
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Fast index based algorithms and software for matching position
specific scoring matrices
Michael Beckstette*1,2, Robert Homann1,2, Robert Giegerich2 and
Stefan Kurtz3

Address: 1International NRW Graduate School in Bioinformatics and Genome Research, Center for Biotechnology (CeBITec), Bielefeld University,
D-33594 Bielefeld, Germany, 2Technische Fakultät, Universität Bielefeld, Postfach 100 131, D-33501 Bielefeld, Germany and 3Zentrum für
Bioinformatik, Universität Hamburg, 20146 Hamburg, Germany

Email: Michael Beckstette* - mbeckste@techfak.uni-bielefeld.de; Robert Homann - rhomann@techfak.uni-bielefeld.de;
Robert Giegerich - robert@techfak.uni-bielefeld.de; Stefan Kurtz - kurtz@zbh.uni-hamburg.de

* Corresponding author

Abstract
Background: In biological sequence analysis, position specific scoring matrices (PSSMs) are widely used
to represent sequence motifs in nucleotide as well as amino acid sequences. Searching with PSSMs in
complete genomes or large sequence databases is a common, but computationally expensive task.

Results: We present a new non-heuristic algorithm, called ESAsearch, to efficiently find matches of PSSMs
in large databases. Our approach preprocesses the search space, e.g., a complete genome or a set of
protein sequences, and builds an enhanced suffix array that is stored on file. This allows the searching of
a database with a PSSM in sublinear expected time. Since ESAsearch benefits from small alphabets, we
present a variant operating on sequences recoded according to a reduced alphabet. We also address the
problem of non-comparable PSSM-scores by developing a method which allows the efficient computation
of a matrix similarity threshold for a PSSM, given an E-value or a p-value. Our method is based on dynamic
programming and, in contrast to other methods, it employs lazy evaluation of the dynamic programming
matrix. We evaluated algorithm ESAsearch with nucleotide PSSMs and with amino acid PSSMs. Compared
to the best previous methods, ESAsearch shows speedups of a factor between 17 and 275 for nucleotide
PSSMs, and speedups up to factor 1.8 for amino acid PSSMs. Comparisons with the most widely used
programs even show speedups by a factor of at least 3.8. Alphabet reduction yields an additional speedup
factor of 2 on amino acid sequences compared to results achieved with the 20 symbol standard alphabet.
The lazy evaluation method is also much faster than previous methods, with speedups of a factor between
3 and 330.

Conclusion: Our analysis of ESAsearch reveals sublinear runtime in the expected case, and linear runtime
in the worst case for sequences not shorter than ||m + m - 1, where m is the length of the PSSM and 
a finite alphabet. In practice, ESAsearch shows superior performance over the most widely used programs,
especially for DNA sequences. The new algorithm for accurate on-the-fly calculations of thresholds has
the potential to replace formerly used approximation approaches. Beyond the algorithmic contributions,
we provide a robust, well documented, and easy to use software package, implementing the ideas and
algorithms presented in this manuscript.

Published: 24 August 2006

BMC Bioinformatics 2006, 7:389 doi:10.1186/1471-2105-7-389

Received: 20 April 2006
Accepted: 24 August 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/389

© 2006 Beckstette et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 25
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/7/389
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16930469
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
Background
Position specific scoring matrices (PSSMs) have a long
history in sequence analysis (see [1]). A high PSSM-score
in some region of a sequence often indicates a possible
biological relationship of this sequence to the family or
motif characterized by the PSSM. There are several data-
bases utilizing PSSMs for function assignment and anno-
tation, e.g., PROSITE [2], PRINTS [3], BLOCKS [4],
EMATRIX [5], JASPAR [6], or TRANSFAC [7]. While these
databases are constantly improved, there are only few
improvements in the programs searching with PSSMs.
E.g., the programs FingerPrintScan [8], BLIMPS [4], and
MatInspector[9] still use a straightforward (mn)-time
algorithm to search a PSSM of length m in a sequence of
length n. In [10] the authors presented a method based on
Fourier transformation. A different method introduced in
[11] employs data compression. To the best of our knowl-
edge there is no software available implementing these
two methods. The most advanced program in the field of
searching with PSSMs is EMATRIX [12], which incorpo-
rates a technique called lookahead scoring. The lookahead
scoring technique is also employed in the suffix tree based
method of [13]. This method performs a limited depth
first traversal of the suffix tree of the set of target
sequences. This search updates PSSM-scores along the
edges of the suffix tree. Lookahead scoring allows to skip
subtrees of the suffix tree that do not contain any matches
to the PSSM. Unfortunately, the method of [13] has not
found its way into a widely available and robust software
system. In [14], the development of new, more efficient
algorithms for searching with PSSMs is considered an
important problem, which still needs better solutions.

In this paper, we present a new, non-heuristic algorithm
for searching with PSSMs. With any non-heuristic PSSM
searching algorithm, the performance in terms of sensitiv-
ity and specificity solely depends on the used PSSM and
threshold, i.e. given a PSSM and threshold, all these algo-
rithms give exactly the same results. For the generation of
PSSMs from aligned sequences, numerous different meth-
ods, were described in literature over the last decades
[1,5,15-17]. Rather than improving PSSMs, we focus on
improvements in terms of time and space efficiency when
searching with PSSMs, independently of their underlying
generation method. The overall structure of our proposed
search algorithm is similar to the method of [13]. How-
ever, instead of suffix trees we use enhanced suffix arrays,
a data structure which is as powerful as suffix trees (cf.
[18]). Enhanced suffix arrays provide several advantages
over suffix trees, which make them more suitable for
searching with PSSMs:

• While suffix trees require about 12n bytes in the best
available implementation (cf. [19]), the enhanced suffix

array used for searching with PSSMs only needs 9n bytes
of space.

• While the suffix tree is usually only computed in main
memory, the enhanced suffix array is computed once and
stored on file. Whenever a PSSM is to be searched, the
enhanced suffix array is mapped into main memory
which requires no extra time.

• While the depth first traversal of the suffix tree suffers
from the poor locality behavior of the data structure (cf.
[20]), the enhanced suffix array provides optimal locality,
because when searching with PSSMs it is sequentially
scanned from left to right.

One of the algorithmic contributions of this paper is a
new technique that allows to skip parts of the enhanced
suffix array containing no matches to the PSSM. Due to
the skipping, our algorithm achieves an expected running
time that is sublinear in the size of the search space (i.e.,
the size of the nucleotide or protein database). As a con-
sequence, our algorithm scales very well for large data
sizes.

Since the running time of our algorithm increases with the
size of the underlying alphabet, we developed a filtering
technique, utilizing alphabet reduction, that achieves bet-
ter performance especially on sequences/PSSMs over the
amino acid alphabet.

When searching with a PSSM, it is important to determine
a suitable threshold for a PSSM-match. Usually, the user
prefers to specify a significance threshold (i.e., an E-value
or a p-value) which has to be transformed into an abso-
lute score threshold for the PSSM under consideration.
This can be done by computing the score distribution of
the PSSM, using well-known dynamic programming (DP,
for short) methods, e.g., [12,21-23]. Unfortunately, these
methods are not fast enough for large PSSMs. For this rea-
son, we have developed a new, lazy evaluation algorithm
that only computes a small fraction of the complete score
distribution. Our algorithm speeds up the computation of
the threshold by factor of at least 3, compared to standard
DP methods. This makes our algorithm applicable for on-
the-fly computations of the score thresholds.

The new algorithms described in this paper are imple-
mented as part of the PoSSuM software distribution. This
is available free of charge for non-commercial research
institutions. For details, see [24]. Parts of this contribution
appeared as [25] in proceedings of GCB2004.
Page 2 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
Results
PSSMs and lookahead scoring: LAsearch

A PSSM is an abstraction of a multiple alignment of
related sequences. We define it as a function M : [0, m - 1]

×  → �, where m is the length of M and  is a finite

alphabet. Usually M is represented by an m × || matrix,

see Figure 1 for an example. Each row of the matrix reflects
the frequency of occurrence of each amino acid or nucleo-
tide at the corresponding position of the alignment. From
now on, let M be a PSSM of length m and let w[i] denote

the character of w at position i for 0 ≤ i < m. Further on,
w[i..j] denotes the string starting at position i and ending

at position j. We define for a

sequence w ∈ m of length m. sc (w, M) is the match score

of w w.r.t. M. The score range of a PSSM is the interval
[scmin(M), scmax(M)] with

 and

 . Given a

sequence S of length n over alphabet  and a score thresh-

old th, the PSSM matching problem is to find all positions j

∈ [0, n - m] in S and their assigned match scores, such that

sc (S[j..j + m - 1], M) ≥ th.

A simple algorithm for the PSSM matching problem slides
along the sequence and computes sc (w, M) for each w = S
[j..j + m - 1], j ∈ [0, n - m]. The running time of this algo-
rithm is (mn). It is used e.g., in the programs FingerPrint-
Scan [8], BLIMPS [4], MatInspector[9], and MATCH [17].

In [12], lookahead scoring is introduced to improve the
simple algorithm. Lookahead scoring allows to stop the
calculation of sc (w, M) when it is clear that the given over-
all score threshold th cannot be achieved. To be more pre-

cise, we define ,

maxd := max{M(d, a) | a ∈ }, and

for any d ∈ [0, m - 1]. pfxscd(w, M) is the prefix score of depth

d. σd is the maximal score that can be achieved in the last

m - d - 1 positions of the PSSM. Let thd := th - σd be the inter-

mediate threshold at position d. The correctness of looka-
head scoring, not shown in [12], is implied by the
following Lemma:

Lemma 1 The following statements are equivalent:

(1) pfxscd (w, M) ≥ thd for all d ∈ [0, m - 1],

(2) sc(w, M) ≥ th.

Proof: (1)⇒(2): Suppose that (1) holds. Then

 and

(2)⇒(1): Suppose that (2) holds. Let d ∈ [0, m - 1]. Then

sc w M M i w i
i
m

, : , []() = ()=
−∑ 0
1

sc M M i a a
i
m

min() : min{ (,) | }= ∈=
−∑ 0

1 

sc M M i a a
i
m

max() : max{ (,) | }= ∈=
−∑ 0

1 

pfxsc w M M h w hd h
d

, : , []() = ()=∑ 0

σd hh d
m:= = +

−∑ max
1

1

σm hh m
m

− =
−= =∑1
1 0max

sc w M M h w h pfxsc w M th th th
h

m

m m m, , [] , .() = () = () ≥ = − =
=

−

− − −∑
0

1

1 1 1σ

sc w M M h w h M h w h M h w h
h

m

h

d

h d

m
, , [] , [] , []() = () = () + ()

=

−

= = +

−
∑ ∑ ∑

0

1

0 1

1

== () + ()
= +

−
∑pfxsc w M M h w hd

h d

m
, , []

1

1

Amino acid PSSMFigure 1
Amino acid PSSM. Amino acid PSSM of length m = 10 of a zinc-finger motif. If the score threshold is th = 400, then only sub-
strings beginning with C or V can match the PSSM, because all other amino acids score below the intermediate threshold th0 =
th - σ0 = 400 - 398 = 2. That is, lookahead scoring will skip over all substrings which begin with amino acids different from C and
V. Here σd, d ∈ [0, m - 1] denotes the maximal score that can be achieved in the last m - d - 1 positions of the PSSM as defined
in the text.

