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Abstract

Background: The use of global gene expression profiling to identify sets of genes with similar
expression patterns is rapidly becoming a widespread approach for understanding biological
processes. A logical and systematic approach to study co-expressed genes is to analyze their
promoter sequences to identify transcription factors that may be involved in establishing specific
profiles and that may be experimentally investigated.

Results: We introduce promoter clustering i.e. grouping of promoters with respect to their high
scoring motif content, and show that this approach greatly enhances the identification of common
and significant transcription factor binding sites (TFBS) in co-expressed genes. We apply this
method to two different dataset, one consisting of micro array data from 108 leukemias (AMLs)
and a second from a time series experiment, and show that biologically relevant promoter patterns
may be obtained using phylogenetic foot-printing methodology. In addition, we also found that 15%
of the analyzed promoter regions contained transcription factors start sites for additional genes
transcribed in the opposite direction.

Conclusion: Promoter clustering based on global promoter features greatly improve the
identification of shared TFBS in co-expressed genes. We believe that the outlined approach may be
a useful first step to identify transcription factors that contribute to specific features of gene
expression profiles.

co-expressed are frequently described as profiles or "signa-
tures of expression” [1] that may characterize specific dis-

Background
The use of global gene expression profiling to identify sets

of genes with similar expression patterns is rapidly
becoming a widespread approach for understanding bio-
logical processes. Typically, gene expression data obtained
by microarray analysis is organized in coherent groups of
genes by several statistical means such as hierarchical clus-
tering, self-organizing maps, K-means clustering, or prin-
ciple component analysis. Most of these approaches
readily identify clusters of tens to hundreds of genes that
demonstrate similar expression patterns. Large clusters of

ease states or subtypes of e.g., tumors. Similar expression
profiles may be seen in tumors of different origins suggest-
ing co-ordination of expression at some common level.
Hence, one logical systematic approach to study co-
expressed genes is to analyze their promoter sequences to
identify transcription factors that may be crucial for their
coordinated regulation.
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In eukaryotes the binding of transcription factors (TFs) to
the promoter sequences results in the formation of pro-
tein complexes involving several protein-DNA and pro-
tein-protein interactions. The DNA-binding TFs recognize
short DNA sequences, transcription factor binding sites,
identified by various experimental methods [2-4]. By
aligning sets of alternative binding sites it has been possi-
ble to determine the base pair preferences for each posi-
tion within the binding site. Matrices of preferences can
be transformed into a set of relative weights for each base
pair in a given position. These positional weight matrices
(PWM) are directly related to the relative binding energy
of the protein-DNA interaction. There exist several collec-
tions of PWMs of which the most comprehensive are
TRANSFAC [5] and Jaspar [6]. The PWMs provides a
description of the transcription factor binding sites (TFBS)
and can be used to scan genomic sequences to reveal
appropriate alignments to the matrix and hence predict
the location of putative TFBS. Several software tools such
as MotifScanner [7], MATCH [8] and Matlnspector [9] are
available for these purposes. A general problem in defin-
ing TFBS is their short sequences, which make them
highly abundant. Several metods have been proposed to
identify binding sites showing "significance" at some
level. In most cases these approaches are based on proba-
bilities of finding the motif in a certain segment of the
genome given a reference sequence [7,10,11].

In the present investigation we explore the possibility to
find common TFBS patterns in promoter sequences of co-
expressed genes as determined by micro array analysis. We
apply two approaches to characterize promoter
sequences. One that uses an analytical approach in which
a given segment (600 bp) of the upstream region is
searched for possible TFBS and significant binding sites
are determined by a statistical scoring system based on a
synthetic reference sequence [7]. A second approach is
based on identifying TFBS in evolutionarily conserved
sequences extracted from 3 kb upstream and approxi-
mately 1 kb downstream of the transcriptional start site
[12]. In both approaches only TFBS that are significantly
enriched in the promoters of the gene clusters are consid-
ered. As a final evaluation of the results we map the
respective TFBS precisely to the promoter regions. We
show that clustering of promoters based on motif similar-
ity greatly enhances the identification of common TFBS
patterns in co-expressed genes.

Results

We used the QTC clustering algorithm to identify co-
expressed genes in a dataset consisting of 108 acute mye-
loid leukemias (AML) [13]. In total 13 groups of co-
expressed genes were identified using a d-value of 0.30
and with a minimum of 15 cluster members (see Addi-
tional file 1 for genes in individual gene clusters). We used

http://www.biomedcentral.com/1471-2105/7/384

Refseqs or the most 5' end of mRNAs to define the tran-
scription start sites (TSS) and two methods to determine
overrepresented transcription factor binding sites in the
promoter regions. In the first approach 600 bp upstream
and 100 bp downstream of the tentative TSS's were
selected for analysis and significant TFBS identified using
the Motifscanner software and a third-order Markov
model as a background model [14]. The statistically over-
represented motifs in the gene clusters were then deter-
mined as described in Aerts et al. [7]. In the second
approach we selected syntenic regions between mouse
and humans from 3 kb upstream and 1 kb downstream of
the TSS. Evolutionarily conserved and high scoring bind-
ing sites identified by MATCH were kept for further anal-
ysis. Statistically over-represented motifs were then
determined by comparing obtained results with a set of
reference genes using a Mann-Whitney U-test [12]. For
both approaches we added the criteria that a given bind-
ing site should be present in all promoters in a given clus-
ter of genes to be considered significant. The first
approach detected enriched binding sites in 3 out of the
13 gene clusters but in no case was these binding sites
present in all promoters (Additional file 2). The second
approach detected enriched binding sites in 11 of the 13
clusters, but in no case was a binding site present in all
promoters (Additional file 2). Hence, no significant bind-
ing sites using the present criteria could be identified.

