an effective and compact feature set on this problem,
we propose a hybrid feature selection method that inherits the efficiency of uni-variant analysis and
the effectiveness of the stepwise feature selection that explores combinations of multiple features.
The experimental results show that the selected feature set improves the performance of a
classifier built with Radial Basis Function Networks (RBFN) in comparison with the feature set
constructed with PSSMs or PSSMPs that adopt simply the conventional physicochemical properties.

Conclusion: Distinguishing disordered regions from ordered regions in protein sequences
facilitates the exploration of protein structures and functions. Results based on independent testing
data reveal that the proposed predicting model DisPSSMP performs the best among several of the
existing packages doing similar tasks, without either under-predicting or over-predicting the
disordered regions. Furthermore, the selected properties are demonstrated to be useful in finding
discriminating patterns for order/disorder classification.
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Background

A large proportion of proteins are found to be intrinsically
disordered, which refers to segments of protein sequences
that do not form well-defined three-dimensional struc-
tures in their native states [1-6]. Many proteins contain
local regions of such disorder, and in some cases entire
proteins appear to exist as ensembles of structures [1-
3,7,8]. Since protein subsequences that lack the ability to
form a well-defined three-dimensional structure may still
be functionally related, identifying such disordered
regions is getting more and more important for both
understanding protein functions and conducting struc-
tural analyses [6].

Protein disorders have been observed in a variety of bio-
logical functions, including molecular recognition, cell
signaling pathways, and enzyme catalysis [3,9]. Taking the
yeast proteome as an example, the proteins containing
disorder are often located in the cell nucleus and are
involved in transcription regulation and cell signalling
[4]. The disordered regions that remain as flexible ensem-
bles under physiological conditions allow the disordered
binding sites to interact with several different targets
[10,11]. The disorder-to-order transition upon binding
provides high specificity with modest binding affinities
[7,12].

It has been shown in many studies that protein disorders
can be predicted from their primary sequences [10,13-18].
The prediction methods developed in recent years initiate
the possibility of identifying such disordered binding sites
automatically [14,17]. A more general concept is that all
the necessary information for the correct folding of a pro-
tein is included in its amino acid sequence [19]. Disor-
dered regions are comprised of a category of amino acids
distinct from that of ordered protein structures [20]. For
example, amino acids of aromatic hydrophobic groups
are known to be good for the general stabilization of
order, and thus are less found in the disordered regions
[13]. Incorporating information of the biased amino acid
composition in a neural network predicts the locations of
disorder with accuracy better than random guesses [13].
In 1998, Romero et al. showed that more than 15,000 pro-
teins in the Swiss-Prot database contain long disordered
segments (40 or more residues) based on their predictions
[14,21]. Studies on some of these disordered regions
reveal that they are evolutionarily conserved and possess
biological functions [10].

Several machine learning approaches, such as neural net-
works (NNs) [6,10,13,22], logistic regression (LR)
[22,23], discriminant analysis (DA) [23], ordinary least
squares (OLS) [22], and support vector machines (SVM)
[4,23,24] have been introduced to protein disorder pre-
diction. Since different classifiers deliver similar predic-
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tion accuracy based on the same feature set [23],
extracting more useful features with biological insights to
improve the quality of prediction attracts more attention
in recent studies [10,24]. As amino acid composition has
been demonstrated as a useful feature for detecting disor-
dered regions, Jones et al. showed in their paper that using
the position specific scoring matrices (PSSMs) within a
specific length of window centred at a given residue can
improve the accuracy of predicting its disorder attribute
[10]. The values in a position specific scoring matrix indi-
cate the level of conservation of a position and the prop-
erties of the substituted residues, which can be derived
directly from executing PSI-BLAST for each target protein
sequence. PSSMs have been demonstrated to be powerful
in constructing feature sets for prediction of single-residue
properties from an amino acid sequence, such as category
of secondary structures or solvent accessibility [10]. The
evolutionary information summarized in a PSSM table
generalizes the attribute of each position in a protein
sequence, and thus improves the sensitivity of the predict-
ing model.

A development of this approach employs a condensed
position specific scoring matrix with respect to physico-
chemical properties (it will be called PSSMP in this paper)
in predicting protein disorder, where the PSSMP is derived
by merging several amino acid columns of a PSSM that
belong to a certain property into a single column [24]. As
a PSSM brings in the evolutionary information on each
position, a PSSMP summarizes this information as prop-
erty attributes. The improvement achieved by PSSMP
demonstrates that property attributes are more informa-
tive than amino acid attributes in distinguishing ordered/
disordered regions. A more comprehensive study con-
ducted in this paper reveals that PSSMPs outperform
PSSMs especially when the employed window size is
large.

When employing PSSMP tables as the feature set in pro-
tein disorder prediction, two questions arise: (1) if all the
amino acids in one physicochemical property group con-
tribute to the predicting power; and (2) if all the amino
acids in one physicochemical property group result in
consistent effect on prediction. It has been widely studied
in previous works that the propensity for order or disorder
of several amino acids is clear. Hydrophobic amino acids
are more frequently observed in ordered regions than dis-
ordered regions [18,19]. Among them the aromatic
amino acids are present in different locations to the
aliphatic amino acids [25]. On the other hand, the amino
acids with charge imbalance are often present in disor-
dered regions. In this paper, we argue that the propensity
for order or disorder of each amino acid should be consid-
ered when constructing PSSMP. After examining the statis-
tics derived by comparing the sequence segments in
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ordered regions and disordered regions, we observe that
not all the hydrophobic amino acids possess a propensity
for order. Thus we suggest that each conventional physic-
ochemical property should be divided into two smaller
groups with propensities for order and disorder respec-
tively, such as hydrophobic with an order propensity
(Hydrophobic,) and hydrophobic with a disorder propen-
sity (Hydrophobicp,). The experiments conducted in this
work reveal that some newly derived properties provide
more accurate information regarding order or disorder.