A C D E F G H I K L M N P Q R S T V W Y thd σd

-19 92 -45 -49 -30 -36 -38 -12 -41 -21 -22 -40 -46 -44 -44 -30 -25 16 -35 -34 2 398
5 -17 17 22 -28 -15 -7 -23 -8 -27 -21 21 18 -7 -13 -9 9 -19 -33 -25 24 376
7 -8 -29 -28 2 -25 -10 25 -23 -4 -5 -25 -32 -26 -25 -18 13 22 -11 36 60 340

-29 99 -55 -61 -42 -45 -47 -31 -52 -34 -36 -49 -56 -55 -55 -38 -35 -29 -44 -46 159 241
-14 -22 14 22 -28 9 -8 -26 15 -27 -20 -7 -26 -3 31 -13 5 -23 -30 -24 181 219
-25 -34 -25 -16 -37 -30 -15 -36 45 -34 -26 -18 -35 -9 49 -25 -26 -33 -39 -31 230 170

7 -8 -25 -24 -19 -23 -22 4 -15 -10 -8 -19 -29 -21 11 -13 31 31 -31 -22 261 139
-34 -27 -44 -43 50 -41 -8 -16 -38 -14 -17 -39 -51 -40 -36 -39 -35 -21 -1 56 317 83

7 40 -16 -14 -9 -14 -6 -17 14 -20 -15 -10 -24 -11 12 15 9 -13 -16 20 357 43
-7 43 16 -7 -27 -15 -9 -24 -5 -26 -18 -6 -25 25 13 25 -8 -21 -30 -24 400 0
Page 3 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
Hence sc(w, M) ≥ th implies

. Since M(h, w[h])

≤ maxh for h ∈ [0, m - 1], we conclude

and hence

The Lemma suggests a necessary condition for a PSSM-
match which can easily be exploited: When computing
sc(w, M) by scanning w from left to right, one checks for
d = 0,1,..., m - 1, if the intermediate threshold thd is
achieved. If not, the computation can be stopped. See Fig-
ure 1 for an example of intermediate thresholds and their
implications.

The lookahead scoring algorithm (herein after called LAse-
arch) runs in (kn) time, where k is the average number of
PSSM-positions per sequence position actually evaluated.
In the worst case, k ∈ (m), which leads to the worst case
running time of (mn), not better than the simple algo-
rithm. However, k is expected to be much smaller than m,
leading to considerable speedups in practice.

Our reformulation of lookahead scoring and its imple-
mentation is the basis for improvements and evaluation
in the subsequent sections.

PSSM searching using enhanced suffix arrays: ESAsearch
The enhanced suffix array for a given sequence S of length
n consists of three tables suf, lcp, and skp. Let $ be a sym-
bol in , larger than all other symbols, which does not
occur in S. suf is a table of integers in the range 0 to n,
specifying the lexicographic ordering of the n + 1 suffixes
of the string S$. That is, Ssuf[0], Ssuf[1], ... ,Ssuf[n] is the
sequence of suffixes of S$ in ascending lexicographic
order, where Si = S[i..n - 1]$ denotes the i-th nonempty
suffix of the string S$, for i ∈ [0, n]. See Figure 2 for an
example. suf can be constructed in (n) time [26] and
requires 4n bytes.

lcp is a table in the range 0 to n such that lcp[0] := 0 and
lcp[i] is the length of the longest common prefix of
Ssuf[i - 1] and Ssuf[i], for i ∈ [1, n]. See Figure 2 for an exam-
ple. Table lcp can be computed in linear time given table
suf [27]. In practice PSSMs are used to model relatively
short, local motifs and hence do not exceed length 255.
For searching with PSSMs we therefore do not access val-
ues in table lcp larger than 255, and hence we can store lcp
in n bytes.

skp is a table in the range 0 to n such that skp[i] := min({n

+ 1} ∪ {j ∈ [i + 1, n] | lcp[i] > lcp[j]}). In terms of suffix
trees, skp[i] denotes the lexicographically next leaf that
does not occur in the subtree below the branching node
corresponding to the longest common prefix of Ssuf[i - 1]

and Ssuf[i]. Figure 2 shows this relation. Table skp can be

computed in (n) time given suf and lcp. For the algo-

rithm to be described we assume that the enhanced suffix
array for S has been precomputed.

In a suffix tree, all substrings of S of a fixed length m can
be scored with a PSSM by a depth first traversal of the tree.
Using lookahead scoring, one can skip certain subtrees
that do not contain matches to the PSSM. Since suffix trees
have several disadvantages (see the introduction), we use
enhanced suffix arrays to search PSSMs. Like in other algo-
rithms on enhanced suffix arrays (cf. [18]), one simulates
a depth first traversal of the suffix tree by processing the
arrays suf and lcp from left to right. To incorporate looka-
head scoring while searching we must be able to skip cer-
tain ranges of suffixes in suf. To facilitate this, we use table
skp. We will now make this more precise.

For i ∈ [0, n], let vi = Ssuf[i], li = min{m, |vi|} - 1, and
di = max({-1} ∪ {d ∈ [0, li] |pfxscd (vi, M) ≥ thd}). Now
observe that di = m - 1 ⇔ pfxscm-1 (vi, M) ≥ thm-1 ⇔ sc (vi, M)
≥ th. Hence, M matches at position j = suf[i] if and only if
di = m - 1. Thus, to solve the PSSM searching problem, it
suffices to compute all i ∈ [0, n] satisfying di = m - 1. We
compute di along with Ci[d] = pfxscd (vi, M) for any d ∈ [0,
di]. d0 and C0 are easily determined in (m) time. Now let
i ∈ [1, n] and suppose that di-1 and Ci-1[d] are determined
for d ∈ [0,di-1]. Since vi-1 and vi have a common prefix of
length lcp[i], we have Ci[d] = Ci-1[d] for all d ∈ [0, lcp[i] -
1]. Consider the following cases:

• If di-1 + 1 ≥ lcp[i], then compute Ci[d] for d ≥ lcp[i] while
d ≤ li and Ci[d] ≥ thd. We obtain di = d.

• If di-1 + 1 < lcp[i], then let j be the minimum value in the
range [i + 1, n + 1] such that all suffixes vi, vi+1,...,vj-1 have
a common prefix of length di-1+ 1 with vi-1. Due to the
common prefix we have pfxscd(vi-1, M) = pfxscd(vr, M) for
all d ∈ [0, di-1 + 1] and r ∈ [i, j - 1]. Hence di-1 = dr for
r ∈ [i, j - 1]. If di-1 = m - 1, then there are PSSM matches at
all positions suf[r] for r ∈ [i, j - 1]. If di-1 <m - 1, then there
are no PSSM matches at any of these positions. That is, we
can directly proceed with index j. We obtain j by following
a chain of entries in table skp: compute a sequence of
values j0 = i, j1 = skp[j0],...,jk = skp[jk-1] such that
di-1 + 1 < lcp[j1],...,di-1 + 1 < lcp[jk-1], and di-1 + 1 ≥ lcp[jk].
Then j = jk.

pfxsc w M M h w h thd h d
m

, , []() + () ≥= +
−∑ 1
1

M h w h
h d

m

h
h d

m

d, []() ≤ =
= +

−

= +

−
∑ ∑

1

1

1

1
max σ

pfxsc w M th M h w h th thd
h d

m

d d, , [] .() ≥ − () ≥ − =
= +

−
∑

1

1
σ

Page 4 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
These case distinctions lead to the program ESAsearch (see
Figures 3, 4).

We illustrate the ideas of algorithm ESAsearch, formally
described above, with the following example. Let M be a
PSSM of length m = 2 over alphabet  = {a, c} with
M(0, a) = 1, M(0, c) = 3, M(1, a) = 3, and M(1, c) = 2. For
a given threshold of th = 6 we obtain intermediate thresh-
olds th0 = 3 and th1 = 6. To search with M in the enhanced
suffix array for sequence S = caaaaccacac as given in Figure
2, we start processing the enhanced suffix array suf top
down by scoring the first suffix Ssuf[0] = aaaaccacac$ with
M from left to right. For the first character of Ssuf[0] we
obtain a score of pfxsc0(Ssuf[0],M)= M(0, a) = 1 which is
below the first intermediate threshold th0= 3. Hence we
set d0 = -1 and notice that we can skip all suffixes of S that
start with character 'a'. Further on, with a lookup in lcp[1]
= 3 we find that Ssuf[1] and Ssuf[0] share a common prefix of
length 3 and d0 + 1 = -1 + 1 < lcp[1] = 3 (second case
described above). The next suffix that may match M with
th = 6 is Ssuf[6] = caaaaccacac$. Suffixes Ssuf[1], Ssuf[2],... Ssuf[5]
can be skipped since they all share a common prefix with
Ssuf[0] of at least length 1. That is, they begin all with char-
acter 'a' and would also miss the first intermediate thresh-
old th0 = 3 when scored. We find Ssuf[6] by following a
chain of entries in table skp: skp[1] = 2, skp[2] = 3, and
skp[3] = 6. When scoring Ssuf[6] we compute pfxsc0(Ssuf[6],
M) = M(0,c) = 3 and pfxsc1(Ssuf[6], M) = M(0, c) + M(1, a)
= 6 and store them for reuse in C[0] and C[1]. Since

d6 = 1 = m - 1 = 1 holds, we report suf[6] = 0 with score sc
(Ssuf[6], M) = pfxsc1(Ssuf[6],M) = 6 as a matching position.
With lookups in lcp[7] = 2 and lcp[8] = 3 we notice that
Ssuf[7] and Ssuf[8] share a common prefix of at least two
characters with Ssuf[6]. Hence we report suf[7] = 6 and
suf[8] = 8 with score C[1] = 6 as further matching posi-
tions. We proceed with the scoring of Ssuf[9]. Since lcp[9] =
1 holds, we obtain the score for the first character 'c' from
array C with pfxsc0(Ssuf[9], M) = C[0]. After scoring the sec-
ond character of Ssuf[9], pfxsc1(Ssuf[9], M) = 5 <th1 = 6 holds
and we miss the second intermediate threshold and con-
tinue with the next suffix. The last two suffixes Ssuf[10] and
Ssuf[11] in suf do not have to be considered since their
lengths are smaller than to m = 2 (not counting the senti-
nel character $) and therefore they cannot match M. We
end up with matching positions 0, 6, and 8 of M in S with
match score 6. To find these matches, we processed the
enhanced suffix array suf top down and scored suffixes
from left to right, facilitating the additional information
given in tables lcp and skp to avoid rescoring of characters
of common prefixes of suffixes and to skip suffixes that
cannot match M for the given threshold.

Analysis
The Ci arrays can be stored in a single (m) space array C
as any step i only needs the Ci specific to that step. Ci solely
depends on Ci-1, and Ci[0..d - 1] = Ci-1[0..d - 1] holds for a
certain d<m, i.e., the first d entries in Ci are known from
the previous step, and thus C can be organized as a stack.