Promoter clustering

Similar expression profiles may be caused by the coordi-
nated action of more than one set of transcription factors.
In this situation co-expression as determined by corre-
lated expression profiles would be found but the pro-
moter regions would be heterogeneous with respect to
motif content. As a consequence, any over-representation
of binding sites in a sub-set of genes would go undetected
due to the presence of more than one regulated set of
genes. We hypothesized that co-regulated genes would
show similar or overlapping patterns of binding site
motifs. To identify co-expressed genes with similar pro-
moter organizations, each promoter sequence in a given
cluster of co-expressed genes was transformed into a string
of motifs based on all high scoring motifs present in the
assumed promoter. To determine the similarity between
promoters we used the Jaccard algorithm. This algorithm
calculates similarity by estimating the fraction of shared
binding sites among binding sites present in either of two
promoters, and hence the algorithm does not consider the
absence of a motif in two promoters as an indication of
similarity. To identify subsets of genes with similar pro-
moter regions we used hierarchical cluster analysis and
the Wards algorithm for cluster formation. The hierarchi-
cal clustering generally produced two or more distinct
groups of promoters in each original gene cluster, irre-
spectively if the -600 bp/+100 bp or the syntenic regions
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Promoter Clustering. [A] Promoter clustering of QTC Cluster 2 from the AML data set and [B] of QTC Cluster 7 from the
serum response data set. Promoter clustering was based on TFBS present in the -600/+100 region. [C] Promoter clustering of
QTC Cluster 2 from the AML data set and [D] of QTC Cluster 7 from the serum response data set using evolutionarily con-
served TFBS. Genes with known orthologs are considered for the analysis.

were used for the analysis (Figure 1). Consequently, most
gene clusters were composed of genes with divergent pro-
moters as determined by motif patterns. The resulting
clusters of promoters (genes) were, however, dependent
on the method used to extract the TFBS motif patterns
(Figure 1). In some occasions single genes (promoters)
behaved as outliers by forming a one-member subcluster.

The analyses of gene promoters clustered by the -600 bp/
+100 bp regions with the Motifscanner software did not
yield any groups of genes with enriched binding sites
present in all promoters. These results were independent
of the prior probabilities and background models used
[7]- The analysis of genes that showed clustering due to
similarities within syntenic regions showed overrepre-
sented binding sites in 18 of the 26 subclusters, and in 11

subclusters at least two binding sites were present in all of
the investigated promoters (Table 1). The number of TFBS
present in all genes within a given cluster varied between
2 and 57. No correlation between gene cluster size and the
number of shared TFBS was seen. To validate the
approach we produced 30 groups of 30 randomly selected
genes (Additional file 3) that were subjected to promoter
clustering. This resulted in a total of 67 subclusters. Each
subcluster was then subjected to promoter analysis as out-
lined above (Additional file 4). Only seven subclusters
showed two or more significant bindings sites present in
all promoters, which is significantly lower than seen
among the co-expressed genes (p = 0.0005, 2 test), and
indicates a false discovery rate of about 10%. Even though
the promoter clustering was effective in partitioning the
promoters into groups with enriched and shared TFBS, no
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Table I: Significant TFBS of QTC subclusters from the AML data set.

Significant TFBS present in all promoters of a given cluster

AHR, AP, AREB6, ATATA, BARBIE, CAAT, CDPCR3HD, CEBPDELTA, CETSI168, CETSIP54,
CHOP, CP2, E2FI, ELKI, ETSI, ETS2, FOXD3, FOX]2, FOXO4, FREAC2, FREAC7, GATA,

GATAI, GATA2, GATA3, GFIl, HAND | E47, HEB, HFH3, HFH8, HNF3ALPHA, HNF3B, HNFé,
IKI, IPFI, LDSPOLYA, LHX3, LMO2COM, MAZ, MTATA, MYOD, NFY, NKX25, OCTI, PADS,