Incorporating the propensity for order/disorder with
physicochemical properties in PSSMP produces informa-
tive features for protein disorder prediction. However, the
number of candidate features becomes larger than in the
case when only twenty amino acids are considered. The
size of the feature set gets even larger when a large window
size is employed, which might cause the performance of
the learning algorithms to be degraded due to abundant
noise. Thus, we present in this paper a feature selection
mechanism that considers both the size and effectiveness
issues when determining a feature set on protein disorder
prediction. A wrapper approach of feature selection is
employed during training period that invokes the adopted
Radial Basis Function Networks (RBFN) classifier to eval-
uate the predicting power of a candidate feature set. A
cluster-based redundancy removal procedure is incorpo-
rated to speed up the stepwise feature selection process,
where two levels of redundancy among features are con-
sidered.

As far as the experimental materials are concerned, a new
dataset PDB693 organized from the Protein Data Bank
(PDB) [26] database is coined in this work to benefit the
study on protein disorder. PDB693 and another dataset
D184 collected from Database of Protein Disorder (Dis-
Prot) [27] constitute the training data of our classifier
DisPSSMP. The performance of DisPSSMP is compared
with twelve existing disorder prediction packages, where
the blind testing data comes from a recent study [6]. The
experimental results demonstrate that the selected prop-
erty features are informative in protein disorder predic-

Table I: Summary of the datasets employed in this study
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tion and can be used to derive discriminating patterns for
order and disorder classification.

Results and discussion

In this section, we first describe how the datasets have
been prepared and how the performance of prediction is
evaluated. Next, we show the results of the feature selec-
tion after conducting cross-validation on the training
data. At this stage, we also discuss the effect of the window
size employed in constructing PSSMP. After that, the
resultant feature set is employed in constructing the final
predicting model DisPSSMP. Finally, the testing results
are evaluated based on the bind testing data, and are com-
pared with other existing packages performing similar
tasks. At the end of the section, we show the derived prop-
erty sets can be used to discover patterns that distinguish
ordered and disordered regions.

Datasets

In this study, five datasets have been collected or newly
created for training and validating processes. The detailed
statistics about each dataset are provided in Table 1,
including the number of chains, ordered/disordered
regions, and residues in ordered/disordered regions. The
training data used in constructing the predictor DisPSSMP
is composed of datasets PDB693 and D184, which are
respectively organized from PDB and DisProt database
based on the procedures described in the following para-
graphs. Meanwhile, three datasets named R80, U79, and
P80, which are taken from two related studies [6,19], con-
stitute an independent testing data. This blind dataset
serves as a platform for comparing the performance of the
proposed method with some other existing packages per-
forming protein disorder prediction.

The dataset PDB693 contains 693 partially disordered
proteins, where the locations of disordered regions are
identified by looking for the missing residues in a protein
structure from PDB database (28-Aug-2005 version).
There are originally 32204 structures in this version of
PDB database, and those structures are filtered by a clus-
tering program Cd-Hit [28,29] such that the resultant

Training data Testing data

PDB693 Dlg4 R80 u79 P80
Number of chains 693 184 80 79 80
Number of ordered regions 1357 257 151 0 80
Number of disordered regions 1739 274 183 79 0
Number of residues in the ordered regions 201937 55164 29909 0 16568
Number of residues in the disordered regions 52663 27116 3649 14462 0
Total residues in the dataset 254600 82280 33558 14462 16568
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nonredundant set containing no pair of protein sequences
with similarity identity of more than 70%. The so-called
missing residues are those present in the SEQRES records
but not in the ATOM records with their alpha-carbon
coordinates. A protein sequence is considered in this
study only if it contains at least one disordered region
with more than 30 consecutive residues. Furthermore,
protein sequences of similarity identity of more than 70%
against any protein sequence in the independent testing
data have been removed, resulting in 693 protein
sequences in the PDB693 dataset.

Another training set D184 is extracted from DisProt data-
base. DisProt is a curated database that provides informa-
tion about proteins that entirely or partially lack a fixed
three-dimensional structure under putatively native con-
ditions [27]. The DisProt release 2.2 consists of 202 pro-
teins, including 431 distinct disordered regions in total.
Among the 202 proteins, there are 157 proteins that con-
tain at least one disordered region longer than 30 consec-
utive residues. There are more than 50 wholly disordered
proteins in DisProt database which are annotated as serv-
ing certain functions. D184 is also filtered by Cd-Hit to
remove redundant proteins which have more than 70%
identity with some other proteins inside it or in any of the
three testing datasets.

The dataset R80 was prepared by Yang et al. in 2005 [6].
The 80 protein chains in this dataset are collected from the
PDB database, and each protein chain contains a region of
at least 21 consecutive disordered residues. Additionally,
the dataset U79 organized by Uversky et al. in 2000 [19]
and the dataset P80 provided by PONDR® web site
(retrieved in February 2003) are also compiled into the
blind testing set, where the dataset U79 contains 79
totally disordered proteins and the dataset P80 contains
80 completely ordered proteins. By using Cd-Hit again,
we observed that two sequences in P80 are subsequences
of a protein in R80 and a pair of proteins in U79 have
identity of 73%. Like Yang et al. did in their paper [6],
these three datasets are employed as a platform for com-
parison of our approach to some other present packages
targeting at protein disorder prediction. Thus, we did not
change the contents of these three datasets such that the

Table 2: The definition of measures employed in this study
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comparison can be carried out. In particular, the datasets
U79 (fully disordered proteins) and P80 (globular pro-
teins) together suggest whether the proposed method is
under- or over-predicting protein disorder.