Relationship between enhanced suffix array and suffix treeFigure 2
Relationship between enhanced suffix array and suffix tree. The enhanced suffix array consisting of tables suf, lcp, skp
(left) and the suffix tree (right) for sequence S = caaaaccacac. Some skp entries are shown in the tree as red arrows: If skp[i] =
j, then an arrow points from row i to row j. For clarity, suffixes corresponding to suf[i] are given in table Ssuf[i].

 i suf[i] lcp[i] skp[i] Ssuf[i]

 0 1 12 aaaaccacac$
 1 2 3 2 aaaccacac$
 2 3 2 3 aaccacac$
 3 7 1 6 acac$
 4 4 2 6 accacac$
 5 9 2 6 ac$
 6 0 0 12 caaaaccacac$
 7 6 2 9 cacac$
 8 8 3 9 cac$
 9 5 1 11 ccacac$
10 10 1 11 c$
11 11 0 12 $

 accacac$
 ccacac$

 ccacac$
 ac$
 cacac$
 $
 aaaaccacac$
 ac$
 $

 cacac$
 $

$

0

a

a

a
a

c c

c

Page 5 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
No other space (apart from the space for the enhanced
suffix array) depending on input size is required for ESAs-
earch, leading to an (m) space complexity.

The worst case for ESAsearch occurs, if th ≤ scmin(M) (M
matches at each position in S), and no suffix of S shares a
common prefix with any other suffix. In this case looka-

Algorithm ESAsearchFigure 3
Algorithm ESAsearch. The algorithm ESAsearch formulated in pseudocode. See text for detailed explanations of the used
notions.

Algorithm 1: ESAsearch
input : An enhanced suffix array for sequence S$ consisting of tables suf, lcp and skp,

a PSSM M of length m, a threshold th, and intermediate thresholds thd,
0 ≤ d < m.

output: All matching positions of M in S and their associated matchscores.

depth ← 0;1

i ← 0;2

while i < n do3

if n − m < suf[i] then4

while (n − m < suf[i]) ∧ (i < n) do5

i ← i + 1;6

depth ← min{depth, lcp[i]};7

end8

if i ≥ n then return ;9

end10

if depth = 0 then score ← 0 else score ← C[depth − 1];11

d ← depth − 1;12

do13

d ← d + 1;14

score ← score + M(d, Ssuf[i]+d);15

C[d] ← score;16

while (d < m − 1) ∧ (score ≥ thd);17

if (d = m − 1) ∧ (score ≥ th) then18

print “match at position suf[i] with score: score”;19

while i < n do20

i ← i + 1;21

if lcp[i] ≥ m then print “match at position suf[i] with score: score” else22

break;
end23

else24

i ← skipchain(lcp, skp, n, i, d);25

end26

depth ← lcp[i];27

end28
Page 6 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
head scoring does not give any speedup and every suffix
must be read up to depth to m, leading to an (nm) worst
case time complexity. This is not worse but also not better
than the complexity for LAsearch. Next we show that, inde-
pendent of the chosen threshold th, the overall worst case
running time boundary for ESAsearch drops to (n + m)
under the assumption that

n ≥ ||m + m - 1 (1)

holds.

The shorter the common prefixes of the neighboring suf-
fixes, the slower ESAsearch runs. Thus to analyze the worst
case, we have to consider sequences containing as many
different substrings of some length q as possible. Observe
that a sequence can contain at most ||q different sub-
strings of length q > 0, independent of its length. To ana-
lyze the behavior of ESAsearch on such a sequence, we
introduce the concept of suffix-intervals on enhanced suf-
fix arrays, similar to lcp-intervals as used in [18].

Definition 1 An interval [i, j], 0 ≤ i ≤ j ≤ n, is a suffix-interval
with offset � ∈ {0,..., n}, or �-suffix-interval, denoted
�-[i, j], if the following three conditions hold:

1. lcp[i] < �

2. lcp[j + 1] < �

3. lcp[k] ≥ � for all k ∈ {x | i + 1 ≤ x ≤ j}

An lcp-interval, or �-interval, with lcp-value � ∈ {0,..., n} is
a suffix-interval � - [i, j] with i <j and lcp[k] = � for at least
one k ∈ {i + 1,..., j}.

Every lcp-interval � - [i, j] of an enhanced suffix array for
text S corresponds to an internal node v in a suffix tree for
S, and the length of the string spelled out by the edge
labels on the path from the root node to v is equal to �.
Leaves are represented as singleton intervals, � - [i, j] with
i = j. We say that suffix-interval � - [i, j] embeds suffix-
interval �+ - [k, l], if and only if �+ > �, i ≤ k <l ≤ j, and if
there is no suffix-interval �' - [r, s] with � < �' < �+ and i ≤ r
≤ k <l ≤ s ≤ j. As an example for �-suffix-intervals, consider
the enhanced suffix array given in Figure 2. [0, 5] is a 1-
suffix-interval, because lcp[0] = 0 < 1, lcp[5 + 1] = 0 < 1,
and lcp[k] ≥ 1, for all k, 1 ≤ k ≤ 5. Suffix-interval 2-[3,5] is
embedded in 1-[0,5], but 3-[0,1] is not. Consider an
enhanced suffix array of a sequence which contains all
possible substrings of length q. There are || 1-suffix-
intervals, ||2 2-suffix-intervals, and so on. Consequently,
up to depth q, there are a total of

Eq
i

i

q q

= =
−
−

()
=

+

∑   
1

1

1
2

Function skipchain of the ESAsearch algorithmFigure 4
Function skipchain of the ESAsearch algorithm. Function skipchain computes a chain of entries in table skp to skip cer-
tain ranges of suffixes in table suf.

Function skipchain(lcp, skp, n, i, d)
input : Tables lcp and skp of an enhanced suffix array, |S| denoted with n, an index i

of the i-th smallest suffix, and depth d from where to start skipping.
output: An index j of the j-th smallest suffix with j > i.

begin1

if i < n then2

j ← i + 1;3

while (j ≤ n) ∧ (lcp[j] > d) do4

j ← skp[j] + 1;5

end6

else7

j ← n;8

end9

return j ;10

end11
Page 7 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
�-suffix-intervals (1 ≤ � ≤ q). This corresponds to the
number of internal nodes and leaves in a suffix tree, which
is atomic up to at least depth q under our assumptions.

Since we are considering sequences that contain all possi-
ble substrings of length q, there are ||dd-suffix-intervals
at any depth d, 1 ≤ d ≤ q. Let d-[i, j] be a d-suffix-interval.
We know that pfxscd (vi, M) is a partial sum of pfxscq (vi, M),
and because vi[0.. d - 1] = vi + 1 [0..d - 1] = ... = vj [0.. d - 1],
pfxscd(vi, M) is also a partial sum of pfxscq (vk, M) for i ≤ k
≤ j. That is, after ESAsearch has calculated pfxscd(vi, M) at
depth d, at any suffix-interval (d + 1) - [r, s] embedded in
d-[i, j] it suffices to only calculate the "rest" of pfxscq (vk,
M). At any depth d, the algorithm calculates pfxscd+1 (vr, M)
= pfxscd (vi, M) + M(d, vr[d]), meaning that all prefix scores
at depth d + 1 in a d-suffix-interval can be computed from
the prefix scores at depth d by || matrix look-ups and
additions as there are || embedded (d + 1)-suffix-inter-
vals. There are ||d d-suffix-intervals at depth d. Hence, it
takes ESAsearch a total of ||d·|| matrix look-ups and
additions to advance from depth d to d + 1, and thus we
conclude that the algorithm requires a total of (Eq) oper-
ations to compute all scores for all substrings of length q.

Suppose that ESAsearch has read suffix vi in some step up
to depth q - 1 such that character vi[q - 1] is the last one
read. If lcp[i + 1] ≥ q holds, then the algorithm has found
a suffix-interval q-[i, j] with a yet unknown right boundary
j, otherwise j = i. ESAsearch reports all suf[k] with k ∈ [i, j]
as matching positions by scanning over table lcp starting
at position i until lcp[k] < lcp[i] (such that it finds
j = k - 1), and continues with suffix vk at depth lcp[k].
Hence processing such a suffix-interval requires one
matrix look-up and addition to compute the score, and j -
i + 1 steps to report all matches and find suffix vk. Since
suffix-intervals do not overlap, the total length of all suf-
fix-intervals at depth q can be at most n, so the total time
spent on reporting matches is bounded by n.

There are three cases to consider when determining the
time required for calculating the match scores for a PSSM
of length m. Let p : = m - q.

1. If p = 0 (⇒ m = q), then the time required to calculate

all match scores is in (Eq) as discussed above.

2. If p < 0 (⇒ m<q), then none of the m-suffix-intervals are
singletons since we assumed that the sequence under con-
sideration contains all possible substrings of length q, i.e.,
there must be suffixes sharing a common prefix of length
m, and the time required to calculate all match scores is in

(Em).

3. If p > 0 (⇒ m > q), then every m-suffix-interval can be a
singleton, and all prefix scores for the PSSM prefix of

length q are calculated in (Eq) time. However, the

remaining scores for the pending substrings of length p
must be computed for every suffix longer than q, taking

(np) additional time, and leading to a total (Eq + np)

worst case time complexity for computing all match
scores.

Note that a text containing ||q different substrings must
have a certain length, which must be at least ||q. In fact,
a minimum length text that contains all strings of length
q has length n = ||q + q - 1. It represents a de Bruijn
sequence[28] without wrap-around, i.e., a de Bruijn
sequence with its first q - 1 characters concatenated to its
end. Since a de Bruijn sequence without wrap-around rep-
resents the minimum length worst case, we infer from
Equation (2) that Eq ∈ (n). Hence, if m = q, then it takes
(n) time to calculate all match scores. If m <q, then Em
<Eq and thus it takes sublinear time. If m > q, it takes
(n + np) time.

We summarize the worst case running time of ESAsearch
for preprocessing a PSSM M of length m, searching with
M, and reporting all matches with their match scores, as

(n + n·max {0, p} + m).

Hence, the worst case running time is (n + m) for p ≤ 0,
implying that this time complexity holds for any PSSM of
length m and threshold on any text of length
n ≥ ||m + m - 1, as already stated in Inequality (1).

In practice, large numbers of suffixes can be skipped if the
threshold is stringent enough, leading to a total running
time sublinear in the size of the text, regardless of the rela-
tion between n and m. ESAsearch reads a suffix up to depth
m unless an intermediate score falls short of an intermedi-
ate threshold, and skips intervals with the same or greater
lcp if this happens. Right boundaries of skipped suffix-
intervals are found quickly by following the chain of skip-
values (see function skipchain in Figure 4). It are these
jumps that make ESAsearch superior in terms of running
time to LAsearch in practice. The best case is indeed (||)
which occurs whenever there is no score in the first row of
the PSSM that is greater than th0.