POUIFI, RFXI, S8, SOX9, TALIBETAE47, TATA, TCFIP, TGIF, TITFI, XFDI, XFD3, ZTA

BARBIE, CAAT, CEBPDELTA, ELKI, ETSI, ETS2, FOX]2, FOXO4, FREAC7, GATA, GATAI,

GATAS3, GFIl, HFH3, HNF3ALPHA, HNF3B, LMO2COM, TGIF

Clusters Subclusters Number of genes
| 1A 13 Significant TFBS but not present in all
1B 16 No significant
2 2A 7 API, CETSIP54, ETSI, HANDIE47, MYOD
2B 7 No significant
2C 14 No significant
3 3A 3
3B 12 No significant
3C 6 CAAT, CMYB, FOXO4
4! - - -
5 5A 6 Significant TFBS but not present in all
5B 3 No significant
5C 10 API, BARBIE, ER, GATA, GATAI, LMO2COM
6 6A 8 Significant TFBS but not present in all
6B 7 Significant TFBS but not present in all
7 7A 3 FOXO4, MYOD
7B 6 No significant
8 8A 7
8B 6 No significant
9 9A 7 No significant
9B 5 CETS168, IKI, MYOD, NRF2
10 10A 4 Significant TFBS but not present in all
10B 5 API, CETSIP54, ER, FOXO4, GATAI
I 1A 5 No significant
1B 6 GATA, IKI, MYOD
12 12A 4 GATAI, GATA2
12B 7 Significant TFBS but not present in all
13 13A 3 No significant
13B 5

CETSI168, CMYB, IKI, MYCMAX, NRF2, TFIlI

I'No subclusters formed.

common binding sites were found in 15 out of the 26 sub-
clusters. By plotting the average sizes of the evolutionarily
conserved regions for each gene cluster it became evident
that an average size of conserved sequence exceeding 600
bp (Figure 2) is necessary to identify common patterns of
TEBS applying the present criteria.

Promoter organization

To evaluate the organization of the promoters further,
TFBS were mapped to the promoter sequences in the
respective genes. In Figure 3 results for cluster 5C, contain-
ing 9 genes with 6 specific TFBS, and cluster 8A, contain-
ing 7 genes with 17 specific TFBS, are shown. An overall
increased clustering of binding sites is seen in the proxim-
ities of the TSS. In addition, many promoters show local-
ized clustering of several binding sites at some distance
from the assumed TSS. The evolutionarily conserved TFBS
in the MFAP3 promoter region were located in three short
patches at some distance from the first exons of MFAP3.
To investigate if the observed clustering of TFBS could be

caused by alternative promoter use, each gene was
checked for alterative Refseqs. No alternative promoters
were however suggested. On the other hand, the 3 kb
upstream regions of LOC90799, KIAA0652, and Clorfl6
in cluster 5C contained possible TSS of additional genes.
The first exon of DDX5 is located about 750 bp upstream
of the LOC90799 TSS and the first exon of FLJ32675 is
located about 300 bp upstream the KIAA0652 TSS. The
TSS of DKFZP564C196 was located at position -121 bp
and a second exon at position -200 bp in the Clorf16 pro-
moter region. In cluster 8A the MFAP3 contained a TSS for
an additional gene, C5orf3, at position -132 bp and the
GSK3B upstream region contained the LOC389143 TSS at
-1150 bp. In all cases was the additional gene transcribed
in the opposite direction as the index gene, and hence the
promoters bi-directional.

Searching with transcription factor expression profiles
We then identified all DNA binding transcription factors
(DBTF) on the array that were present in the TRANSFAC
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Mean size of evolutionarily conserved regions in the gene clusters. The clusters with non-significant binding sites (ns)
have mean sizes of evolutionary conserved regions less than 600 bp and clusters with significant binding sites (s) mean sizes

greater than 600 bp.

database and searched for genes with expression profiles
that correlated with the DBTF expression profiles. We
identified 5 gene clusters with at least 15 gene members
corresponding to the transcription factor genes FOXO3A,
MAX, SP3, STAT3, and TGIF2, respectively (See Additional
file 5 for the individual genes in the respective gene clus-
ters). The evolutionarily conserved TFBS were mapped on
each promoter region (-3 kb/+1 kb region) and the genes
within the respective clusters subjected to promoter clus-
tering as described above. Enriched TFBS were found in 10
of 13 subclusters, and in 6 clusters TFBS were present in all
genes within the subcluster (Table 2). Cluster 1B specific
for FOXO3A contained five genes, including FOXO3A,
that all contained CAAT, CETS1p54, and FOXO4 sites.
Furthermore, all genes contained additional FOXO1 or
FOXO3A sites (Figure 4A). The organization of the
FOXO3A upstream region showed two clusters of binding
sites, and indeed two Refseqs with different 5'-ends
(NM201559 and NM001455) exists for FOXO3A indicat-
ing the presence of alternative FOXO3A promoters. The

fact that FOXO3A was a part of the clusters could indicate
the presence of an auto-regulatory circuit for this gene
clusters. Similarly, all genes, including TGIF2, within clus-
ter 5B contained TFBS for TGIF, again suggesting an auto-
regulatory loop (Figure 4B, Table 2). As TGIF2 may act as
a transcriptional repressor we searched for genes nega-
tively correlated to TGIF2 and performed promoter analy-
sis. Nine out of 32 negatively correlated genes (CCL3,
DBP, ENTPD1, FOS, GLB1, NICAL, PEPD, PTPNS1, and
UNC119) were shown to have TGIF binding sites, ranging
from 1 to 5 per promoter, we did, however, not see a sig-
nificant enrichment of TGIF binding sites.