Evaluation measures

Predicting a residue in the given protein sequence as order
or disorder is a binary classification problem, and many
measures have been introduced for validation issues
[30,31]. Table 2 lists four widely used indices defined by
previous related works [6,18,24,30-32]. We employ these
measures in this study to evaluate the performance of dif-
ferent feature sets or different packages. Sensitivity repre-
sents the fraction of disordered residues correctly
identified in a prediction method, while specificity indi-
cates the fraction of ordered residues correctly identified.
The Matthews' correlation coefficient is a popular measure in
many bioinformatics problems [33-35]. However, sensitiv-
ity, specificity, and the Matthews' correlation coefficient are
seriously affected by the relative frequency of the target
class. Therefore, the above three measures are not suitable
for evaluating the performance in isolation. The probability
excess is independent of the relative class frequency, and
this measure can be reduced to sensitivity + specificity - 1
concisely [6]. In addition, some other indices including
the CASP S score, product, and probability excess are recom-
mended and advised by CASP6 [31] and Yang et al. [6] for
evaluating the performance of prediction. Since these
three measures have the same tendency with probability
excess, we adopt only the probability excess in this paper for
simplicity and show the results of other measures in the
supplementary [See Additional file 1].

Feature selection by cross-validation

In order to conduct a five-fold cross validation, the chains
in datasets PDB693 and D184 are randomly split into five
subsets of approximately equal size. The results of uni-var-
iant analysis on each property feature are shown in Table
3, in which the properties oriented from the same physic-
ochemical group are put together for the following
dependency analysis. The dependency analysis of feature
selection aims to answer if a subset of a property group
performs better than the original one.

Measure Abbreviation Equation *

Sensitivity (recall) Sens. TP/(TP+FN)

Specificity Spec. TN/(TN+FP)

Matthews' correlation coefficient McC (TPXTN-FPxFN)/sqrt((TP+FP)x(TN+FN)x(TP+FN)x(TN+FP))
Probability excess Prob. Excess (TPXTN-FPxFN)/((TP+FN)*(TN+FP))

* The definition of the abbreviations used: TP is the number of correctly classified disordered residues; FP is the number of ordered residues
incorrectly classified as disordered; TN is the number of correctly classified ordered residues; and FN is the number of disordered residues

incorrectly classified as ordered.
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Table 3: The performance of each property in the uni-variant analysis on training data

Property Sens. McC Prob. Excess
Hydrophobic 0.633 0.717 0.309 0.350
Hydrophobic, 0.640 0.751 0.350 0.391
Hydrophobicp, 0.519 0.723 0.217 0.241
Polar 0.616 0.734 0.312 0.350
Polar, 0.603 0.703 0.269 0.306
Polarp, 0.604 0.731 0.299 0.335
Small 0.553 0.742 0.268 0.295
Small, 0.555 0.688 0.214 0.243
Small, 0.579 0.759 0.308 0.338
Aliphatic 0.601 0.748 0.314 0.349
Aromatic 0.604 0.720 0.288 0.324
Aromatic, 0.602 0.732 0.298 0.334
Aromaticp, 0.538 0.660 0.173 0.198
Positive 0.599 0.678 0.242 0.277
Positive 0.573 0.662 0.204 0.235
Positiver, 0.583 0.667 0.218 0.250
Negative 0.586 0.696 0.248 0.282
Proline 0.564 0.684 0.218 0.248
Charged 0.614 0.707 0.282 0.320
Charged,, 0.571 0.664 0.204 0.235
Charged,, 0.603 0.706 0.272 0.309
Tiny 0.528 0.732 0.234 0.259
Tinyo 0.577 0.675 0.220 0.252
Tinyp 0.553 0.748 0.274 0.301

The best performance among each property group is highlighted with bold font.

It is observed in Table 3 that the performance of some
physicochemical properties has been improved after they
are split into order/disorder-based properties. In other
words, purifying the physicochemical properties by con-
sidering the propensity for order or disorder contributes
to the predicting power of the classifier. Hydrophobic, is
the best property among all of them and gets an explicit
improvement over Hydrophobic. On the other hand, nei-
ther Polary, nor Polar, get a better performance than Polar.
In summary, the decomposition of some conventional
properties by considering the order/disorder propensity
brings explicit benefit in terms of the uni-variant analysis.

After the best property for each group has been deter-
mined, a second level of dependency analysis is per-
formed by considering the relations between
physicochemical properties. The selected features are
shown in Figure 1, and the relation of these features is
derived by incorporating the inheritance relationships

between the child properties and their parent properties.
That is, Aliphatic and Aromatic,, are subsets of Hydropho-
bicy, Tiny is a subset of Small, Positive and Negative are sub-
sets of Charged, which recursively is a subset of Polar.
Based on these hierarchies, we aim to investigate if a com-
bination of two subproperties performs better than the
original one. According to the results shown in Table 4
and Table 5, property features Aliphatic+Aromatic,, per-
forms better than Hydrophobic,, but Positive+Negative is
not superior to Polar.