See Figure 5 for examples of enhanced suffix arrays, con-
structed from texts S and T that consist of all strings of a
certain length m over some alphabet. In these enhanced
suffix arrays no suffix shares a prefix of length m with any
other suffix, forcing ESAsearch to compute scores for each
Page 8 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
suffix. But with the intermediate scores available while
processing the suffixes, it takes exactly Em steps to compute

the scores, as can be figured out by manually applying
ESAsearch to the depicted enhanced suffix arrays. For S,

exactly , for T, exactly operations

are needed to compute all ||m ≤ n - m + 1 possible scores

(and to find all matches since S and T are both de Bruijn
sequences without wrap-around). Only a single match is

reported per matching substring, leading to Em ∈ (n)

operations to be performed during the search phase.

Performance improvements via alphabet transformations

Inequality (1) provides the necessary condition for

(n + m) worst case running time. We now assume that m

in Inequality (1) identifies not the length of a PSSM, but
the threshold dependent expected reading depth for some

PSSM. We denote this expected depth by m*(th) ≤ m and
continue denoting the PSSM's length by m. As seen before,
for PSSMs with length m, such that p = m - m*(th), the

worst case running time is (n + n·max {0, p} + m), but

the expected running time is (n + m), as on average we

expect p ≤ 0. Inequality (1) with m substituted by m*(th)

implies (n) ≥ m*(th). That is, to achieve linear

worst case running time for the amino acid alphabet,
m*(th) needs to be very small. For instance, if n = 207,
then the search time is guaranteed to be linear in n only
for PSSMs with a maximum length of 7, and expected to
be linear for PSSMs with expected reading depth of 7.

Observe that for || = 4, m*(th) needs to be smaller or

equal to 15 to achieve linear or sublinear running times.
This provides the motivation to reduce the alphabet size

by transforming  into a reduced size such that

| | < ||.

In practice, for reasonably chosen thresholds th, the per-
formance of ESAsearch mainly depends on the fact that
often large ranges of suffixes in the enhanced suffix array
can be skipped. This is always the case if we drop below an
intermediate threshold while calculating a prefix' score,
and if that prefix is a common prefix of other suffixes. In
terms of lcp-intervals, this means that we can skip all
�-intervals with � ≥ m*(th) on average. In contrast to suffix-
intervals, whose total count is in (n2), size and number of
lcp-intervals depend on ||, as illustrated in Figure 6. We

4 4
4 1

20
3 −

−
= 2 2

2 1
14

4 −
−

=

log 




Minimum size enhanced suffix arrays for worst case analysisFigure 5
Minimum size enhanced suffix arrays for worst case analysis. Enhanced suffix arrays for text S = cagataaccgtcttggc,
consisting of all strings of length m = 2 over an alphabet of size 4, and T = ccaaacaccc, consisting of all strings of length m = 3
over an alphabet of size 2.

i suf[i] lcp[i] Ssuf[i]

0 5 0 aaccgtcttggc$

1 6 1 accgtcttggc$

2 1 1 agataaccgtcttggc$

3 3 1 ataaccgtcttggc$

4 0 0 cagataaccgtcttggc$

5 7 1 ccgtcttggc$

6 8 1 cgtcttggc$

7 11 1 cttggc$

8 16 1 c$

9 2 0 gataaccgtcttggc$

10 15 1 gc$

11 14 1 ggc$

12 9 1 gtcttggc$

13 4 0 taaccgtcttggc$

14 10 1 tcttggc$

15 13 1 tggc$

16 12 1 ttggc$

17 17 0 $

i suf[i] lcp[i] Tsuf[i]

0 2 0 aaacaccc$

1 3 2 aacaccc$

2 4 1 acaccc$

3 6 2 accc$

4 1 0 caaacaccc$

5 5 2 caccc$

6 0 1 ccaaacaccc$

7 7 2 ccc$

8 8 2 cc$

9 9 1 c$

10 10 0 $
Page 9 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
observe that smaller alphabet sizes imply (1) larger
�-intervals, and (2) an increasing number of �-intervals
for larger values of �. Thus, by using reduced alphabets, we
expect to skip larger and touch fewer lcp-intervals under
the assumption that the average reading depth remains
unchanged. Consequently, we expect to end up with an
improved performance of ESAsearch. This raises the ques-
tion for a proper reduction strategy for larger alphabets
like the amino acid alphabet, and how this strategy can be
incorporated into ESAsearch.

We now describe how to take advantage of reduced alpha-
bets as fast filters in the ESAsearch algorithm. Let

 = {a0, a1,..., ak} and = {b0, b1,..., bl} be two alpha-

bets, and Φ :  → a surjective function that maps a

character a ∈  to a character b ∈ . We call Φ-1(b) the

character class corresponding to b. For a sequence

S = s1s2 ... sn ∈ n we denote the transformed sequence

with = Φ(s1) Φ(s2) ... Φ(sn) ∈ n. Along with the trans-

formation of the sequence, we transform a PSSM such that
we have a one to one relationship between the columns in

the PSSM and the characters in . We define the trans-

formed PSSM of M as follows:

Definition 2 Let M be a PSSM of length m over alphabet

, and Φ : → a surjective function. The trans-

formed PSSM is defined as a function : [0, m - 1] ×

 → � with

 (i, b): = max {M(i, a) | a ∈ Φ-1 (b)}. (3)

Figure 7 gives an example of the relationship between M

and . can be easily determined from S in (n) time,

 in (| |m) time, given M. We define the set of

matches to M on S and on , respectively, as

MS := {j ∈ [0, n - m] | sc (S[j..j + m - 1], M) ≥ th}

 := {j ∈ [0, n - m] | sc ([j..j + m - 1],) ≥ th}.

Now observe that we can use matches of on , for the

computation of matches of M on S, since MS ⊆ . We

prove that MS ⊆ holds for all th ∈ [scmin (M),

scmax (M)] by proving the more general statement given in

the following Lemma.

Lemma 2 sc (w, M) ≤ sc (,) holds for all w ∈ m.

Proof:

Thus the following implications follow directly

• sc (w, M) ≥ th ⇒ sc (,) ≥ th

• i ∈ MS ⇒ i ∈

and we conclude: MS ⊆ holds for th ∈ [scmin (M),

scmax (M)].

Hence we can search with in prefiltering of matches

to M in S, profiting of longer and larger �-intervals in
by extending algorithm ESAsearch as follows:

(1) Transform S into and build the enhanced suffix

array for ;

(2) Construct from M;

(3) Compute by searching with on the enhanced

suffix array of using algorithm ESAsearch;

(4) For each i ∈ re-score match with σ = sc

(S[i..i + m - 1], M), and report i and σ if and only if σ ≥ th.

As a further consequence of Definition 2 the maximum

score values in each row of M and and thus the inter-
mediate thresholds remain unchanged in the transforma-
tion process. Unfortunately the necessary PSSM
transformation accompanying alphabet size reduction
affects the expected reading depth m*(th) in such a way
that it increases with more degraded alphabets, and there-
fore reduces the expected performance improvement. Due
to maximization according to Equation (3) the matrix val-

ues in increase and we expect a decreased probability






S 


M

  
M M



M

M S

M 
M S

MS S M

M S

MS

MS

w M 

sc w M M i w i M i a a w i
i

m

i

m
, , [] max , | []() = () ≤ () ()(){ }

=

−
−

=

−
∑ ∑

0

1
1

0

1
∈ Φ Φ

== ()() = ()
=

−
∑ M i sc w M
i

m

0

1
, , .Φ []w i

w M

MS

MS

M S

S

S

S

M

MS M

S

MS

M

M

Page 10 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
of falling short of an intermediate threshold early.
Observe that there is a trade-off between increased
expected reading depth and increased lcp-interval sizes at
low reading depths. Therefore it is desirable to minimize

the effect of maximization by grouping PSSM columns
with similar score values, i.e., highly correlated columns.
Since PSSMs reflect the properties of the underlying mul-
tiple alignment, we expect correlations of PSSM columns

Number of �-intervals for various reduced alphabetsFigure 6
Number of �-intervals for various reduced alphabets. Numbers of �-intervals for � ∈ [1, 20] of different length for var-
ious reduced alphabets. We built the enhanced suffix array with sequences from the RCSB protein data bank (PDB) (total
sequence length 4,264,239 bytes). The used reduced amino acid alphabets are given in Figure 8. Note that we limited the inter-
val lengths in the figures to 5,000 to prevent distortion.
Page 11 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
according to biologically motivated symbol similarities.
Hence character correlation is the motivation for our
alphabet reduction strategy.

Reduced amino acid alphabets
It is well known that various of the naturally occurring
amino acids share certain similarities, like similar physio-
chemical properties. Accordingly, the complexity of pro-
tein sequences can be reduced by sorting these amino
acids with similarities into groups and deriving a trans-
formed, reduced alphabet [29]. These reduced alphabets
contain symbols that represent a specific character class of
the original alphabet. Since PSSMs and the sequences to
be searched have to be encoded over the same alphabet,
we are more interested in a single reduced alphabet suita-
ble for all PSSMs under consideration, than in PSSM-spe-
cific reduced alphabets. The latter implies an unacceptable
overhead of index generation for sequences over PSSM-
specific alphabets, even though it may result in a lower
expected reading depth. The basis for our reduction of the
20-letter amino acid alphabet to smaller alphabets are
correlations indicated by the BLOSUM similarity matrix as
described in [30]. That is, amino acid pairs with high sim-
ilarity scores are grouped together (see Figure 8 for an
example). Let a and b be two amino acids and Y a 20 × 20
score matrix, then a measure of amino acid correlation ca,b
between a and b can be defined as

and amino acid pairs can be iteratively grouped together
according to their correlations, starting with the most cor-
related pairs, until all the amino acids are divided into the
desired number of groups.