Analyzing time series data

We then analyzed the serum induced gene expression data
described by Chang et al. [15]. The co-expressed genes
were identified by using the QTC algorithm and chrono-
logically ordered with respect to appearance according to
their median gene expression profiles. Syntenic regions in
the -3 kb and +1 kb regions were analyzed for significant
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lllustration of promoters regions obtained from analyses of the AML data set. [A] Cluster 5C and [B] Cluster 8A.
For each gene the 3 kb upstream and | kb downstream from the TSS is shown and the positions of significant transcription fac-
tor binding sites indicated by a color code. Boxes, exons; green arrows, transcription start sites for the investigated gene; red
arrows, transcription start sites of additional genes; red bars, exons of additional genes.

TFBS but none of the clusters showed enriched TFBS  In general, TFBS for transcription factor genes expressed
present in all promoters of their gene members. However,  during the early stages of serum induction were enriched
after promoter clustering, enriched TFBS that were present ~ in promoters of late expressing genes. For example, SRF
in all promoters was seen in 17 out of 43 subclusters  was expressed in the early gene cluster 6C and enrichment
(Table 3). for SRF sites was seen in the late gene clusters 9A, 9C, and
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Table 2: Significant TFBS of PTM subclusters from the AML data set.
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Cluster! Subclusters Number of genes Significant TFBS present in all promoters of a given cluster?
FOXO3A 1A 3 No significant TFBS
1B 6 CAAT, CETSIP54, FOXO4 (FOXOI (4/6) FOXO3 (4/6))
I1C 4 No significant TFBS
MAX 2A 12 Significant TFBS but not present in all
2B 13 API1, BARBIE, GATA, GATAI, HFH3, LMO2COM
SP3 3A 6 Significant TFBS but not present in all
3B 8 No significant TFBS
3C 5 Significant TFBS but not present in all
3D 13 AP1, BARBIE, CAAT, CEBPDELTA, CETSIP54, FOXO4, GATA, GATAI, LMO2COM, NKX25,
S8
STAT3 4A 6 MAZ, NRF2
4B 6 APIl, GATA, GATAI, LIMO2COM
TGIF2 5A 7 Significant TFBS but not present in all
5B 4 CETSI36, ELKI, ETSI, FOXO4, GATA, GATAI, IK1, LMO2COM, NRF2, RFXI, SREBPI, TGIF,

USF

' DNA binding transcription factor used for cluster formation.

2 Significant TFBS present in all promoters of the subcluster genes and the TFBS in parenthesis are present in the fraction promoters indicated.

2C, even though SRF binding sites was not present in all
promoter sequences of the genes in these clusters. The
MYC gene was expressed as a member of the gene clusters
6C and showed binding sites in all members of the simul-
taneously expressed clustered 6B and in 12/20 promoters
in cluster 6A. MYC binding sites were also enriched in the
late gene clusters 7A, with MYC sites in 5/10 promoters,
and 10A, with MYC sites in 4/7 promoters, and in the late
cluster 2D that showed MYC sites in all the promoters.

Cluster 3A and 6A were selected for a more detailed anal-
ysis of the promoter organization. The late gene cluster 3A
was specific for E2F1 binding sites and contained 8 genes,
including E2F1. In addition, binding sites for
E2F1DP1RB, E2F1DP2, and E2F4DP2 were present in a
subset of the genes, suggesting an E2F1 auto-regulatory
circuit (Figure 5). The group of TFBS identified in CDC2
was located about 1900 bp upstream of the indicated TSS.
This TSS was determined by the start position of
NM_033379. There are, however, two RefSeqs for this
gene, one including (NM_001786) and one excluding
(NM_033379) the first untranslated exon. When the
untranslated and the first translated exons are indicated in
the graph, the predicted regulatory region in CDC2 is
located in close proximity to the untranslated first exon
(Figure 5). The 6A gene cluster contained 18 genes that all
showed AP1, FOXO4, GATA1, HFH3, HNF30 and HNF3f3
sites. Many of the promoter regions were rich in potential
binding sites and the promoter regions of MEF2D, CTGF,
eiF2A, DTR, ZNF281, and BCN1 showed blocks of
sequences highly rich in biding sites. Two genes showed
the presence of TSS for additional genes. The eiF2A pro-
moter region contained the TSS for SERP1 336 bp up
stream of the eiF2A TSS, and the LOC63929 contained the
TSS of ST13 at position -460 bp relative the LOC63929

TSS. The ENC1 promoter region contained the TSS for
LOC401199 at position -521 and in the same orientation
as ENC1; in fact the non-coding first exon of ENCI is the
second coding exon of LOC401199 (Figure 6).

Discussion

In the present investigation we have pursued the presence
of common regulatory motifs in co-expressed genes iden-
tified by microarray analysis. One of our aims was to
investigate the possibility to reduce gene expression data
obtained by whole genome microarray analyses into
hypotheses regarding transcription factors responsible for
features of the expression profiles. We analyzed real
microarray data in the form of two different data sets, one
composed of expression profiles from 108 leukemia [13]
and one of serum induced expression changes in resting
fibroblasts [15]. The two datasets hence represent two dif-
ferent types of data, one with several stationary states i.e.,
different tumor cases, and one a transition from one state
to another in the form of a time series experiment. The
major assumption was that co-regulated genes show
enrichment for common transcription binding sites in
their promoter regions.

