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Abstract

Background: A cluster analysis is the most commonly performed procedure (often regarded as a first step) on
a set of gene expression profiles. In most cases, a post hoc analysis is done to see if the genes in the same clusters
can be functionally correlated. While past successes of such analyses have often been reported in a number of
microarray studies (most of which used the standard hierarchical clustering, UPGMA, with one minus the
Pearson's correlation coefficient as a measure of dissimilarity), often times such groupings could be misleading.
More importantly, a systematic evaluation of the entire set of clusters produced by such unsupervised procedures
is necessary since they also contain genes that are seemingly unrelated or may have more than one common
function. Here we quantify the performance of a given unsupervised clustering algorithm applied to a given
microarray study in terms of its ability to produce biologically meaningful clusters using a reference set of
functional classes. Such a reference set may come from prior biological knowledge specific to a microarray study
or may be formed using the growing databases of gene ontologies (GO) for the annotated genes of the relevant
species.

Results: In this paper, we introduce two performance measures for evaluating the results of a clustering
algorithm in its ability to produce biologically meaningful clusters. The first measure is a biological homogeneity
index (BHI). As the name suggests, it is a measure of how biologically homogeneous the clusters are. This can be
used to quantify the performance of a given clustering algorithm such as UPGMA in grouping genes for a particular
data set and also for comparing the performance of a number of competing clustering algorithms applied to the
same data set. The second performance measure is called a biological stability index (BSI). For a given clustering
algorithm and an expression data set, it measures the consistency of the clustering algorithm's ability to produce
biologically meaningful clusters when applied repeatedly to similar data sets. A good clustering algorithm should
have high BHI and moderate to high BSI. We evaluated the performance of ten well known clustering algorithms
on two gene expression data sets and identified the optimal algorithm in each case. The first data set deals with
SAGE profiles of differentially expressed tags between normal and ductal carcinoma in situ samples of breast
cancer patients. The second data set contains the expression profiles over time of positively expressed genes
(ORF's) during sporulation of budding yeast. Two separate choices of the functional classes were used for this
data set and the results were compared for consistency.

Conclusion: Functional information of annotated genes available from various GO databases mined using
ontology tools can be used to systematically judge the results of an unsupervised clustering algorithm as applied
to a gene expression data set in clustering genes. This information could be used to select the right algorithm
from a class of clustering algorithms for the given data set.
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Background

The primary purpose of this paper is to introduce two new
external indices for measuring the performance of a clus-
tering algorithm for the specific purpose of grouping
genes using their expression profiles.

Clustering of genes on the basis of expression profiles is a
frequently, if not always, performed operation in analyz-
ing the results of a microarray or SAGE study. Often times
it is taken as a first step in understanding how a class of
genes act in consort during a biological process. Statistics
and machine learning literature provide a huge choice of
clustering tools for such unsupervised learning opera-
tions. Not only do multiple algorithms exist, but even a
single algorithm may rely on various user selectable tun-
ing parameters such as desired number of clusters, or
threshold values for forming a new cluster, initial values
etc. Naturally, the results may be quite varied (see, e.g., [1-
3]). Although, the hierarchical clustering method UPGMA
[4] is used most often with microarray data sets (partly
due to its early integration into existing software), the fol-
lowing algorithms are also generally considered to be
solid performers in the clustering world and are freely
available through various R [5] libraries: a partition
method called K-means [6], a divisive clustering method
Diana [7], a fuzzy logic based method Fanny [7], neural
network based methods SOM (self-organizing maps, [8])
and SOTA (self-organising tree algorithm, [9]) and a nor-
mal mixture model based clustering [10].

Past evaluations of clustering algorithms have been of
general (non-biological) nature. For example, a good clus-
tering algorithm ideally should produce groups with dis-
tinct non-overlapping boundaries, although a perfect
separation can not typically be achieved in practice. Figure
of merit measures (FOM, hereafter) [11] such as the sil-
houette width [12] or the homogeneity index [13] can be
used to evaluate the (visual) separation of groups
obtained from a clustering algorithm. The concept of sta-
bility of a clustering algorithm was taken into considera-
tion in [3] (also see [14]). A resampling based validity
scheme was proposed in [15].