Finding an appropriate threshold for PSSM searching:
LazyDistrib
Probabilities and expectation values
The results of PSSM searches strongly depend on the
choice of an appropriate threshold value th. A small
threshold may produce a large number of false positive
matches without any biological meaning, whereas mean-
ingful matches may not be found if the threshold is too
stringent. PSSM-scores are not equally distributed and
thus scores of two different PSSMs are not comparable. It
is therefore desirable to let the user define a significance
threshold instead. The expected number of matches in a
given random sequence database (E-value) is a widely
accepted measure of the significance. We can compute the
E-value for a known background distribution and length
of the database by exhaustive enumeration of all sub-
strings. However, the time complexity of such a computa-

c
Y Y

Y Y
a b

a i b ii

a ii b ii

,
, ,

, ,

:= ()()
=

= =

∑
∑ ∑

1
20

2
1

20 2
1

20

PSSM alphabet transformationFigure 7
PSSM alphabet transformation. In the left PSSM M we used the normal four letter nucleotide alphabet = {A, C, G, T} to

describe a transcription factor binding site found in Hox A3 gene promoters. In the right PSSM we used a reduced two let-

ter alphabet = {P, Y} that differs only between purine (adenine or guanine) and pyrimidine (cytosine or thymine) nucleo-

tides. Hence we have two character classes: Φ-1(P) = {A, G} and Φ-1(Y) = {C, T}. Consequently (i, P) = max{M(i, a) | a ∈ {A,

G}} and (i, Y) = max{M(i, a) | a ∈ {C, T}} ∀i ∈ [0, 8]

(A)denin (C)ytosin (G)uanin (T)hymin
28.50 256.54 85.51 28.50
28.62 47.70 47.70 9.54
45.54 45.54 45.54 500.92

320.83 0.00 71.29 106.94
47.29 15.76 15.76 31.53
41.34 13.78 41.34 96.46
32.95 8.24 32.95 41.19
21.28 21.27 148.95 106.40
9.54 28.62 47.70 47.70

(P)urine P(Y)rimidine
85.51 256.54
47.70 47.70
45.54 500.92

320.83 106.94
47.29 31.53
41.34 96.46
32.95 41.19

148.95 106.40
47.70 47.70


M


M

M

Page 12 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
Schemes for amino acid alphabet reductionFigure 8
Schemes for amino acid alphabet reduction. Reduction of the amino acid alphabet into smaller groups. Amino acid pairs
are iteratively grouped together based on ther correlations ca,b (see text for the definition of ca,b), starting with the most corre-
lated pairs, until al amino acids are divided into the desired number of groups. Here we used BLOSUM50 similarities for the
determination of ca,b. Observe that, hydrophobic amino acids, especially (LVIM) and (FYW) are conserved in many reduced
alphabets. The same is true for the polar (ST), (EDNQ), and (KR) groups. The smallest alphabet contains two groups that can
be categorized broadly as hydrophobic/small (LVIMCAGSTPFYW) and hydrophilic (EDNQKRH).

|A|
L V I M C A G S T P F Y W E D N Q K R H 20

LVIM C A G S T P FY W E D N Q KR H 15

LVIM C A G ST P FYW EDNQ KR H 10

LVIMC AG ST P FYW EDNQ KR H 8

LVIMC AGST P FYW EDNQ KRH 6

LVIMC AGSTP FYW EDNQ KRH 5

LVIMC AGSTP FYW EDNQKRH 4

LVIMCAGSTP FYW EDNQKRH 3

LVIMCAGSTPFYW EDNQKRH 2

tion is (||mm) for a PSSM of length m. If the values in
M are integers within a certain range [rmin, rmax] of size R =
rmax - rmin + 1, then dynamic programming (DP) methods
(cf. [12,21,22]) allow to compute the probability distribu-
tion (and hence the E-value) in (m2R||) time.

In practice the probability distribution is often not
exactly, or completely calculated due to concerns of speed.
E.g., in the EMATRIX system [12] score thresholds are cal-
culated and stored for probability values in the interval π
= 10-1, 10-2,..., 10-40 only. Consequently, the user can only
specify one of these p-value cutoffs. For the calculation of
the p-value from a determined match score, EMATRIX
uses log-linear interpolation on the stored thresholds. A
different, commonly used strategy to derive a continuous
distribution function uses the extreme value distribution
as an approximation [31-33] of high scoring matches.

Even though it is widely accepted that high-scoring local
alignment score distributions of the popular position
independent scoring systems PAM and BLOSUM can be
well approximated by an extreme value distribution, this
cannot be generalized for arbitrary PSSMs.

To check whether an extreme value distribution is a suita-
ble approximation for the distribution of PSSM match
scores, we sampled the match scores of PSSMs arbitrarily
chosen from the TRANSFAC and BLOCKS database. We
randomly shuffled 1000 human promotor sequences of
length 1200, taken from the database of transcriptional
start sites (DBTSS) and 1000 protein sequences of length
365 (= average sequence length in Uniprot-Swissprot),
respectively, preserving their mono-symbol composition.
From the derived random PSSM match scores we took the
best score for each sequence and calculated the empirical
cumulative distribution function. If the match scores S are
extreme value distributed, a X-Y plot with X = S and Y =
log(-log(S)) should appear linear, since

log holds. For the

TRANSFAC PSSM shown in Figure 9, the X-Y plot clearly
indicates that an extreme value distribution is not an
appropriate approximation. For PSSM IPB003211A (see
Figure 10) from the BLOCKS database, it seems as if the
score distribution can be approximated quite well with an
extreme value distribution. However, we then still have

− ()() = − −()− −()log e x ue x u−λ λ
Page 13 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
the problem of adequate parameter estimation for the dis-
tribution function. Since we do not make any assump-
tions about the used PSSMs in our algorithm, neither
about the type of scores, nor the score range, a proper
approximation of the score distribution of arbitrary
PSSMs is not possible, without time consuming simula-
tions. That is why we are more interested in an exact solu-
tion and thus we focus on the efficient computation of an
exact discrete score distribution.

Calculation of exact PSSM score distributions
While recent publications focus on the computation of
the complete probability distribution, what is required
specifically for PSSM matching, is computing a partial
cumulative distribution corresponding to an E-value resp.
p-value specified by the user. Therefore, we have devel-
oped a new "lazy" method to efficiently compute only a
small fraction of the complete distribution.

Score distribution of TRANSFAC PSSM M00734Figure 9
Score distribution of TRANSFAC PSSM M00734. Histogram, cumulative score distribution function, X-Y plot, and nor-
mal probability plot of TRANSFAC PSSM M00734 (PSSM length m = 9).

1 2 3

x 10
4

0

50

100

150

200

250

score S

F
re

qu
en

cy

1 2 3

x 10
4

0

0.2

0.4

0.6

0.8

1

score S

P
(X

<
=

S
)

Score distribution of TRANSFAC PSSM M00734

1 2 3

x 10
4

−6

−5

−4

−3

−2

−1

0

1

2

score S

lo
g(

−
lo

g(
P

(X
<

=
S

))
)

1.5 2

x 10
4

0.001
0.003
0.01
0.02
0.05
0.10

0.25

0.50

0.75

0.90
0.95
0.98
0.99

0.997
0.999

score S

P
(X

<
=

S
)

Normal Probability Plot

Score distribution of BLOCKS PSSM IPB003211AFigure 10
Score distribution of BLOCKS PSSM IPB003211A. Histogram, cumulative score distribution, X-Y plot, and normal
probability plot of a PSSM taken from the BLOCKS database (Accession: IPB003211A; PSSM length m = 40), describing the
UreI protein of Helicobacter pylori, a proton gated urea channel [36].

−500 0 500
0

50

100

150

200

250

300

score S

F
re

qu
en

cy

−500 0 500
0

0.2

0.4

0.6

0.8

1

score S

P
(X

<
=

S
)

Score distribution of BLOCKS PSSM IPB003211A

−500 0 500
−7

−6

−5

−4

−3

−2

−1

0

1

2

score S

lo
g(

−
lo

g(
P

(X
<

=
S

))
)

−100 0 100200

0.001
0.003
0.01
0.02
0.05
0.10

0.25

0.50

0.75

0.90
0.95
0.98
0.99

0.997
0.999

score S

P
(X

<
=

S
)

Normal Probability Plot
Page 14 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
We formulate the problem we solve w.r.t. E-values and p-

values: Given a user specified E-value η, find the mini-

mum threshold TminE(η, M), such that the expected

number of matches of M in a random sequence of given

length is at most η. Given a user specified p-value π, find

the minimum threshold (π, M), such that the

probability that M matches a random string of length m is

at most π. The threshold TminE (η, M) can be computed

from (π, M) according to the equation

TminE(π·(n - m + 1), M) = (π, M). Hence we

restrict on computing (π, M).

Since all strings of length m have a score between scmin (M)

and scmax(M), we conclude (1, M) = scmin (M) and

(0, M) > scmax(M). To explain our lazy evaluation

method, we first consider existing methods based on DP.

Evaluation with dynamic programming

We assume that at each position in sequence S, the sym-
bols occur independently, with probability f (a) = (1/

n)·|{i ∈ [0, n - 1] |S[i] = a}|. Thus a substring w of length

m in S occurs with probability and the

probability of observing the event sc (w, M) = t is

. We

obtain (π, M) by a look-up in the distribution:

(π, M) = min{t |scmin (M) ≤ t ≤ scmax (M),

� [sc (w, M) ≥ t] ≤ π}.

If the values in the PSSM M are integers in a range of width
R, dynamic programming allows to efficiently compute
the probability distribution. The dynamic programming
aspect becomes more obvious by introducing for each k ∈
[0, m - 1] the prefix PSSM Mk : [0, k] ×  → � defined by
Mk (j, a) = M (j, a) for j ∈ [0, k] and a ∈ .

Corresponding distributions Qk (t) for k ∈ [0, m - 1] and t
∈ [scmin (Mk), scmax (Mk)], and Q-1(t), are defined by

We have �[sc (w, M) = t] = Qm-1 (t). The algorithm comput-

ing Qk determines a set of probability distributions for M0,

..., Mk. Qk is evaluated in (scmax (M)||) time from Qk-1,

summing up to (scmax (M) | m) total time. See Figure

11 for an example.

If we allow for floating point scores that are rounded to ε
decimal places, the time and space requirement increases
by a factor of 10ε. Conversely, if all integer scores share a
greatest common divisor z, the matrix should be canceled
down by z.

Restricted probability computation

In order to find (π, M) it is not necessary to com-

pute the whole codomain of the distribution function
Q = Qm-1. We propose a new method only computing a

partial distribution by summing over the probabilities for
decreasing threshold values scmax (M), scmax (M) - 1,...,

until the given p-value π is exceeded (see Figures 11, 12).

In step d we compute Q (scmax (M) - d) where all interme-

diate scores contributing to scmax (M) - d have to be con-

sidered. In analogy to lookahead scoring, in each row j of
M we avoid all intermediate scores below the intermedi-
ate threshold thj because they do not contribute to

Q(scmax (M) - d). The algorithm stops if the cumulated

probability for threshold scmax (M) - d exceeds the given p-

value π and we obtain (π, M) = scmax (M) - d + 1.

Lazy evaluation of the permuted matrix

The restricted computation strategy performs best if there

are only few iterations (i.e., (π, M) is close to

scmax(M)) and in each iteration step the computation of

Qk(t) can be skipped in an early stage, i.e., for small values

of k. The latter occurs to be more likely if the first rows of
M contain strongly discriminative values leading to the
exclusion of the small values by comparison with the
intermediate thresholds. An example of this situation is
given in Figure 1. Since Qk(t) is invariant to the permuta-

tion of the rows of M, we can sort the rows of M such that
the most discriminative rows come first. We found that
the difference between the largest two values of a row is a
suitable measure for the level of discrimination since a
larger difference increases the probability to remain below
the intermediate threshold. Since the rows of M are
scanned several times, we save time by initially sorting
each row in order of descending score. We divide the com-
putation steps where the step d computes Q(scmax(M) - d):

Tmin

Tmin
Tmin

Tmin

Tmin
Tmin

f w i
i
m

[]()=
−∏ 0
1

� sc w M t f w i
i
m

w sc w M tm(,) ([])
: (,)

=[] = =
−

∈ = ∏∑ 0
1



Tmin

Tmin

Q t
t

Q t Q t M k a f ak k
a

−

−
∈

=
=⎧

⎨
⎩

= −∑
1

1

1 0

0
() :

() : ((,)) ()

if

otherwise



Tmin

Tmin

Tmin
Page 15 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389

Page 16 of 25
(page number not for citation purposes)

Evaluation with dynamic programmingFigure 11
Evaluation with dynamic programming. The simple DP scheme computes all probability vectors Q0, Q1, Q2 completely
within the green marked area, corresponding to score ranges of prefix PSSMs Mk. In contrast to the simple scheme, the
restricted probability computation method computes only the upper end of the probability distribution until the given p-value
threshold is exceeded, omitting parts of the green area. In this example we show how to compute the score threshold

(π, M) for PSSM M of length m = 3 and a score range of [4,11] corresponding to a given p-value threshold of π = .