A crucial step in the analysis is to determine the transcrip-
tion start sites. We made use of Refseqs or, when RefSeqs
were not available, the longest available mRNA sequence
to determine putative TSS. Even though this strategy will
not determine the precise position of the TSS in all
instances we assumed that by analyzing relatively large
regions covering the tentative TSSs relevant TFBS would
be detected. Sequence comparisons of human and mouse
genes has revealed that homologous sequences in the
vicinity of the TSS have an average length of about 510 bp
[16]. Hence in a first approach we first limited the analysis
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Figure 4

lllustration of promoters regions obtained from analyses of the AML data set by seaching with known tran-
scriptions factors. [A] Cluster |B and [B] cluster 5B. For each gene the 3 kb upstream and | kb downstream from the TSS is
shown and the positions of significant transcription factor binding sites indicated by a color code. Boxes, exons; green arrows,

transcription start sites.

to the 600 bp upstream and 100 bp downstream of the
TSS. In this approach we used Motifscanner to identify
high scoring TFBS in the promoter regions of the respec-
tive co-expressed genes and then identified overrepre-
sented sites using the algorithm of Aerts et al. [7]. As an
alternative approach we used phylogenetic foot-printing
[17]. Phylogenetic foot-printing is based on the notion
that non-coding genomic sequences important for gene
regulation will be more highly conserved than segments
that has no influence on gene expression. Hence, several
algorithms limit the analysis to syntenic regions shared by
two or more sequenced species [18]. The analysis of con-
served non-coding has led to the conclusion that
sequences also located to introns and to within 5 kb
upstream of tentative TSSs may be of importance for gene

regulation [19]. A further development is to only consider
evolutionarily conserved TFBS.

To identify groups of co-expressed genes we used the QTC
algorithm [20]. The QTC algorithm works by forming a
candidate gene cluster with the first gene as a seed and
grouping genes with the highest correlation iteratively in
a way that minimizes the cluster diameter d, until no fur-
ther genes may be added without exceeding a predeter-
mined d-value. This procedure is performed with all genes
in the data set as a seed. The largest cluster is then retrieved
and the procedure repeated excluding the genes compris-
ing the first cluster. This makes sure that the largest and
most coherent clusters of genes are formed. An advantage
of this method is that the quality of the gene clusters, the
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Table 3: Significant TFBS of QTC subclusters from the serum response data set.

Cluster Time point Number of genes

Significant TFBS present in all promoters of a given cluster!

DBTF part of
gene cluster?

1A 3 8 API, ETSI, RFXI (SRF 3/8)

1B 3 12 Significant TFBS but not present in all

1A 4 14 No significant TFBS

IB 4 8 CEBPDELTA

I1C 4 21 Significant TFBS but not present in all

1D 4 17 No significant TFBS

6A 4 20 AP, FOXO4, GATAI, HFH3, HNF3ALPHA, HNF3B (MYCMAX 12/20))

6B 4 7 ARNT, HIFI, MYCMAX, NMYC, USF

6C 4 24 No significant TFBS MYC, SRF

8A 4 17 Significant TFBS but not present in all

8B 4 10 Significant TFBS but not present in all

4A 5 I No significant TFBS

4B 5 10 CETSIP54, ETSI, ETS2, IKI

9A 5 6 API, BARBIE (SRF 2/6)

9B 5 15 No significant TFBS

9C 5 13 Significant TFBS but not present in all (SRF 3/13)

14A 5 5 No significant TFBS

14B 5 6 Significant TFBS but not present in all

14C 5 10 Significant TFBS but not present in all

12A 5 I Significant TFBS but not present in all

12B 5 ) RFXI

7A 6 10 API, BARBIE, CETSIP54, CREL, FOX]2, FOXO4, GATAI, HAND|E47, TCF4
HFH3, HNF3ALPHA, HNF3B, IKI, NKX25, RFX| (MYCMAX 5/10, TCF4
6/10)

7B 6 8 No significant TFBS

7C 6 14 FOXO0O4

7D 6 I Significant TFBS but not present in all

I15A 6 17 Significant TFBS but not present in all

15B 6 6 No significant TFBS

5A 7 13 AREBS, IK|

5B 7 5 CAAT, NFY

2A 9 19 No significant TFBS

2B 9 16 Significant TFBS but not present in all

2C 9 16 AP| (SRF 4/16)

2D 9 7 ARNT, HIFI, MYCMAX, NMYC, USF

10A 9 7 API, BARBIE, CAAT, CDPCR3HD, CABPDELTA, E2FI, ETSI, FOXJ2,
FOXO4, GATA, GATAI, GFIl, HFH3, HFH8, HNF3ALPHA, IPFI,
LMO2COM, MTATA, MYOD, TGIF (MYCMAX 4/7, TCF4 5/7)