After the dependency analysis, the redundancy removal
step selects the best property from each cluster for the next
step of feature selection. The selected representative prop-
erties are sorted by their performance in the uni-variant
analysis, resulting in the following order: Aliphatic+Aro-
maticO, Polar, SmallD, and Proline. The stepwise feature
selection is preformed by adding one candidate property
in each iteration until the predicting performance cannot
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Hydrophobico Polar Smallp Proline
Aliphatic Aromatico Charged Tinyp
Positive Negative
Figure |

The relation of the selected properties after the first level of
redundancy analysis.

be improved. The results of the stepwise feature selection
are shown in Table 6, indicating that the four properties,
Aliphatic, AromaticO, Polar, and SmallD, will be used in
constructing the final RBFN classifier for predicting pro-
tein disorder. We name the final feature set of PSSMP with
four properties as FS-PSSMP-4, the feature set of ten con-
ventional physicochemical properties as FS-PSSMP-10,
and the feature set employing the original PSSM as FS-
PSSM.

Suggestion of window size

All the experiments described above have been conducted
with different window sizes of 11, 35, and 59, and the
resulted feature sets are the same as reported. However,
though they turn out the same result on feature selection,
it is observed that larger window sizes such as 35 and 59
are favourable when prediction accuracy is considered.
The current version of DisPSSMP adopts a window size of
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47 and thus employs in total 4 x 47 = 188 attributes in the
feature vector for a query residue.

Results on testing data

In this subsection, we compare the performance of three
feature sets, FS-PSSM, FS-PSSMP-10, and the proposed FS-
PSSMP-4 on the independent testing data, which consists
of three datasets, R80, U79, and P80. In the following dis-
cussions, the results on datasets U79 and P80 are always
combined when they are reported, because U79 contains
only fully disordered proteins and P80 comprises only
completely ordered proteins. The results are shown in Fig-
ure 2 and Figure 3, with the window size changes from 11
to 59 systematically. It is clearly shown in Figure 2 that
larger window sizes deliver better performance for all the
feature sets on the dataset R80, and the performance of FS-
PSSMP-4 and FS-PSSMP-10 are generally better than FS-
PSSM.

On the other hand, the probability excesses of all the feature
sets in Figure 3 decrease considerably when the window
size is more than 39 due to the over-prediction in terminal
regions. In fact, FS-PSSMP-4 performs worse than FS-
PSSMP-10 and FS-PSSM when the window size is smaller
than 19, but better than both of them when the window
size is larger than 23. Figure 4 shows the overall perform-
ance by combining these three testing datasets. The aver-
age performance of FS-PSSMP-4 delivers the highest
probability excess among the three feature sets. Also, FS-
PSSMP-4 has the fewest number of features among all. To
sum up, FS-PSSMP-4 is superior to the others for its suc-
cess of feature reduction and the improvement of accuracy
and efficiency, and it delivers roughly the same level of
accuracy when the window size is larger than 35.

Table 4: Performance evaluation on Hydrophobic, Aliphatic, and Aromatic

Property Sens. Spec. McCC Prob. Excess
Hydrophobic,, 0.640 0.751 0.350 0.391
Aliphatic 0.601 0.748 0314 0.349
Aromatic, 0.602 0.732 0.298 0.334
Aliphatic + Aromatic, 0.645 0.768 0.373 0.413
The best performance is highlighted with bold font.
Table 5: Performance evaluation on Polar, Charged, Positive, and Negative
Property Sens. Spec. McCC Prob. Excess
Polar 0.616 0.734 0.312 0.350
Charged 0.614 0.707 0.282 0.320
Positive 0.599 0.678 0.242 0.277
Negative 0.586 0.696 0.248 0.282
Positive + Negative 0.607 0.715 0.284 0.321
The best performance is highlighted with bold font.
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Table 6: The result of the stepwise feature selection

http://www.biomedcentral.com/1471-2105/7/319

Property Sens. Spec. MCC Prob. Excess
Aliphatic+Aromatic,, 0.646 0.767 0.372 0412
Aliphatic+Aromatic,+Polar 0.656 0.774 0.390 0.430
AliphatictAromatic,+Polar+Small, 0.656 0.781 0.397 0.437
Aliphatict+Aromatic,*Polar+Smally+Proline 0.652 0.783 0.396 0.435

The best performance is highlighted with bold font.

Comparison with existing packages

In this subsection we investigate the performance of
twelve web servers or packages in protein disorder predic-
tion, some of which were included in comparison with
the work of Yang et al. in their paper [6]. The predictors for
comparison here are RONN [6], IUPred(short) [36,37],
IUPred(long) [36,37], DISpro [38], DISOPRED2 [4,32],
PONDR® [21], DisEMBL(hot) [39], DisEMBL(465) [39],
FoldIndex [19,40], PreLink [18], GlobPlot [41], and Dis-
EMBL(coils) [39]. DISOPRED2 has a limit of 1000 resi-
dues per protein, so 1HNO, 1FO4, and 1PS3 in dataset
R80 and the ul5 protein in dataset U79 have been
removed from the blind testing data when testing
DISOPRED2. IUPred provides two choices of predicting
short or long disordered regions, and DisEMBL provides
three choices: DisEMBL(hot), DisEMBL(465), and Dis-
EMBL(coils). The plots in Figure 5, Figure 6, and Figure 7
show the results in the way of specificity versus sensitivity,
and the plots are rotated anticlockwise by 45° to be equiv-
alent to the plot of probability excess = sensitivity + specificity
- 1.

When compared with the other packages, DisPSSMP per-
forms the best when probability excess is considered (with
a probability excess of 0.60). In Figure 5, DisPSSMP shows
its ability in identifying the boundaries of ordered and
disordered regions. The predictors IUPred(long), DISpro,
DISOPRED2, DisEMBL(465), and PreLink have a specifi-
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Comparison of using different feature sets on testing data
R80.

city of more than 95% but a sensitivity of less than 50%,
which show the tendency of predicting order more than
disorder. In contrast, the predictor DisEMBL(coils) with a
sensitivity of less than 50% but a specificity of more than
70% has the tendency of predicting disorder more than
order. It depends on the users to select the predictors
IUPred(long), DISpro, DISOPRED2, DisEMBL(465), and
PreLink for under-prediction of disorder and Dis-
EMBL(coils) for over-prediction.