Although popular statistical clustering algorithms (e.g.,
UPGMA) have often been reported to successfully pro-
duce clusters of functionally similar genes, it is important
to make that requirement a part of the evaluation strategy
in selecting one from a list of competing clustering algo-
rithms. Some attempts in this direction have been made
in recent years (e.g., [16-18]). These papers propose scor-
ing a clustering algorithm based on the biological similar-
ity of the resulting clusters in some fashion, although all
of them ignore the stability issue. The index proposed in
[16] is based on the idea of mutual information content
between statistical clusters and biological attributes. The
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entropy is taken as a measure of information content and
a filtered collection of all GO terms is used as attributes.
[17] used an ANOVA based test of equality of means
amongst the cluster members to define their validation
index. One potential difficulty with this approach is that a
quantitative conversion of biological attributes is needed
(which may not be natural and may not preserve the
information content). [18] used an information content
technique proposed by [19] to compute their validation
index. There also exists another set of papers (e.g., [20-
22]) where the main objective is that of biological inter-
pretation of the clusters produced by a clustering algo-
rithm.

In this paper, we introduce two performance measures for
evaluating the results of a clustering algorithm in its abil-
ity to produce biologically meaningful clusters. The first
measure is a biological homogeneity index (BHI). As the
name suggests, it is a measure of how biologically homo-
geneous the clusters are. This can be used to quantify the
performance of a given clustering algorithm such as
UPGMA in grouping genes for a particular data set and
also for comparing the performances of a number of com-
peting clustering algorithms applied to the same data set.
The second performance measure is called a biological
stability index (BSI). For a given clustering algorithm and
an expression data set, it measures the consistency of the
clustering algorithm's ability to produce biologically
meaningful clusters when applied repeatedly to similar
data sets. A good clustering algorithm should have high
BHI and moderate to high BSI. We also provide an R-code
with some simple illustrations for computing these indi-
ces [see Additional file 1]. We evaluated the performance
of ten well known clustering algorithms using this dual
measures approach on two gene expression data sets and
identified the optimal algorithm in each case.

We use publicly available GO [23] tools and databases to
obtain the functional information in our illustrative real
data examples. They are used to produce a reference col-
lection of functional classes with respect to which a clus-
tering algorithm was judged for homogeneity and
stability. In particular, it has no relations to the idea of co-
clustering which uses statistical clustering within each GO
term.

Results

We first consider the breast cancer data. This data set con-
sisted of expression profiles of 258 significant genes based
on their eleven dimensional expression profiles over four
normal and seven DCIS samples. Based on the size of the
data set we judge that a cluster size between four and ten
might be appropriate. Thus, both the biological homoge-
neity index (BHI) and the biological stability index (BSI)
was computed for each clustering algorithm in this range
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of cluster numbers. As described in the Methods section,
we used eleven functional classes for this study. Figure 1
shows the plots of BHI for the ten clustering strategies
along with the results for random clustering. The thick
black piecewise linear curve denotes the 95-th percentiles
of the BHI values obtained by random clustering - these
are computed by a Monte carlo scheme as described in the
methods section based on 500 iterates. Thus, the proba-
bility of obtaining a value of BHI as high as that just by
chance is estimated to be less than 5%. Therefore, any
score higher than the thick black curve by a clustering
algorithm will be judged to be "statistically significant".

Three of the seven clustering algorithms were used with
two choices of dissimilarity measures. These are indicated
by the line types with solid lines corresponding to one-
minus the Pearson's correlation coefficient as a dissimilar-
ity measure and dashed lines corresponding to Euclidean
distance, respectively. In the rest of the paper, the term
correlation refers to the Pearson's correlation coefficient.
The plot of BHI reveals that UPGMA with the correlation
measure happens to produce most homogeneous biolog-
ical clusters based on this data set and the results are sta-
tistically significant when the number of clusters are
between six and ten. We also computed p-values under a
non-uniform resampling which maintains the same clus-
ter sizes (on the average) as produced by a given clustering
algorithm. This is easily accomplished by drawing a ran-
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Figure |