10B 9 16 No significant TFBS

I13A 10 10 GATAI

13B 10 12 No significant TFBS

3A 12 8 E2F, E2FI (E2FIDPIRB (7/8), E2FIDP2 (5/8) E2F4DP2 (5/8) E2F

3B 12 12 GATAI

16A 3 7 No significant TFBS

16B - 18 No significant TFBS

I17A - 8 Significant TFBS but not present in all

17B - I No significant TFBS

I TFBS in parenthesis are present in the fraction of promoters indicated.
2 DNA binding transcription factors present in the respective subclusters.
3 Indicates flat profiles.

width of the cluster, may be adjusted by tuning the d-
value. However, despite the fact that reasonably narrow
gene clusters were used, the initial analyses revealed very
few groups of co-expressed genes with enriched and com-
mon TFBS. We then reasoned that similar expression pro-
files might be caused by the coordinated action of more

than one set of transcription factors. A biological situation
in which this may be conceived is the alteration of gene
expression induced by the activation of a receptor protein.
In this case genes may be activated in a coordinate fashion
through different paths e.g., the RAS-RAF-MEK and the
JAK-STAT pathways that ultimately induces different sets
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Promoter clustering of QTC 3 genes obtained from analyses the serum response data. [A] Subcluster 3A (green
box) including the E2F| gene (red box). [B] The organization of the promoters of the cluster 3A genes. For each gene the 3 kb
upstream and | kb downstream from the TSS is shown and the positions of significant transcription factor binding sites indi-
cated by a color code. Boxes, exons; green arrows, transcription start sites for the investigated gene; red arrows, transcription
start sites of additional genes; red bars, exons of additional genes.
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lllustration of QTC 6A gene promoters obtained from the serum response data. For each gene the 3 kb upstream
and | kb downstream from the TSS is shown and the positions of significant transcription factor binding sites indicated by a
color code. Boxes, exons; green arrows, transcription start sites for the investigated gene; red arrows, transcription start sites

of additional genes; red bars, exons of additional genes.

of transcription factors in a coordinated fashion. An alter-
native situation is a hierarchical organization of TFs in
which one transcription factor, or one set of transcription
factors, activates sets of downstream transcription factors,
which in turn induce the cellular response. In both these
scenarios co-expression would be found but the promot-
ers responsible for the final response would be activated
by more than one set of transcription factors. As a conse-
quence, an enrichment of binding sites could go undetec-
ted due to its presence in only in a sub-set of promoters.

To identify co-expressed genes with similarly organized
promotors we transformed each promoter into a string of
significant or evolutionarily conserved TFBS present in the
promoter and then calculated the Jaccard's distances
between promoters. The Jaccard algorithm estimates the
fraction of shared binding sites in two promoters and it
does not consider a shared absence of a TFBS as an indica-
tion of similarity. This latter feature is important as there
will be promoters negative for a large number of cis-ele-
ments when comparing large number of genes. An analo-
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shown and the positions of significant transcription factor binding sites indicated by color codes. Boxes, exons; green arrows,

transcription start sites.

gous measure of promoter similarity has been proposes
by Hannenhalli and Levy [21].

By repeating the analyses of co-expressed genes that also
showed similar promoter regions several biologically rel-
evant promoter patterns were identified. The analysis of
the serum induced gene expression revealed a temporal
organization of TF expression and enrichment for the cor-
responding TFBS in promoters of the late expressing
genes. The MYC gene was expressed as a member of early
gene cluster 6. Interestingly, MYC was expressed as a part
of subcluster 6C, in which no significant TFBS were iden-
tified, whereas MYCMAX sites were present in all cluster
6B genes and in 12 out of the 20 cluster 6A genes. A pos-
sible interpretation of this data is that an external signal
activate MYC which in turn, as an immediate response,
activates genes in clusters 6A and 6B which hence show
coordinated expression with MYC. MYCMAX sites were
also enriched in the later clusters 7A and 10A, and present
in all of the promoters in the late gene cluster 2D. Hence,
these clusters may represent a late response to MYC acti-
vation. A similar temporal organization of SRF expression
and SRF binding sites was also suggested. A potential reg-
ulatory circuit involving E2F1 was identified in the time
series data. This circuit included MCM5 and CDC2, both
known to be regulated by E2F1 [23,24], as well as the lym-
phoid-specific helicase HELLS and USP1. USP1 is induced
during S-phase and switches off FANCD2-mediated DNA
repair as cells enter G2/M, or once DNA repair is com-
pleted, by promoting FANCD?2 de-ubiquitination. Hence,
both HELLS and USP1 are associated with DNA replica-
tion. The promoter regions of these genes contained sev-
eral E2F and E2F related binding sites in close vicinity of
their TSS. The fact that the transcription factor E2F1 is a
part on the gene cluster suggests that the expression of the
other genes in the cluster is maintained once E2F1 is acti-
vated. Similar auto regulatory loops were also suggested
for the FOXO3A and TGIF1 transcription factors.