The main purpose of the experiment on datasets U79 and
P80 is checking whether a method is under-predicting or
over-predicting protein disorder. As shown in Figure 6,
the results of all the methods except IUPred(long) and
FoldIndex are similar to that in the main blind testing
dataset R80 in Figure 5. The sensitivity of [UPred(long) and
FoldIndex have an improvement of more then 20% in this
experiment, and they are ranked as the first and the fourth
among all methods. Since I[UPred(long) has been
designed for predicting context-independent global disor-
der that encompasses at least 30 consecutive residues in
the predicted disordered regions and adopts a large win-
dow size like 101 [36,37], it is suitable for the recognition
of the fully globular proteins and the totally unstructured
proteins. On the other hand, the training data of FoldIn-
dex contains 91 totally unfolded proteins and 275 globu-
lar proteins, resulting in its good performance in
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Comparison of using different feature sets on testing data
R80, U79, and P80.

discriminating fully ordered proteins from fully disor-
dered proteins [19,40]. Nevertheless, due to the lack of
information about the boundaries between ordered
regions and disordered regions, FoldIndex does not have
a good performance in R80.

The overall comparison is provided in Figure 7 by com-
bining the results of Figure 5 and Figure 6. There are only
three methods that have a probability excess of more than
0.50. Although TUPred(long) has an distinguishing per-
formance in the combined blind test, this method cannot
predict short disordered regions correctly due to the con-
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straint of its algorithm. DisPSSMP and RONN have com-
parable performances in identifying disordered residues

or ordered residues when no prior information is availa-
ble.

Property-based sequential patterns

In the previous subsections we have demonstrated that
the newly defined property groups perform better than
the original physicochemical properties when incorpo-
rated with position specific scoring matrices in predicting
protein disorder. In this subsection, we show the potential
of the newly defined property features from another point
of view. As most approaches of protein disorder predic-
tion use the subsequences centered at the target residue as
discriminative features, it is generally believed that
sequential patterns of amino acids may provide useful
information about protein order and disorder
[4,10,17,23,39,42]. Lise et al. also found some reliable
and significant sequence patterns that characterize disor-
dered segments [5]. Here, we show by examples of
sequence patterns that the selected feature properties
indeed serve as better units in characterizing both ordered
and disordered regions.

In this experiment, the ordered and disordered regions are
extracted from both the training and testing datasets and
are organized as two datasets respectively. The scoring
function employed by Lise et al. [5] is adopted here for
evaluating the discriminating power of patterns. The score
S,or an alternative score S, are defined as in Eq. (1) to rep-
resent the ordered and disordered preference of a pattern.

Prob.

Prob.

Method Sens. | Spec. [MCC |Excess
DisPSSMP 0.767| 0.848] 0.463| 0.615
RONN 0.603| 0.878] 0.395| 0.481
IUPred(short) 0.517] 0.945| 0.469| 0.462
DISpro 0.418] 0.993| 0.578] 0.411
IUPred(long) 0.436] 0.961] 0.449| 0.397
DISOPRED2* | 0.405| 0.972| 0.470| 0.377
PONDR 0.557] 0.816| 0.278| 0.373
DisEMBL(hot) | 0.492| 0.840] 0.260| 0.332
DisEMBL(465) | 0.334| 0.981| 0.437| 0.315
FoldIndex 0.488| 0.811] 0.224| 0.299
PreLink 0.237 0.947| 0.219| 0.183
GlobPlot 0.372| 0.811] 0.140| 0.183
DisEMBL(coils)| 0.740| 0.424| 0.104| 0.165

Figure 5

* For DISOPRED?2, the public web server has a sequence length limit
of 1000 residues; therefore, 1HNO, 1FO4, and 1PS3 in R80 cannot be
predicted.

Comparing the performance of thirteen disorder prediction packages on testing data R80.
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Prob.
Method Sens. | Spec. | MCC | Excess
IUPred(long) 0.67810.942|0.650| 0.620
DisPSSMP 0.825]0.765/0.589] 0.590
RONN 0.675]0.888 |0.580| 0.563
FoldIndex 0.722]10.815]0.540| 0.536
[UPred(short) |0.556]0.915]0.511| 0.472
DISPRED2* 0.46910.981|0.543| 0.449
PONDR 0.632]0.782|0.420| 0.414
DISpro 0.383]0.982]0.467| 0.365
DisEMBL(465) |0.34810.9780.430| 0.327
PreLink 0.319]10.991]0.430] 0.310
DisEMBL(hot) [0.502|0.749|0.260| 0.251
DisEMBL(coils)| 0.719]0.446|0.170 | 0.165
GlobPlot 0.308]0.821]0.151] 0.129

Figure 6
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* For DISOPRED2, the public web server has a sequence length limit
of 1000 residues; therefore, the ul5 protein in U79 cannot be
predicted.

Comparing the performance of thirteen disorder prediction packages on testing data U79 and P80.

SO

where M, and M, are the occurrences of a given pattern in
the ordered and disordered regions, and N,and N, are the

M

0

_ 0

M
704_%
No Nd

and S; =1-S,,

(1)

Prob.