BHI for various clustering algorithms applied to the normal
and DCIS samples in breast cancer data. The thick black line
is the 95th percentile of BHI values under random clustering.
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dom sample with probability proportional to the original
cluster sizes instead of a simple random sample in Step 2
of the statistical scoring algorithm. Note that it is compu-
tationally expensive however, since separate resampling
needs to be done for each k and clustering algorithm com-
bination. UPGMA with correlation and k between six and
nine remains significant at 5% based on the non-uniform
resampling as well (p-values were .028, .018, .030 and
.046, respectively). Interestingly, the performance of most
other clustering algorithms was not significantly better
than random clustering except for Fanny with cluster size
k = 7 (Fanny, Euclidean with k = 8 is borderline signifi-
cant) and Diana (Euclidian) with k = 10.

The biological stability index (BSI) is plotted in Figure 2.
The 95th percentile BSI values under random clustering
were all nearly zero and are not plotted further. We can say
that all the clustering algorithms have produced signifi-
cantly more consistent answers as compared to random
clustering which is perhaps not too surprising. The fuzzy
logic based clustering Fanny seems to be the least stable
and UPGMA (Euclidian), along with Diana (Euclidian),
seems to be the most stable in their capabilities of produc-
ing clusters using reduced data sets that are biologically
alike. Considering both indices, we would say that
UPGMA (correlation), which also has decent stability, is
the best choice for this data set provided investigators
select six to nine clusters where seven seems to be the opti-
mal number of clusters to maximize the biological homo-
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Figure 2
BSI for various clustering algorithms applied to the normal
and DCIS samples in breast cancer data.
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geneity. Diana (Euclidian) will be a worthwhile
consideration if ten clusters are desired.

Next we report the results for the sporulation data set. As
stated in the methods section, we have used two different
sets of functional classes for biological validations. For the
details, we refer to Figures 3 and 5 which show the biolog-
ical homogeneity index (BHI) and Figures 4 and 6 which
show the biological stability index (BSI) under the two
functional schemes. A range of six to twelve was selected
for the number of clusters. The plots of BHI show that for
this data set, under both sets of functional classes, Fanny,
Diana (correlation), K-Means and SOTA are doing well
whereas UPGMA and SOM are not. Model based and
Diana (Euclidean) perform well under the FunCat classes
but not with respect to the FatiGO classes.

Model based selected only six clusters even if a larger max-
imum number of clusters was specified. The biological
stability index, on the other hand was high for UPGMA
and Fanny (Euclidian) but low for K-Means and Fanny
(correlation). Thus, considering everything, Fanny (Euc-
lidian) seems to be the optimal algorithm for the yeast
data set. Other overall good performers were Diana (cor-
relation) and SOTA.
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Figure 3

BHI for various clustering algorithms applied to the positively
expressed genes in yeast sporulation data with functional
classes from FatiGO. The thick black line is the 95th percen-
tile of BHI values under random clustering.
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Figure 4

BSI for various clustering algorithms applied to the positively
expressed genes in yeast sporulation data with functional
classes from FatiGO.

Discussions and conclusion

Historically, validation measures for clustering algorithms
are based on the data themselves. They measure the extent
of a clustering algorithms's ability in finding similarity
structures hidden in the data. However, for clustering bio-
logical data such as the gene expression profiles, it would
be reasonable to consider external measures that employ
the existing biological knowledge (which can be taken as
the "ground truth"). As argued by [24], internal measures
by themselves may not be suitable for biological data
which are often subject to many sources of noise (includ-
ing experimental artifacts).

The two indices introduced here are useful in quantifying
the results of an unsupervised clustering in grouping
genes with similar biological functions given a reference
collection of relevant functional classes. These indices will
be preferable over internal indices when there is a sub-
stantive existing biological knowledge about the genome
under consideration (e.g., as reflected by the proportion
of annotated genes).

As mentioned in the background section, the stability
aspect was absent in existing external indices based on
biological information. In our earlier work [3], Diana
(Euclidian) was recommended based on our internal sta-
bility measures and an external FOM measure called "dis-
tance from model profiles". It should be noted, however,
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Figure 5

BHI for various clustering algorithms applied to the positively
expressed genes in yeast sporulation data with functional
classes from FunCat. The thick black line is the 95th percen-
tile of BHI values under random clustering.

that Diana (correlation) was not included for benchmark-
ing in [3]. Based on the new external FOM, the biological
homogeneity index BHI, both Diana (correlation) and
(Euclidean) look good; however based on the new exter-
nal stability measure BSI, Diana (correlation) is preferable
over Diana (Euclidian).