In at least two genes, FOXO3A and CDC2, alternative pro-
moters were suggested. In the CDC2 case several E2F
related TFBS preceded the most upstream first exon

whereas no significant cis-elements were seen in the prox-
imity of the alternative downstream first exon. Both the
human coding sequence and the mouse ortholog cdc2a
show an untranslated first exon. In humans two Refseqs
exist for CDC2, one including and one excluding the
untranslated first exon, that both result in the same pro-
tein whereas the mouse ortholog only produce one tran-
script (NC_000076). This may indicate that the second
human promoter have evolved after the divergence of
human and mouse and hence that this promoter is not
detected by phylogenetic foot-printing. In FOXO3A, clus-
ters of TFBS preceding the two alternative first exons were
clearly seen. By combining information from the AML
and the time series data a tentative consensus FOXO3A
promoter organization may be obtained (Figure 7). This
derived organization of the promoter region shows that
the most upstream promoter contain 9 AP1, 2 CAAT, 7
CETS1P54, 3 FOXO4, 10 GATA1, and 6 HFH3 sites
whereas the second promoter contains 7 AP1, 20
CETS1P54, 3 FOXO4, 10 GATA1 and 3 HFH3 sites.
Hence, the major differences between the promoters are
the numbers of CETS1P54 and HFHS3 sites.

The investigation also identified some potential limita-
tions of the approach. Several of the analyzed promoter
regions showed the presence of TSS for additional genes.
The associated genes were transcribed in the opposite
direction to the index genes in all but one case and hence
the promoters were bi-directional. The observed fre-
quency, 15%, of bi-directional promoters is close to the
fraction believed to be present in the human genome [22].
Bi-directional promoters may at first hand seem to com-
plicate the analysis. However, as these promoters coordi-
nate the expression of the two flanking genes and anti-
regulation is believed to occur only in a minority of the
cases [22], they may be treated as single promoters.

In spite of the stringent criteria used to identify significant
binding sites, common sites were found in a large propor-
tion of the investigated gene clusters. The limiting feature
in the remaining clusters is most likely related to the aver-
age size of the conserved sequences in the promoter
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regions. We could show that the average size of the evolu-
tionarily conserved regions had to exceed 600 bp to result
in positive outcomes using the indicated criteria for con-
served sequences and for high scoring PWM's. Hence,
only clusters of co-expressed genes in which all members
show considerable conserved regions within their pro-
moter regions are amiable for analysis. The fraction of
promoters amenable for analysis would most likely be
increased if the criteria for identifying evolutionarily con-
served segments or for identifying putative bindings sites
were relaxed. A possible alternative approach would thus
be to treat each cluster of promoters individually and
decrease the criteria in a stepwise fashion until an opti-
mum setting is reached for each promoter cluster. Even
though there may be advantages of such a procedure, it is
also linked with several computational problems, such as
determining when optimal settings have been achieved.
This approach was therefore not pursued further.

Even though mapping of significant binding sites within
the promoter regions frequently revealed clusters of TFBS
in close vicinity of the TSS, a large fraction was also
located at some distance form the TSSs. A particular fea-
ture was the presence of segments 100-600 bp in size with
a high density of cis-elements. A striking example of such
organization is the promoter of MFAP3 with three short
sections of binding sites at some distance from the TSS
and no significant sites at the TSS. In some genes these seg-
ments coincided with exons but in most cases not. The
nature of these high-density TFBS regions may be several.
Some may have enhancer element activities and may
rather be involved in recruiting transcription factor mole-
cules than in the actual initiation of transcription. Alterna-
tively, promoters may contain evolutionarily conserved
regions not involved in transcription. In this latter case
TFBS detected within the segments will still be evolution-
arily conserved but not functional e.g., a first step to
unravel the nature of these regions would be to compare
the bioinformatical data with chromatin immunoprecipi-
tation analyses [25].

Conclusion

We have shown that that it is possible to identify biologi-
cal relevant patterns in promoters of co-expressed genes
using microarray data. A critical step to succeed in this
analysis was not only to identify genes with correlated
expression but also to classify genes with respect to global
promoter features. Our intention was not to arrive at a
fully working method for the analysis of promoter
regions. We believe that this goal can only be reached if a
large number of practical problems are solved, problems
that may take several investigation to resolve. Our starting
point was microarray data and the question if given a
microarray data set it is possible to produce hypothesis
about transcription factors that may be responsible for

http://www.biomedcentral.com/1471-2105/7/384

some of the features in the expression profiles. Even
though our aim was not to map promoters in detail we
believe that the outlined approach may be a useful first
step to understand the underlying factors that determines
specific features of gene expression profiles.

Methods

Data sets

The AML dataset described by Bullinger et al. [13] was
downloaded from the Gene expression Omnibus [26] to
contain 6283 genes/reporters. Eleven cases showed a high
frequency of missing values (>1800 missing values) and
were excluded from further analyses. Reporters for identi-
cal genes were merged and genes with at least 80% values
were selected and corrected for missing values by KNN
imputation using K = 12 [27]. The final data set included
4651 genes and 108 cases. The time series data described
by Chang et al. [15] was downloaded from the Stanford
Microarray Database [28]. Reporters for identical genes
were merged and genes with at least 80% values were
selected and corrected for missing values by KNN imputa-
tion using K = 12 resulting in a dataset of 568 genes and
16 time points. Expression values for t = 0 was obtained
by the mean expression values of all experiments desig-
nated t = 0.