Method Sens. | Spec. [ MCC | Excess
DisPSSMP 0.814]0.818/0.592| 0.632
IUPred(long)  [0.629/0.954]/0.644| 0.583
RONN 0.661]0.882/0.549| 0.542
FoldIndex 0.675/0.812/0.467| 0.487
IUPred(short) 0.549/0.934/0.541] 0.483
DISOPRED2* [0.455/0.976]/0.550] 0.430
PONDR 0.617)0.804/0.407| 0.420
DISpro 0.390/0.989/0.530]  0.379
DisEMBL(465) |0.345/0.980]0.465| 0.326
DisEMBL(hot) [0.500/0.807/0.308] 0.308
PreLink 0.302/0.963/0.378]  0.265
DisEMBL(coils)|0.723]/0.432(0.143|  0.155
GlobPlot 0.321/0.814/0.146] 0.136

Figure 7

total numbers of k-residue-long segments in the ordered
regions and disordered regions. It is clearly that both S,
and S, fall within 0 and 1, and if S, = S;= 0.5, the pattern
has no preference for order or disorder. On the other
hand, patterns with S,= 0 and S; = 1 and patterns with S,
=1and S, =0 are only observed in disordered and ordered
regions respectively, and thus are considered as the most
differential sequence patterns.

Prob.
excess

* For DISOPRED?2, the public web server has a sequence length limit of
1000 residues; therefore, IHNO, 1FO4, and 1PS3 in R80 and the ul5
protein in U79 cannot be predicted.

Comparing the performance of thirteen disorder prediction packages on testing data R80, U79, and P80.
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In this paper, only property patterns with three elements
are considered since the occurrences of longer patterns
might not be frequent enough to have statistical mean-
ings. Table 7 lists the occurrences and scores for each pat-
tern that is composed of three identical elements of a
property group. Four clusters of property groups that are
demonstrated to be useful in protein order/disorder pre-
diction are considered here. In Table 7, the occurrences of
the synthetic His purification tags present in both training
and testing data have been excluded because those succes-
sive Hs bias the statistics of the observed patterns in this
experiment, especially in the case of property group Aro-
matic. The results reveal that both the patterns composed
of Hydrophobic, and Hydrophobic, are more differential
than the pattern of three successive Hydrophobic residues.
For the property groups Polar, Small and Aromatic, it is
observed that at least one of the two child properties in
each property group deliver the patterns that are more dis-
criminative than the pattern of the parent property. This
reveals the benefit of decomposing the conventional
physicochemical properties when detecting differential
patterns.

Conclusion

More and more disordered regions are discovered in pro-
tein sequences, and many of them are found to be func-
tionally significant. Distinguishing disordered regions
from ordered regions in protein sequences facilitates the
exploration of protein structures and functions. The evo-

http://www.biomedcentral.com/1471-2105/7/319

lutionary information embedded in the PSSM tables has
been demonstrated useful in many problems that predict
the functional or structural properties of a given residue in
protein sequences. Our results in this paper demonstrate
that considering the condensed PSSM with physicochem-
ical properties and large window sizes further benefits the
performance of protein disorder prediction.

The second and the most remarkable contribution of this
paper is it removes some amino acid members from the
widely used physicochemical properties that are not use-
ful in predicting the disordered regions. This is achieved
by decomposing each original physicochemical property
into two disjoint sets that are with a propensity for order
and disorder, respectively. In addition, a hybrid wrapped
feature selection method that employs a uni-variant anal-
ysis and a cluster-based redundancy removal procedure is
proposed to derive a satisfied feature set efficiently.
Results on the independent testing data reveal that the
proposed predicting model DisPSSMP outperforms the
existing packages performing similar tasks without either
under-predicting or over-predicting the disordered
regions. Furthermore, the selected properties can be used
to derive more informative patterns that facilitate the
study of protein disorder. As more and more disordered
regions are found to be functionally significant, combin-
ing predicted information of secondary structures and
conversed regions for predicting disordered regions with
binding ability deserves further studies.

Table 7: The statistics of the property patterns with three identical residues in the ordered and disordered regions

Patterns # of matches in # subsequences Score
In ordered regions In disordered regions
# matches # seqs # matches # segs S, Sq

[Hydrophobic] [Hydrophobic] [Hydrophobic] 71229 2087 16534 1555 0.56 0.44
[Hydrophobic,] [Hydrophobic,] [Hydrophobic,) 14608 1746 2297 687 0.65 0.35
[Hydrophobicp] [Hydrophobicp] [Hydrophobicp] 4766 1224 2649 789 0.35 0.65
[Polar] [Polar] [Polar] 38084 1965 16390 1585 0.41 0.59
[Polary] [Polar,] [Polar,] 2530 927 762 372 0.50 0.50
[Polarp] [Polarp] [Polarp] 8808 1459 5705 1060 0.31 0.69
[Small] [Small] [Small] 37886 1949 15577 1630 0.42 0.58
[Smally] [Smally] [Smally] 2050 824 569 284 0.52 0.48
[Smally] [Smallp] [Smallp] 9742 1504 5662 1169 0.34 0.66
[Aromatic] [Aromatic] [Aromatic] 467 302 54 47 0.72 0.28
[Aromatic,] [Aromatic,] [Aromaticy] 219 159 20 17 0.76 0.24
[Aromaticp] [Aromatic] [Aromaticp] 5 5 4 4 0.27 0.73

Improvements in discriminating power are highlighted with bold font.
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Methods

In this section, we provide the details about the proce-
dures of constructing PSSMPs, calculating the propensities
for order/disorder of an amino acid, training a predicting
model, and selecting useful feature sets respectively.