Past studies have often concluded that clustering of the
gene expression profiles (typically via UPGMA with corre-
lation similarity) show that functionally similar genes are
grouped together. This is often concluded by inspecting a
handful of handpicked genes. Such conclusions are inher-
ently incomplete unless one can quantify the agreement
between the clusters produced via the expression profiles
and the biological classes because it is likely that many
biologically unrelated genes will be grouped together as
well.

The proposed indices are easy to interpret and easy to
implement. They are also useful in identifying the optimal
clustering algorithm for a given data set in its ability to
cluster biologically similar genes. As illustrated in this
paper, no single clustering algorithm is likely to be the
winner in all data sets. The approach introduced here will
be even more useful as the gene ontology databases grow
with time.
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BSI for various clustering algorithms applied to the positively
expressed genes in yeast sporulation data with functional
classes from FunCat.

As shown with the illustrated data sets, the biological indi-
ces can also guide us to determine the number of clusters
to be used in a clustering routine. Once an optimal algo-
rithm is determined one may choose k that maximizes
BHI for that algorithm in the given range. This approach
would indicate that seven and eleven, respectively, are the
optimal number of clusters to be used for the breast can-
cer data and the sporulation data.

Methods

Suppose G is the set of all genes for a given microarray
experiment. Let C y,....., C ; be F functional classes, not
necessarily disjoint. One could use software like [25] or
SAGE library tools (see, e.g., [26]) and public databases
(e.g., Gene Ontology, Entrez Gene, Unigene cluster) to
annotate and organize the expression values from a
microarray experiment into families related by the biolog-
ical characteristics of the genes or of their encoded pro-
teins. Note that not all the genes can be functionally
annotated and hence the set of all annotated genes C :=

- CicG.

Biological homogeneity index

Consider two annotated genes x, y that belong to the same
statistical cluster D . Let us say that C (x) is a functional
class containing gene x. Similarly C (y) contains gene y.
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We will assign the indicator function I( C (x) = C (¥)) the
value 1 if C (x) and C (y) match (in case of membership
to multiple functional classes, any one match will be suf-
ficient). As genes x and y are in the same statistical cluster,
we expect the two functional classes to match. Thus, the
following mathematical measure evaluates the biological
similarity of the statistical clusters:

=

BHI—lZ

» S 1(C) =C),

j=1 - 1)x¢yeZ)

where k is the number of statistical clusters and for cluster
D, nj=n(D ;N C) is the number of annotated genes in
D and where for a set A, n(A) denotes its size or cardi-
nality.

This is a simple measure that is easy to interpret and
implement once the reference collection of functional
classes are in place. This also works with overlapping func-
tional classes. This measure can be thought of as an aver-
age proportion of gene pairs with matched functional
classes that are statistically clustered together based on
their expression profiles.

Biological stability index

Next we capture the stability of a clustering algorithm by
inspecting the consistency of the biological results pro-
duced when the expression profile is reduced by one
observational unit. This stability measure is unrelated to
the one introduced by [3] which compared the clusters
without regard to biological relevance.

In a microarray or SAGE study, each gene has an expres-
sion profile that can be thought of as a multivariate data
value in R?, for some p > 1. For example, in a time course
microarray study, p could be the number of time points at
which expression readouts were taken. In a two sample
comparison, p could be the total (pooled) sample size,
and so on. Foreachi=1, 2,..., p, repeat the clustering algo-
rithm for each of the p data sets in R?-! obtained by delet-
ing the observations at the ith position of the expression
profile vectors. For each gene g, let D 81, denote the cluster
containing gene g in the clustering based on the reduced
expression profile. Let D 80be the cluster containing gene
g using the full expression profile. For each pair of genes x
and y in a biological class, we compare the statistical clus-
ters containing x based on the original and the statistical
cluster containing y based on the reduced profile. A stable
clustering algorithm would produce similar answers, as
judged biologically, based on the original and the reduced
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data. Thus, the clusters using full and reduced data,
respectively, containing two functionally similar genes
should have substantial overlaps. This is captured by the
following stability measure and larger values of this index
indicate more consistent answers:

F p

=2 Y

Sn(c )(H(C) 1)1’] =1x#yeC;

n(D*%)

(2)

A successful clustering is characterized by high values of
both of these indices. The following subsection describes
how to attribute a p-value to an observed index I for a
given clustering algorithm by comparing it with random
clustering of genes into the same number of clusters.