For simplicity we assume a uniform character distribution of f(A) = f(C) = f(G) = f(T) = . Cells of the matrix that are com-

puted in the step actually under consideration are marked red. In step d = 0, see (A), the algorithm computes Q2(11) recursively

for all paths through M that achieve a score of 11, i.e. Q2(11) = Q1(8)·f(G), Q1(8) = Q0(4)·f(G), Q0(4) = Q-1(0)·f(A) = 1· , since

AGG is the only path achieving score 11. It follows Q2(11) = . In step d = 1 all paths achieving a score of 11 - d = 10 to

determine Q2(10) are computed, see (B). We conclude Q2(10) = . In this step, DP allows to reuse value Q1(8) without rec-

omputation. In step d = 2, see (C) values Q1(7) and Q0(3) can be reused to compute Q2(9) = . In step d = 2 the cumulated

probability Q2(11) + Q2(10) + Q2(9) = exceeds the given p-value threshold of π = , and the restricted probability compu-

tation method skips the rest of the computation. We obtain a score threshold of th = 10 correponding to π.

Q-1

Q0

Q1

Q2

11 910 8 7 6 5 4 3 2 1 0

1

1
4

1
16

1
64

A

G

G

PSSM: A C G T
4 3 1 2
1 2 4 1
2 2 3 2

Step d=0 : t=11
A C G T
4 3 1 2
1 2 4 1
2 2 3 2

cumulated
probabilities

1
64

(A)

tQ k

Q-1

Q0

Q1

Q2

11 910 8 7 6 5 4 3 2 1 0

1

1
4

1
16

1
64

C

G

A,C,T

PSSM: A C G T
4 3 1 2
1 2 4 1
2 2 3 2

A C G T
4 3 1 2
1 2 4 1
2 2 3 2

C

Step d=1: t=10

1
4

1
16

1
16

G

cumulated
probabilities

1
64

5
64

(B)

tQ k

Q-1

Q0

Q1

Q2

11 910 8 7 6 5 4 3 2 1 0

1

1
4

1
16

1
64

T

G

A,C,T

PSSM: A C G T
4 3 1 2
1 2 4 1
2 2 3 2

A C G T
4 3 1 2
1 2 4 1
2 2 3 2

CC, ,

Step d=2: t= 9

1
4

1
16

1
16

G

1
4

1
8

C

5
64

cumulated
probabilities

1
64

5
64

5
32

(C)

tQ k

Tmin
1
8

1
4

1
4

1
64

1
16

5
64

5
32

1
8

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
In step d = 0 only the maximal scores maxi, i ∈ [0, m - 1]

in each row have to be evaluated.

In step d > 0 all scores M(i, a) ≥ maxi - d may contribute to
Q(scmax(M) - d). Since in general a score value M(i, a) ≥
maxi - d also gives contribution to Q(scmax(M) - l) for l > d,
we can save time by storing Qi(maxi - l) for l > d, in step d
in a buffer and reusing the buffer in steps d + 1, d + 2,....
This allows for the computation of Qk(scmax(M) - d) only
based on the buffer and scores M(i, a) = maxi - d while
scores M(i, a) > maxi - d, i ∈ [0, m - 1], can be omitted. We
therefore have developed an algorithm LazyDistrib
employing lazy evaluation of the distribution. That is,

given a threshold th, the algorithm only evaluates parts of
the DP vectors necessary to determine Qk(th) and simulta-
neously saves sub-results concerned with score th in an
additional buffer matrix Pbuf (instead of recomputing
them later, see Figure 13 for an example). This is described
by the following recurrence:

Q th d Pbuf th d

Q th d M k a f a
k k

k
a M k a k

() ()

((,)) ()
: (,) max

− = − +
− −−

∈ ≥ −
1

 dd

k k
a M k a d

Pbuf th d Q th d M k a f a
k

∑

∑− = − −−
∈ < −

() : ((,)) ()
: (,) max

1


Restricted probability computationFigure 12
Restricted probability computation. Computation of the partial cumulative distribution function. Observe that in order to
determine (π, M) for π = 0.3 we do not have to calculate the complete distribution in the score range [scmin(M),

scmax(M)]. It is sufficient to calculate only the upper end (green area) starting with scmax(M) until �[X ≥ S] ≥ π.

200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(X

≥S
)

Computation of the restricted cumulative probability distribution

Score(S)scmin(M) scmax(M)TminP(π, M)

π = 0.3

Tmin
Page 17 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389

Page 18 of 25
(page number not for citation purposes)

Probability computation using lazy evaluation ofthe DP matrixFigure 13
Probability computation using lazy evaluation of the DP matrix. In this example we use the same PSSM M, character

distribution, and p-value threshold π = as in Figure 11. However, in each row of the PSSM the scores are sorted in descend-

ing order, and the rows are sorted with the most discriminant row coming first (see coloured PSSMs for this relationship).
Observe that the LazyDistrib algorithm evaluates the DP vectors non-recursively top-down. Cells computed in the actual step
are marked red. In step d = 0 the algorithm computes Q2(11) by evaluating paths through the PSSM contributing to Q2(ll),
which is in this example only the high scoring path GGA. Intermediate results of Q0(4), Q1(7), and Q2(11) are collected in buff-
ers Pbuf0(4), Pbuf1(7), and Pbuf2(11) first, and finally copied to the correponding cells in Q. See (A) for the situation after step d
= 0 has been completed. In step d = 1, see (B), the algorithm computes Q2(10), starting in row k = 1 with the determination of

Pbuf1(6) and Q1(6). That is, Q1(6) = Pbuf1(6) = Q0(4)·f(A) + Q0(4)·f(C) + Q0(4)·f(T) = . Analogously Q2(10) and Pbuf2(10) are

computed based on Q1(7) and Q1(6). Additionally Pbuf2(9) is filled for further reuse in subsequent steps d + 1, d + 2,.... We

compute Pbuf2(9) = Q1(6)·f(C) = . The algorithm can directly start in row k = 1 with the computation of Q1(6) instead of

Q0(3) since a score of 3 cannot be achieved by the first prefix PSSM M0. Only score 4 of M0 contributes to Q2(10), scores 2 and
1 do not. In step d = 2, see (C), the algorithm computes Q2(9), starting in row k = 0. Pbuf2(9) is computed reusing the partial

sum calculated in previous steps, such that Pbuf2(9) = + Q1(7)·f(T) + Pbuf1(5)·f(A) = , and then copied to Q2(9). Pbuf1(4),

Pbuf2(8), and Pbuf2(7) are filled based on Pbuf0(2), Q1(6), Pbuf1(5), and Q1(5) for further reuse. After step d = 2 the rest of the

computation can be skipped since the cumulated probability Q2(11) + Q2(10) + Q2(9) = exceeds the given p-value π =

and we obtain a score threshold of th = 10 corresponding to π.

A C G T
4 3 1 2
1 2 4 1
2 2 3 2

4G 2C 1A 1T
3G 2A 2C 2T
4A 3C 2T 1G

11 910 8 7 6 5 4 3 2 1 0

Q -1

Q
0
 | Pbuf

0

Q
1
 | Pbuf

1

Q
2
 | Pbuf

2

1

1
4

1
4

1
16

1
64

1
64

1
16

G

PSSM:

A

cumulated
probabilities

1
64

Step d=0 : t=11

t
Q

k
 |Pbuf

k

(A) Q
k
(t) Pbuf

k
(t)

permuted/sorted PSSM:

G

11 910 8 7 6 5 4 3 2 1 0

Q -1

Q
0
 | Pbuf

0

Q
1
 | Pbuf

1

Q
2
 | Pbuf

2

1

1
4

1
64

1
16

A,C,T

C

cumulated
probabilities

1
64

t
Q

k
 |Pbuf

k

(B)

3
16

3
16

1
16

1
16

3
64

A
C

5
64

Step d=1 : t=10

11 910 8 7 6 5 4 3 2 1 0

Q -1

Q
0
 | Pbuf

0

Q
1
 | Pbuf

1

Q
2
 | Pbuf

2

1

1
4

1
64

1
16

C

cumulated
probabilities

1
64

t
Q

k
 |Pbuf

k

(C)

3
16

1
16

5
64

5
64

1
4

1
4

1
16

1
16

3
16

A,C,T

G

5
64

1
16

1
64

T
C

ATT

5
32

Step d=2: t=9

1
8

3
16

3
64

3
64

5
64

5
32

1
8

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
In the present implementation, the algorithm assumes
independently distributed symbols. The algorithm can be
extended to an order d-Markov model (w.r.t. the back-
ground alphabet distribution). This increases the compu-
tation time by a factor of ||d.

Implementation and computational results
We implemented LAsearch, ESAsearch, both capable to
handle reduced alphabets, and LazyDistrib in C. The pro-
gram was compiled with the GNU C compiler (version
3.1, optimization option -03). All measurements were
performed on a 8 CPU Sun UltraSparc III computer run-
ning at 900 MHz, with 64 GB main memory (using only
one CPU and a small fraction of the memory). Enhanced
suffix arrays were constructed with the program mkvtree,
see [34].

We performed seven experiments comparing different
programs for searching PSSMs. Table 1 gives more details
on the experimental input for Experiments 1–6. Results
are given in Table 2 (Exp. 1–5) and Figure 14 (Exp. 6). For

Experiment 7, see Figures 15 and 16. In these experiments
ESAsearch performed very well, especially on nucleotide
PSSMs, see Experiments 2 and 4. It is faster than MatIn-
spector by a factor between 63 and 1,037, depending on
the stringency of the given thresholds. The commercial
advancement of MatInspector, called MATCH, was not
available for our comparisons, but based on [7] we pre-
sume a running time comparable to MatInspector. Com-
pared to LAsearch, ESAsearch is faster by a factor between
17 (MSS = 0.80) and 196 (MSS = 0.95) (see Experiment
2). On larger nucleotide sequences (see Experiment 4) the
speedup factors increase, ranging from 58 (MSS = 0.85) to
275 (MSS = 0.95). See Table 1 for the definition of MSS.
In the experiments using protein PSSMs, ESAsearch is
faster than the method of [13] by a factor between 1.5 and
1.8 (see Experiment 1). This is due to the better locality
behavior of the enhanced suffix array compared to a suffix
tree. For larger p-values LAsearch performs slightly better
than ESAsearch. Increasing the stringency, the perform-
ance of ESAsearch increases, resulting in a speedup of fac-
tor 1.5 for a p-value of 10-40. We explain this behavior by

Table 1: Performed experiments and experimental input.