Construction of PSSMP

For each protein in the training and testing data, we
employ the PSI-BLAST program [43] to construct its posi-
tion specific scoring matrix (PSSM). More specifically, the
derived PSSM table is a position specific scoring matrix of
20 amino acids, which provides the evolutionary informa-
tion about the protein at the level of residue types. We
name the feature set created based on PSSMs FS-PSSM,
which is considered as the baseline of employing evolu-
tionary information in protein disorder prediction. The
procedure of constructing FS-PSSM is shown in Figure 8.
The values in PSSMs, which each represents the likelihood
of a particular residue substitution at specific position, are
first rescaled to be within 0 and 1 using the logistic func-
tion as suggested in [44]:

1
1+exp(—x)’

flx)= (2)

where x is the raw value in profile matrices and f(x) is the
rescaled value of x. After that, the rescaled profiles are
organized into a number of w x 20 dimensional vectors,
each of which serves as the feature vector of a target resi-
due as the learning or predicting instances. When w is
odd, which is always the case in our experiments, the slid-
ing window of size w for acquiring the feature set of a
given residue is centred at the target residue.

We next construct the feature set of PSSMP as follows.
First, columns in the original PSSMs are grouped by the
user defined property groups and the raw values from dif-
ferent columns are summed up as a new feature column.
In a PSSMP table, the entry y;, of position i for property k
is defined as follows:

20

Vie = X, Arj X Xij. (3)
j=1

where

(1) i is the index of a position;

(2) A= 1, if the j-th type of amino acid belong in the k-th
property, and A, = 0, otherwise;

(3) x;is the raw value of the j-th type of amino acid in the
position i of the PSSM.

http://www.biomedcentral.com/1471-2105/7/319

The concept of building PSSMP is also exemplified in Fig-
ure 8, and we call the derived feature set as FS-PSSMP. As
will be explained the following subsection, different FS-
PSSMPs can be generated when different property groups
are specified in constructing FS-PSSMP.

Considering propensity for order or disorder

Table 8 lists the ten physicochemical groups that are
widely used in analyzing protein sequences [5,45]. This
paper proposes considering the propensity for order or
disorder of each amino acid when designing a property
group in construction of PSSMPs. The propensities for
order/disorder of different amino acids have been widely
discussed in the previous studies [13,17,19,21,22,39-42].
Some of them specifically provide a measure of propen-
sity based on the occurrences of each amino acid in differ-
ent regions of the datasets they collected [22,39,41]. In
this work, we recalculate the propensity for each amino
acid based our training data. The propensity P(AA;) of an
amino acid i toward ordered or disordered regions is
defined as follows:

p(agy = DR, (4)

where F(A4)) is the frequency of amino acid i in the train-
ing data and F,(AA;) and F,(AA,;) are the frequencies of
amino acid i in the ordered and disordered regions of the
training data. We say amino acid i has a propensity for
order if P(AA;) > 0, and verse visa.

We provide in Figure 9 the frequency of each amino acid
in the training data, and the propensity for order P(AA)).
The records shown in Figure 9 are compared with several
previous studies [6,22,39,41]. For most amino acids, the
propensity adopted in this paper is consistent with the
preference of at least one of the previous studies. How-
ever, for the amino acids H, A, and M, the propensity for
order/disorder is not certain according to the experimen-
tal results and the information collected at hand. More
attention has been paid on the amino acid H, since some
synthetic His tags present in the training data somewhat
bias the statistics provided in Figure 9. Even though, we
still adopt that H has a propensity for disorder because of
its charged characteristic.

Based on the records shown in Figure 9, each physico-
chemical property in Table 8 can be decomposed into two
disjoint set as new order/disorder-based property features,
as shown in Table 9. Three exceptions are: Aliphatic has
only three types of amino acid toward ordered regions,
and Negative and Proline have only the disorder type of
amino acids. It is noticed that there are some new proper-
ties which only comprise a single type of amino acid, such
as Aromaticp,, Positive,,, Charged,, and Tiny,,. All the prop-
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Sequence

>1A00B
RQLALEAKGETPSAVTRLSVVAKSEPQDEQSRSQSPRRIILSRLKAGEVD
LLEEELGHLTTLTDVVKGADSLSAILPGDIAEDDITAVLCFVIEADQITFE
TVEVSPKISTPPVLKLAAEQAPTGRVEREKTTR

PSSM ¢ PSI-BLAST
_________________________ 1
:R 26-124303-1431-24-3-1-2-3-2-73l
1Q 10114712033 1-142-1-13-=2-3 sidues
IL 2-3-4423343153104322-2 0| " s
:A 5222-1-22-1222-1-2-3-20-1-3-2-1l
L 223322243142 1-1-3-323:2 2,
T 010-1-1-1-122-1-1-1-12-1152-20
T 0-10-1-1-1-1-2-2-1-1-1-1-2-115-2-220
R -1602-31020-3-22-1-3-2-1-1-3-2-3
\/ . Creating feature set for each
20 amino acids . : .
residue by using a sliding window W
Transforming PSSM of amino The wx20 features of PSSM
acids into PSSM of properties
(PSSMP), using m properties as Feature-wise normalization ¢
an example
The feature set of PSSM
FS-PSSM
PSSMP v ( )
R 32 2 12 -0 10 6 2 3
:Q -26 0 -10 -9 -9 1 0 21
| .
IL 13 -32 -8 6 -7 -9 -7 -4 | w residues
:A 16 <19 2 5 -0 5 4 2
|L -13 23 -6 7 -9 -7 -5 3
T 10 -5 -3 -2 -8 4 2 -1
T 10 -5 -3 -2 -8 4 2 -1
R -22 0 -9 -8 -8 8 -2 -2
m properties Creating feature set for each

residue by using a sliding window v

The wxm features of PSSMP

Feature-wise normalization ¢

The feature set of PSSMP
(FS-PSSMP)