Clustering methods

To find genes with similar expression we used QTC (Qual-
ity Cluster algorithm) [20] and PTM (Pavlidis Template
Matching) [29]. QTC works by forming a candidate clus-
ter of the first gene and grouping genes with the highest
correlation iteratively in a way that minimizes the cluster
diameter d, until no further genes may be added without
exceeding a predetermined d-value. This procedure is per-
formed with all genes in the data set as a seed. The largest
cluster is then retrieved and the procedure repeated
excluding the genes selected for the preceding cluster. This
makes sure that the largest and most coherent clusters of
genes are formed. We used diameter 0.3 and the cluster
size of at least 15 members for the AML data, and diameter
0.2 and the cluster size of at least 15 members for time
series data. The d-values were adjusted empirically to
result in reasonably small clusters of genes, 50 or less,
showing high correlation. The minimum number of clus-
ter members was set to 15 to ensure that a sufficient
number of the identified genes also showed mouse
orthologs. We identified genes encoding DNA binding
transcription factors using GO id GO:0003677 from the
AmiGO database [30] and retrieved genes with similar
expression profiles by using the PTM clustering algorithm.
The PTM algorithm forms clusters by finding the correla-
tion between two profiles. We used a Pearson correlation
value r > 0.6 for the AML dataset and a minimal cluster
size of 15, for the time series data we used r > 0.85 and a
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minimal cluster size of 15. We used the TMeV software
[31] to perform the above clustering algorithms.

Promoter sequences and identification of mouse orthologs
We used RefSeqs start positions [32] and for genes with no
RefSeqgs the most 5' mRNA sequence information as TSS
[33]. We retrieved RefSeqs, mRNA information, and pro-
moter regions from the UCSC Genome browser database
[34] and downloaded orthologous mouse gene informa-
tion from the from the JaxOrtholog table [35]. In cases
where orthologous mouse gene information was not
present in the Jaxortholog table, we use the HomoloGene
position information [36] and retrieved the promoter
regions manually from the UCSC. Promoter regions, 3000
bp upstream and 1000 bp downstream of the tentative
TSS, for these genes were retrieved from the UCSC
Genome browser database. We used the BLAST program
[37] to retrieve homologous sequences and the criteria
€<0.001 to identify evolutionary conserved regions.

Mapping and computing significance of TFBS

Two different approaches for mapping of TFBS and calcu-
lating their significance were used. First the Motifscanner
program, implemented in the TOUCAN software 7], was
used to map the TFBS and a third-order Markov back-
ground model was used to identify significant binding
sites [14]. We used a prior probability of 0.2, the probabil-
ity of finding one instance of a given motif model and the
background model, as this is the standard setting in the
TOUCAN software [7] and analyzed 600 bp upstream and
100 bp downstream of the putative transcription start site.
For the analyses of evolutionary conserved regions in pro-
moters we used the CONFAC software [12]. This software
maps TFBS using the MATCH program [8] and estimates
the enrichment for specific TFBS by a Mann-Whitney U-
test using random gene list as a reference. We used a core
matrix score > 0.95 and a matrix similarity score > 0.85 to
identify putative binding sites. The TRANSFAC v.8.3 data-
base containing 243 vertebrate PWMs was used to identify
transcription factor binding sites.

Promoter clustering

To identify similar promoters each promoter sequence
was first transformed into a string of TFBS motifs. Groups
of promoters were then transformed to a matrix format in
which columns correspond to specific promoters and
rows to presence or absence of individual TFBS. Hence, if
the gene with largest number of E2F binding sites has ten
such sites and the gene with next largest number has eight
sites there will be ten rows for E2F in which the first gene
will be scored with "presence” in ten rows and the second
gene with "presence" in eight and "absence" in two. In
this way, not only the presence or absence of the TFBS is
considered but also the number of binding sites. These
matrices were then used to generate similarity matrices

http://www.biomedcentral.com/1471-2105/7/384

using Jaccards algorithm. This algorithm does not con-
sider the absence of binding sites in two promoters as an
indication of similarity. If a simple matching coefficient is
used some promoters would appear very similar primarily
because they both lack the same features rather than
because the features they do have is shared. Hence, as the
more commonly used similarity measures based on Euc-
lidian distance or Pearson correlation would take shared
absence of binding sites as a sign of similarity, these meas-
ures may produce misleading estimates. To calculate the
Jaccards coefficient let A be the sum of matches (1, 1) that
is the number of TFBS present in both genes G1 and G2,
B and C be sum of mismatches (1, 0) and (0, 1) that is the
number of TFBS present in either of G1 or G2, and D be
sum of concomitant absence (0, 0) that is absence in both
genes G1 and G2, then the Jaccards similarity value (S) for
these two genes is S(G1,G2) = A/(A+B+C). To identify
genes with similar promoters we used hierarchical cluster
analysis using 1-S as a dissimilarity measure and Wards
algorithm for cluster formation.
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