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

searched sequences 59,021 30,964 19,111 1 (H.s. Chr. 6) 19,111 19,111
total length 20.2 MB 37.2 MB 4.3 MB 162.9 MB 4.3 MB 4.3 MB
sequence source see [13] DBTSS 5.1 RCSB PDB Sanger V1. 4 RCSB PDB RCSB PDB
sequence type/PSSM type protein DNA protein DNA protein protein
PSSMs 4,034 220 11,411 576 28,337 10,931
PSSM source see [13] MatInspector PRINTS 38 TRANSFAC Prof. 6.2 BLOCKS 14.1 PRINTS 38
avg. length of PSSMs 29.74 14.21 17.32 13.33 26.3 17.37
index construction (sec) 41 146 10.2 586 10.2 10.2
mdc (sec) 1960 - 1486 - 11871 1486

MatInspector x
FingerPrintScan x
Blimps x
DN00 x
LAsearch x x x x x
ESAsearch x x x x x x

ESAsearch (reduced ) x

Overview of the sequences and PSSMs used in the performed experiments. For the experiments that use p-value or E-value cutoffs, we
precomputed the cumulative score distributions and stored them on file. mdc is the time needed for this task. In Experiment 1 we measured the
running time of the Java-program from [13], referred to by DN00. We ran DN00 with a maximum of 2 GB memory assigned to the Java virtual
machine. DN00 constructs the suffix tree in main memory and then performs the searches. For a fair comparison, we therefore measured the total
running time, and the time for matching the PSSMs (without suffix tree construction). For Experiment 2, we implemented the matrix similarity
scoring scheme (MSS) of MatInspector and matched the PSSMs against both strands of the DNA sequences with different MSS cutoff values. The MSS

of PSSM M of length m and a sequence w ∈ m is defined as and hence given an MSS cutoff value, the

threshold th is determined as th = MSS·(scmax(M) - scmin(M)) + scmin(M). Instead of using the reverse strand we use the reverse complement of

the PSSM M, defined by (i, a) = M(m - 1 - i,) for all i ∈ [0, m - 1] and a ∈ , where is the Watson Crick complement of nucleotide a. This
allows to use the same enhanced suffix array for both strands. In Experiment 5 we used a PERL-based wrapper for the Blimps program shipped with
the BLIMPS distribution to do bulk sequence searches. The overhead for the PERL interpreter call was found to be negligible. For Experiment 6 we
used the reduced alphabets given in Figure 8. The last seven rows show which programs were used in which experiment.

MSS = () − ()
() − ()

sc w M sc M
sc M sc M

, min

max min

M

M a a
Page 19 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
the larger alphabet size, resulting in shorter common pre-
fixes and therefore smaller skipped areas of the enhanced
suffix array. With increasing stringency of the threshold,
the expected reading depth decreases, resulting in larger
skipped areas of the enhanced suffix array. Compared to
the FingerPrintScan program, ESAsearch achieves a spee-

dup factor between 3.8 and 470, see Experiment 3. In
comparison to Blimps, the PSSM-searching program of the
BLOCKS database, ESAsearch is faster by a factor of 23 (see
Experiment 5) for the chosen threshold. In Experiment 6
(see Figure 14), we measured the influence of alphabet
reductions on the running time of ESAsearch when using

Table 2: Results of Experiments 1–5.

Experiment 1: 4,034 PSSMs in 20.2 MB protein sequences

p-value DN00 (total time) DN00 (search) LAsearch ESAsearch +41 sec.

10-10 65,808 64,939 39,839 41,813
10-20 38,773 37,706 23,786 24,378
10-30 21,449 20,362 14,111 13,084
10-40 9,606 8,533 8,067 5,374

Experiment 2: 220 PSSMs in 37.2 MB DNA

MSS MatInspector LAsearch ESAsearch +32 sec.

0.80 12,773 3,605 202
0.85 12,567 3,189 108
0.90 12,487 2,818 53
0.95 12,445 2,356 12
1.00 12,429 885 1

Experiment 3: 11,411 PSSMs in 4.3 MB protein sequences

E-value FingerPrintScan LAsearch ESAsearch +10.2 sec.

10-10 4,733 3,423 1.244
10-20 4,710 486 52
10-30 4,706 27 10

Experiment 4: 576 PSSMs in 162.9 MB DNA

MSS LAsearch ESAsearch +586 sec.

0.85 18,446 318
0.90 16,376 150
0.95 13,764 50
1.00 5,294 1

Experiment 5: 28,337 PSSMs in 4.3 MB protein sequences

raw-th Blimps LAsearch ESAsearch +10.2 sec.

945 271:30:16 16:03:12 11:35:58

Experiment 1: Running times in seconds of the different PSSM searching methods at different levels of stringency, when searching for 4,034 amino
acid PSSMs in 59,021 sequences (21.2 MB) from SwissProt. These are the same PSSMs and sequences used in the experiments of [13]. Experiment
2: Running times in seconds of MatInspector, LAsearch, and ESAsearch, when searching 220 PSSMs on both strands of 37.2 MB DNA sequence data at
different matrix similarity score (MSS) cutoffs. Experiment 3: Running times in seconds of FingerPrintScan, LAsearch, and ESAsearch when searching all
11,411 PSSMs from the PRINTS database in the RCSB protein data bank (PDB) for different E-values. Experiment 4: Running times in seconds of
LAsearch and ESAsearch when searching 576 PSSMs in H. sapiens chr. 6 at different matrix similarity score (MSS) cutoffs. Experiment 5: Running
times in hh:mm:ss of Blimps, LAsearch, and ESAsearch when searching all 28,337 PSSMs from the BLOCKS database in PDB. We used a raw score
threshold of 945 as suggested in the Blimps documentation for searching large databases. For each experiment, the additional time needed for the
construction of the enhanced suffix array is shown in the head of the ESAsearch column.
Page 20 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389

Page 21 of 25
(page number not for citation purposes)

Effect of alphabet reduction on the running time of ESAsearchFigure 14
Effect of alphabet reduction on the running time of ESAsearch. Experiment 6: Relative deviations of running time of
ESAsearch when using reduced alphabets at different levels of stringency. We measured the relative percentage deviation with
respect to the running time when using the standard 20 letter amino acid alphabet (= 0%). We searched with 11,411 PSSMs
from the PRINTS database (Rel. 38) in the RCSB Protein Data Bank (PDB) with a total sequence length of 4.3 MB. In this exam-
ple, the maximum performance improvement is achieved for an alphabet of size 4 and a p-value cutoff of π = 10-20.

The influence of alphabet reduction on the running time of ESAsearch

Alphabet size

−
lo

g 10
 p

−
va

lu
e

20 15 10 8 6 5 4 3 2

40

35

30

25

20

15

10

5
−50%

0%

50%

100%

150%

Table 3: Running times of the LazyDistrib algorithm.

p-value simple DP LazyDistrib speedup factor

10-10 1,486 485.8 3
10-20 1,486 92.5 95
10-30 1,486 8.9 166
10-40 1,486 4.5 330

Running times in seconds when computing score thresholds for all 11,411 PSSMs from the PRINTS database (Rel. 38), given different p-values.
Running times given in this table are measurements performed with improved versions of the simple DP and LazyDistrib algorithms and thus are
much lower than the times given in [25].

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
protein PSSMs. Compared to the performance of ESAse-
arch operating on the normal 20 letter amino acid alpha-
bet a speedup up to factor 2 can be achieved when using
a 4 letter alphabet and a p-value cutoff of 10-20. Experi-
ment 7 (see Figures 15 and 16) shows that the expected
running time of ESAsearch is sublinear, whereas LAsearch
runs in linear time. In a final experiment, we compared
algorithm LazyDistrib with the DP-algorithm computing
the complete distribution. LazyDistrib shows a speedup
factor between 3 and 330 on our test set, depending on
the stringency of the threshold (see Table 3).

PoSSuM software distribution
Our software tool PoSSuMsearch implements all algo-
rithms and ideas presented in this work, namely Simple-
search, LAsearch, ESAsearch and LazyDistrib. A user can
search for PSSMs in enhanced suffix arrays built by

mkvtree from the Vmatch package, as well as on plain
sequence data in FASTA, GENBANK, EMBL, or SWISS-
PROT format. The search algorithm can be chosen from
the command line.

PSSMs are specified in a simple plain text format, where
one file may contain multiple PSSMs. The alphabet a
PSSM refers to, and alphabet character to PSSM column
assignments can be specified on a per-PSSM basis for most
flexible alphabet support. All implemented algorithms
support alphabet transformations. PSSMs can contain
integer as well as floating point scores. To prevent round-
ing errors for integer based PSSMs, PoSSuMsearch uses
integer arithmetics for these, resulting in an additional
speedup on most CPU architectures. Searching on the
reverse strand of nucleotide sequences is implemented by
PSSM transformation according to Watson-Crick base

Scaling behaviour of ESAsearchFigure 15
Scaling behaviour of ESAsearch. Experiment 7: Scaling behavior of ESAsearch when searching with 576 TRANSFAC PSSMs
on subsets of human chromosome 6 of different sizes and with different matrix similarity cutoff values (MSS). The subsets are
prefixes of human chromosome 6 of length 2k for k = 0, 1, 2,..., 7.

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160

R
un

ni
ng

 ti
m

e
[s

ec
]

Search space [MB]

Scaling behaviour of ESAsearch

ESAsearch MSS=0.95
ESAsearch MSS=0.90
ESAsearch MSS=0.85
Page 22 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
pairing. Hence it is sufficient to build the enhanced suffix
array for one strand only. This can then be used to search
both strands.

The cutoff can be specified as p-value, E-value, MSS
(matrix similarity score), or raw score threshold. If only
the best matches with the highest scores need to be
known, then PoSSuMsearch can be asked to report only the
k highest scoring matches without even specifying an
explicit cutoff. To do so, the search algorithms dynami-
cally adapt the threshold during the search. When using p-
or E-values, the score threshold is determined by either
the lazy dynamic programming algorithm introduced in
this contribution, or read from file that stores the com-
plete precalculated probability distribution. Background
distributions can be specified arbitrarily by the user, or
determined from a given sequence database. We provide
a tool, PoSSuMdist, to generate a compressed file contain-

ing the complete precalculated probability distribution
for a set of PSSMs.

PSSM matches can be sorted by specifying a list of sort
keys, like p-value, match score, sequence number, and so
on. The output formats of PoSSuMsearch print out all
available information about a match, either in a human
readable format, tab delimited, or in machine readable,
XML-based CisML [35]. PoSSuMsearch as well as PoSSuM-
dist support multi-threading for a further reduction of run-
ning time on multi CPU machines.

The PoSSuM software distribution includes the searching
tool PoSSuMsearch itself, and additional tools to deter-
mine character frequencies from sequence data, for prob-
ability distribution calculation, and PSSM format
converters for TRANSFAC, BLOCKS, PRINTS, and EMA-
TRIX style PSSMs.