Figure 8
The procedure of preparing feature set for training and testing data.
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Table 8: Conventional Amino Acid Properties (Parent Properties)

http://www.biomedcentral.com/1471-2105/7/319

Property | L \'% C A G M F w H K R E Q D N S T P
Hydrophobic Y Y Y Y Y Y Y Y Y Y Y Y

Polar Y Y Y Y Y Y Y Y Y Y

Small Y Y Y Y Y Y Y Y Y
Aliphatic Y Y Y

Aromatic Y Y Y

Positive Y Y Y

Negative Y Y

Proline Y
Charged Y Y Y Y Y

Tiny Y Y Y Y

erty features will be considered in constructing the PSSMP
feature set for protein disorder prediction. Since the size of
the feature set is quite large and we do not expect all the
property features are useful in predicting protein disorder,
a feature selection method will be conducted to find a
combination of property features that benefits protein dis-
order prediction.

Classifier

In this study, the Radial Basis Function Network (RBFN)
is used as the classifier for predicting protein disorder. The
employed QuickRBF package [46] is an efficient tool for
constructing RBFN classifiers, which uses the Cholesky
decomposition technique to resolve the least mean square
error optimization problem when constructing a RBFN
classifier. We rely on the efficiency of QuickRBF such that
a wrapped method of feature selection can be used in con-
structing our predictor DisPSSMP, where the 'wrapped'
means that the classifier is employed in feature selection
process for evaluating the predicting power of the candi-
date feature set [47].

0.5 0.1
3 Propensity

04 H —

n 0.08

Frequency

A
03 006
02 A 1004
01 H 1 002
0 e I:I bigie)o
| L | NMT

Frequency

Propensity for order

O o=
WY FCT1TI H | \4 M D R
-0.1 — -0.02
-0.2 — 0.04
-0.3 = -0.06
-04 -0.08
-0.5 -0.1

Amino acid

Figure 9
The propensity for order and the frequency of each amino
acid in the training set.

According to the statistics provided in Table 1, the ratios
of disorder residues to order residues in datasets PDB693
and D184 are 1:3.83 and 1:2.03, respectively. In order to
tackle the problem of the skewed datasets with unbal-
anced number of positive and negative instances, equal
quantity of residues from ordered and disordered regions
is used in constructing the classifier. In other words, the
same amount of ordered residues as that of the disordered
residues in the training sets is randomly selected and the
others are removed before the training process.

Feature selection

It is doubted that all of the properties described in Table 8
and Table 9 are useful in the problem of disorder predic-
tion. Thus, it is suggested to conduct a procedure of fea-
ture selection on the training data to find a combination
of features that perform the best in this problem. Feature
selection is a common optimization problem for finding
the smallest subset of the features with the best classifica-
tion performance [48]. However, finding the optimal fea-
ture subset is not easy, since there are 2" possible
combinations when given n features. The algorithm of
evaluating all subsets such as exhaustive search is imprac-
tical for large n. Therefore, an alternative stepwise feature
selection is presented in this paper that takes the charac-
teristics of features into account to improve the computa-
tional efficiency. Three factors are frequently used in
evaluating the performance of a feature selection
approach: classification accuracy, size of the subset, and
computational efficiency [48]. The proposed hybrid
method employs the efficient uni-variant analysis first,
and uses a cluster-based redundancy removal procedure
to speed up the tedious stepwise feature selection that
explores the predicting power of combinations of multi-
ple features simultaneously.

Figure 10 shows the four steps of the proposed feature
selection mechanism. First, uni-variant analyses are per-
formed by conducting cross-validation on the training
data using PSSMPs with one property at a time. After that
the dependency analysis is executed in two levels. Since
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Table 9: Order/Disorder-based Amino Acid Properties (Child Properties)

Property | L \ C A G M F

Y

W H K R E

Hydrophobic,, Y Y Y Y Y
Hydrophobic, Y Y Y

Polar,

Polarp,

Small, Y Y

Small, Y Y

Aliphaticy* Y Y Y

Aromatic, Y
Aromaticy #

Positive, #

Positive

Negativep*

Proliney*#

Charged, *#

Charged,

Tinyo # Y

Tinyp Y Y

Y

Y Y

* Aliphatic,, Negativep, and Prolinep, are equivalent to Aliphatic, Negative, and Proline in Table 8, respectively.
# Aromaticy, Positive, Proline, Charged,, and Tiny, each comprises only a single type of amino acid.

the members of properties listed in Table 8 and Table 9 are
clearly specified, it is easy to put the related features in one
cluster. The first level considers the dependency between
the child properties in Table 9 and their parent properties
in Table 8, and the second level considers the hierarchy
dependency between the physicochemical properties
listed in Table 8. After the dependency analysis, the redun-
dancy removal step brings one feature or the combination

Uni-variant analysis

Dependency analysis

Redundancy removal

!

Stepwise feature selection

Figure 10
The flowchart of the hybrid feature selection mechanism.

of two features that performs the best in each cluster to the
next step, stepwise feature selection. The representative
properties from each cluster are sorted by their perform-
ance, and the final subset is constructed by adding prop-
erty features one by one until the performance of cross
validation on the training data cannot be improved.
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The executable file: http://biominer.bime.ntu.edu.tw/
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Operating system(s): Linux
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PSSM, position specific scoring matrix; PSSMP, con-
densed position specific scoring matrix with respect to
physicochemical properties; PDB, Protein Data Bank; NN,
neural networks; LR, logistic regression; DA, discriminant
analysis; CASP, the critical assessment of techniques for
protein structure prediction; TP, true positive; FP, false
positive; TN, true negative; FN, false negative; RBFN,
radial basis function networks.
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