Statistical scoring

By comparing with "random clustering", we can compute
the observed level of significance or p-value for he above
measures and a given clustering algorithm. This can be
done by the following Monte Carlo steps:

Step 1. Compute a performance measure I for the cluster-
ing procedure under consideration.

Step 2. Compute the same performance measure I = I,
corresponding to a random clustering algorithm that
ignores the data and assigns genes to clusters randomly
and independently. This can easily be done by generating
(p + 1) independent simple random samples (with
replacement) of size M out of {1,..., k}, where k denotes
the desired number of clusters, and making the cluster
assignments D38%and D&, 1 <g<M,1<i<paccord-
ingly. Denote the resulting value of the performance
measure [*.

Step 3. Repeat Step 2 a large number of times, say B, yield-

*

ing IT,-‘-,IB.

Step 4. Compute the p-value as the proportion of times
the performance measure by random cluster assignments
exceeds (or equals to) the value obtained using the clus-
tering algorithm under consideration

p= B_lzl(l obs

s=1

This proportion estimates the probability of obtaining a
value as high as I, just by chance (i.e., by "random clus-

tering"). A 95% upper limit of the distribution of I under

Page 6 of 9

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:397

random clustering can be estimated by I(*[0.9SB]) where

Ifj) is the jth ordered I*.

Range of k, the number of clusters

In general, the users will have the flexibility of investigat-
ing the performance of a clustering algorithm over a range
of cluster numbers of their choosing. Some clustering
algorithms such as Fanny or Model based clustering use
data based selection of total number of hard clusters even
if a larger number of clusters are desired by the user. For
others, this choice is subjective. Often times, the biologists
conducting the microarray experiment will make this call.
For our illustration with the yeast data we have selected a
range of k values around k = 7 which was used in the orig-
inal analysis by [27].

Human breast cancer progression data

We illustrate our methods using the expression profiles of
258 genes (SAGE tags) that were judged to be significantly
differentially expressed at 5% significance level between
four normal and seven ductal carcinoma in situ (DCIS)
samples [26]. [26] combined various normal and tumor
SAGE libraries in the public domain with their own SAGE
libraries and used a modified form of t-statistics to com-
pute p-values. Further details can be obtained from their
paper and its supplementary web-site.

For constructing the functional classes, we have used a
publicly available web-tool called AmiGO [25]. We were
able to annotate 113 SAGE tags into the following eleven
functional classes based on their primary biological func-
tions. They were as follows: cell organization and biogen-
esis (24), transport (7), cell communication (15), cellular
metabolism (48), cell cycle (6), cell motility (7), immune
response (7), cell death(7), development (5), cell differ-
entiation (5), cell proliferation (5), where the numbers in
parentheses were the numbers of SAGE tags in a class.
There were 23 genes that belonged to more than one func-
tional class.

Yeast sporulation data

As a second illustrative data set, we use a well known data
set collected by [27]. This data set records expression pro-
files during the sporulation of budding yeast at seven time
points. The original data set was filtered using the same
criterion as in [27]. For our illustration, we look at a fur-
ther subset of 513 genes (ORF's to be correct) that satisfy
> log expression ratio > 0, where the sum is over all the
time points. Note that a positive value of the log of the
expression ratio at a time point implies that the gene is
positively expressed at that time and thus, in a sense, this
is a collection of genes whose expression values change in
a positive direction overall during the course of the exper-
1ment.
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We use two separate web-based tools both using the GO
ontology to annotate these ORF's. The resulting func-
tional classifications were different although they had
some common GO terms. We wanted to see whether the
end comparison of the clustering algorithms is sensitive to
the choice of the biological classes. To this end, we wanted
to compare two different sets of functional classes, both
based on the biological processes, with the same set of
yeast ORF's.