Scaling behaviour of LAsearchFigure 16
Scaling behaviour of LAsearch. Experiment 7: Scaling behavior of LAsearch when searching with 576 TRANSFAC PSSMs on
subsets of human chromosome 6 of different sizes and with different matrix similarity cutoff values (MSS). The subsets are pre-
fixes of human chromosome 6 of length 2k for k = 0, 1, 2,..., 7.

0

5000

10000

15000

20000

0 20 40 60 80 100 120 140 160

R
un

ni
ng

 ti
m

e
[s

ec
]

Search space [MB]

Scaling behaviour of LAsearch

LAsearch MSS=1.00
LAsearch MSS=0.95
LAsearch MSS=0.90
LAsearch MSS=0.85
Page 23 of 25
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
Discussion and conclusion
We have presented a new non-heuristic algorithm for
searching with PSSMs, achieving expected sublinear run-
ning time. Our analysis of ESAsearch shows that for
sequences not shorter than ||m + m - 1 a linear runtime
in the worst case is achieved. It shows superior perform-
ance over the most widely used programs, especially for
DNA sequences. The enhanced suffix array, on which the
method is based, requires only 9n bytes. This is a space
reduction of more than 45 percent compared to the 17n
bytes implementation of [13]. Further on, we developed a
systematic concept for alphabet reduction, especially use-
ful on amino acid sequences and PSSMs for gaining addi-
tional speedup. Our third main contribution is a new
algorithm for the efficient calculation of score thresholds
from user defined E-values and p-values. The algorithm
allows for accurate on-the-fly calculations of thresholds,
and has the potential to replace formerly used approxima-
tion approaches. Beyond the algorithmic contributions,
we provide a robust, well documented, and easy to use
software package, implementing the ideas and algorithms
presented in this manuscript.

Availability
The PoSSuM software distribution and its documentation
is available precompiled for different operating systems
and architectures on [24]. A version of mkvtree is
included. A web based version of PoSSuMsearch is availa-
ble under the same URL.

Authors' contributions
M.B. developed the algorithms presented in this manu-
script, and wrote significant parts of the manuscript. R.H.
implemented the algorithms, created the software distri-
bution, and contributed to the manuscript. M.B. and R.H.
wrote the documentation for the software package. R.G.
provided supervision and guidance on the project and
provided essential infrastructure. S.K. provided supervi-
sion, and contributed to the manuscript. All authors read
and approved the final manuscript.

Acknowledgements
The authors thank Sven Rahmann and three anonymous reviewers for com-
ments on the manuscript, Alexander Kel from Biobase GmbH Germany for
providing the TRANSFAC PSSMs used in the benchmark experiments, and
Jan Krüger for setting up the web interface and integrating PoSSuMsearch in
our local web-service environment. M.B. and R.H. were supported by the
International NRW Graduate School in Bioinformatics and Genome
Research.

References
1. Gribskov M, McLachlan M, Eisenberg D: Profile Analysis: Detec-

tion of Distantly Related Proteins. Proc Nat Acad Sci USA 1987,
84:4355-4358.

2. Hulo N, Sigrist C, Le Saux V, Langendijk-Genevaux PS, Bordoli L, Gat-
tiker A, De Castro E, Bucher P, Bairoch A: Recent improvements
to the PROSITE database. Nud Acids Res 2004, 32:134-137.

3. Attwood TK, Bradley P, Flower DR, Gaulton A, Maudling N, Mitchell
AL, Moulton G, Nordle A, Paine K, Taylor P, Uddin A, Zygouri C:
PRINTS and its automatic supplement, prePRINTS. Nucl
Acids Res 2003, 31:400-402.

4. Henikoff J, Greene E, Pietrokovski S, Henikoff S: Increased Cover-
age of Protein Families with the Blocks Database Servers.
Nucl Acids Res 2000, 28:228-230.

5. Wu T, Nevill-Manning C, Brutlag D: Minimal-risk scoring matri-
ces for sequence analysis. J Comp Biol 1999, 6(2):219-235.

6. Sandelin A, Alkema W, Engstrom P, Wasserman W, Lenhard B: JAS-
PAR: an open-access database for eukaryotic transcription
factor binding profiles. Nucl Acids Res 2004, 32:D91-D94.

7. Matys V, Fricke E, Geffers R, Gößiling E, Haubrock M, Hehl R, Hor-
nischer K, Karas D, Kel AE, Kel-Margoulis OV, Kloos DU, Land S,
Lewicki-Potapov B, Michael H, Munch R, Reuter I, Rotert S, Saxel H,
Scheer M, Thiele S, Wingender E: TRANSFAC(R): transcrip-
tional regulation, from patterns to profiles. Nucl Acids Res
2003, 31:374-378.

8. Scordis P, Flower D, Attwood T: FingerPRINTScan: intelligent
searching of the PRINTS motif database. Bioinformatics 1999,
15(10):799-806.

9. Quandt K, Frech K, Wingender E, Werner T: MatInd and MatIn-
spector: new fast and versatile tools for detection of consen-
sus matches in nucleotide data. Nucl Acids Res 1995,
23:4878-4884.

10. Rajasekaran S, Jin X, Spouge J: The Efficient computation of Posi-
tion Specific Match Scores with the Fast Fourier Transfor-
mation. J Comp Biol 2002, 9:23-33.

11. Freschi V, Bogliolo A: Using sequence compression to speedup
probabilistic profile matching. Bioinformatics 2005,
21(10):2225-2229.

12. Wu T, Nevill-Manning C, Brutlag D: Fast Probabilistic Analysis of
Sequence Function using Scoring Matrices. Bioinformatics 2000,
16(3):233-244.

13. Dorohonceanu B, Nevill-Manning C: Accelerating Protein Classi-
fication Using Suffix Trees. In Proc. of the International Conference
on Intelligent Systems for Molecular Biology Menlo Park, CA: AAAI Press;
2000:128-133.

14. Gonnet H: Some string matching problems from Bioinfor-
matics which still need better solutions. Journal of Discrete Algo-
rithms 2004, 2(1):3-15.

15. Tatusov R, Altschul S, Koonin E: Detection of conserved seg-
ments in proteins: Iterative scanning of sequence databases
with alignment blocks. Proc Nat Acad Sci USA 1994,
91(25):12091-12095.

16. Henikoff J, Henikoff S: Using substitution probabilities to
improve position-specific scoring matrices. Bioinformatics 1996,
12(2):135-143.

17. Kel A, Gößling E, Reuter I, Cheremushkin E, Kel-Margoulis O, Win-
gender E: MATCH: a tool for searching transcription factor
binding sites in DNA sequences. Nucl Acids Res 2003,
31(13):3576-3579.

18. Abouelhoda M, Kurtz S, Ohlebusch E: Replacing Suffix Trees with
Enhanced Suffix Arrays. Journal of Discrete Algorithms 2004,
2:53-86.

19. Kurtz S: Reducing the Space Requirement of Suffix Trees.
Software – Practice and Experience 1999, 29(13):1149-1171.

20. Giegerich R, Kurtz S: A Comparison of Imperative and Purely
Functional Suffix Tree Constructions. Science of Computer Pro-
gramming 1995, 25(2–3):187-218.

21. Staden R: Methods for calculating the probabilities for finding
patterns in sequences. Comp Appl Biosci 1989, 5:89-96.

22. Rahmann S: Dynamic programming algorithms for two statis-
tical problems in computational biology. In Proc. of the 3rd
Workshop of Algorithms in Bioinformatics (WABI) LNCS 2812, Springer
Verlag; 2003:151-164.

23. Rahmann S, Müller T, Vingron M: On the Power of Profiles for
Transcription Factor Binding Site Detection. Statistical Applica-
tions in Genetics and Molecular Biology 2003, 2(1):.

24. Beckstette M, Homann R, Giegerich R, Kurtz S: PoSSuM software
distribution. 2006 [http://bibiserv.techfak.uni-bielefeld.de/possum
search/].

25. Beckstette M, Strothmann D, Homann R, Giegerich R, Kurtz S: PoS-
SuMsearch: Fast and Sensitive Matching of Position Specific
Scoring Matrices using Enhanced Suffix Arrays. In Proc. of the
Page 24 of 25
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3474607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3474607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592233
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10705433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10705433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8532532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8532532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8532532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15713733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15713733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10869016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10869016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7991589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7991589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7991589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2720468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2720468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16930469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16930469
http://bibiserv.techfak.uni-bielefeld.de/possumsearch/
http://bibiserv.techfak.uni-bielefeld.de/possumsearch/

BMC Bioinformatics 2006, 7:389 http://www.biomedcentral.com/1471-2105/7/389
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

German Conference on Bioinformatics Volume P-53. GI Lecture Notes in
Informatics; 2004:53-64.

26. Kärkkäinen J, Sanders P: Simple Linear Work Suffix Array Con-
struction. In Proceedings of the 13th International Conference on
Automata, Languages and Programming Springer; 2003.

27. Kasai T, Lee G, Arimura H, Arikawa S, Park K: Linear-time Long-
est-Common-Prefix Computation in Suffix Arrays and its
Applications. In 12th Annual Symposium on Combinatorial Pattern
Matching (CPM2001) Volume 2089. Springer-Verlag, New York: Lec-
ture Notes in Computer Science; 2001:181-192.

28. de Bruijn N: A Combinatorial Problem. Koninklijke Nederlands
Akademie van Wetenschappen Proceedings 1946, 49:758-764.

29. Li T, Fan K, Wang J, Wang W: Reduction of protein sequence
complexity by residue grouping. Protein Engineering 2003,
16(5):323-330.

30. Murphy LR, Wallqvist A, Levy R: Simplified amino acid alphabets
for protein fold recognition and implications for folding. Pro-
tein Engineering 2000, 13(3):149-152.

31. Castillo G: Extreme Value Theory in Engineering Academic Press; 1988.
32. Embrechts P, Klüppelberg C, Mikosch T: Modelling Extremal Events

Springer; 1997.
33. Goldstein L, Waterman M: Approximations to profile score dis-

tributions. J Comp Biol 1994, 1:93-104.
34. Kurtz S: The Vmatch large scale sequence analysis software.

2005 [http://www.vmatch.de/].
35. Haverty P, Weng Z: CisML: an XML-based format for sequence

motif detection software. Bioinformatics 2004, 20(11):1815-1817.
36. Weeks D, Eskandari S, Scott D, Sachs G: A H+-gated urea chan-

nel: the link between Helicobacter pylori urease and gastric
colonization. Science 2000, 287:482-485.
Page 25 of 25
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12826723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12826723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10775656
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10775656
http://www.vmatch.de/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15001475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15001475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10642549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10642549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10642549
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	PSSMs and lookahead scoring: LAsearch
	PSSM searching using enhanced suffix arrays: ESAsearch
	Analysis

	Performance improvements via alphabet transformations
	Reduced amino acid alphabets

	Finding an appropriate threshold for PSSM searching: LazyDistrib
	Probabilities and expectation values
	Calculation of exact PSSM score distributions
	Evaluation with dynamic programming
	Restricted probability computation
	Lazy evaluation of the permuted matrix

	Implementation and computational results
	PoSSuM software distribution

	Discussion and conclusion
	Availability
	Authors' contributions
	Acknowledgements
	References