For the first set of functional classes we mined the yeast
genome database using the FatiGO webtool [28] at [29].
We have used the default FatiGO "level 3" GO terms.
However it resulted in some very broad functional classes
such as "cellular process" or "cellular physiological proc-
esses". In the end, we took a subset of the resulting terms
which we judged to be more specific. This resulted in 295
annotated genes into the following ten overlapping bio-
logical classes: reproduction (14), cell communications
(8), sex determination (4), metabolism (197), morpho-
genesis (13), cell differentiation (48), cell growth (7), cell
regulation (85), response to stimulus (37) and localiza-
tion (51).

The next set of functional classes were obtained using the
web-based GO mining tool FunCat [30] available at [31]
which did not offer a choice of "level" of the GO terms.
Overall, 503 of the 513 genes were annotated into the fol-
lowing seventeen functional classes: metabolism (138),
energy (27), cell cycle and DNA processing (152), tran-
scription (50), protein synthesis (10), protein fate (72),
protein with binding function or cofactor requirement
(81), protein activity regulation (16), transport (63), cell
communication (12), defense (36), interaction with envi-
ronment (33), cell fate (17), development (41), biogen-
esis (77), cell differentiation (82).

The clustering algorithms

We consider the following well known clustering algo-
rithms representing the vast spectrum of clustering tech-
niques that are available in statistical pattern recognition
and machine learning literature. We evaluate these algo-
rithms using the two biological performance measures
BHI and BSI. One minus correlation was taken as the dis-
similarity measure for the "distance" based algorithms. In
addition, for UPGMA, Diana, Fanny, we also considered
the standard Euclidean distance between expression vec-
tors as a dissimilarity measure. Thus, overall, ten cluster-
ing schemes were subjected to this comparative
evaluation.

UPGMA

This is perhaps the most commonly used clustering
method with microarray data sets. This is an agglomera-
tive hierarchical clustering algorithm [4] yielding a den-
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drogram that can be cut at a chosen height to produce the
desired number of clusters. It uses a dissimilarity matrix in
order to decide if two expression profiles are close or not.

K-means

K-means [6] is a partitioning method that is not hierarchi-
cal in nature. This algorithm uses a minimum "within-
class sum of squares from the centers" criterion to select
the clusters. The number of clusters needs to be fixed in
advance.

Diana

This is also a hierarchical algorithm which is divisive in
nature [7]. Thus at each level, a bigger cluster is divided
into two smaller clusters that are furthest apart.

Fanny

This algorithm produces a fuzzy cluster [7]. Thus, a prob-
ability vector for each observation is reported that repre-
sents the probability of its cluster membership. A hard
cluster can be produced by assigning it to the cluster with
highest probability.

SOM

Clustering by self-organizing maps [8] is a popular
method amongst the computational biologists and
machine learning researchers. SOM is based on neural
networks and can be regarded as a data visualization tech-
nique.

Model based clustering

Under this scheme [10], a statistical model is fit to the
data. The model is a finite mixture of Gaussian distribu-
tions. Each mixture component represents a cluster. The
Maximum likelihood method (EM algorithm) is used to
fit the group membership and the mixture components. A
number of Gaussian component models are compared as
well. The number of clusters and the Gaussian models are
chosen by the minimum BIC criterion.

SOTA

Self-organising tree algorithm or SOTA has received a
great deal of attention in recent years and was used to clus-
ter microarray gene expression data in [32]. Originally
proposed by [9] for phylogenetic reconstruction, SOTA
produces a divisive hierarchical binary tree structure using
a neural network. It uses a fast algorithm and hence is suit-
able for clustering a large number of objects.

UPGMA (hclust) and K-Means are available in the base
distribution of R. Diana and Fanny are available in the
library "cluster". Model based clustering is available in the
R-package mclust. For SOM, we have used an R code writ-
ten by Niels Waller and Janine Illian [33]. For SOTA, we
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have used the MeV component of the TM4 package [34].
Servers running SOTA are also available ([35,36]).
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