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Abstract
Background: A number of methods that use both protein structural and evolutionary information
are available to predict the functional consequences of missense mutations. However, many of
these methods break down if either one of the two types of data are missing. Furthermore, there
is a lack of rigorous assessment of how important the different factors are to prediction.

Results: Here we use Bayesian networks to predict whether or not a missense mutation will affect
the function of the protein. Bayesian networks provide a concise representation for inferring
models from data, and are known to generalise well to new data. More importantly, they can handle
the noisy, incomplete and uncertain nature of biological data. Our Bayesian network achieved
comparable performance with previous machine learning methods. The predictive performance of
learned model structures was no better than a naïve Bayes classifier. However, analysis of the
posterior distribution of model structures allows biologically meaningful interpretation of
relationships between the input variables.

Conclusion: The ability of the Bayesian network to make predictions when only structural or
evolutionary data was observed allowed us to conclude that structural information is a significantly
better predictor of the functional consequences of a missense mutation than evolutionary
information, for the dataset used. Analysis of the posterior distribution of model structures
revealed that the top three strongest connections with the class node all involved structural nodes.
With this in mind, we derived a simplified Bayesian network that used just these three structural
descriptors, with comparable performance to that of an all node network.

Background
An important aspect of the post-genomic era is to under-
stand the biological effects of inherited variations
between individuals. For instance, a key problem for the
pharmaceutical industry is to understand variations in

drug treatment responses among individuals at the molec-
ular level. A single nucleotide polymorphism (SNP) is a
mutation, such as an insertion, deletion or substitution,
observed in the genomic DNA of individuals of the same
species. When the SNP results in an amino acid substitu-
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tion in the protein product of the gene, it is called a mis-
sense mutation. A missense mutation can have various
phenotypic effects although we restrict ourselves here to
the simplified task of predicting whether a missense muta-
tion has an effect or no effect on protein function.

The wealth of SNP data now available [1-4] has prompted
a number of studies on the functional consequences of
SNPs. For example, Wang and Moult [5] and Ramensky et
al. [6] showed that most of the detrimental missense
mutations affect protein function indirectly through
effects on protein structural stability particularly disrup-
tion to the protein hydrophobic core. The evolutionary
properties of the mutated residue may also be important
determinants of its effect on protein function [7-9], since
conserved amino acids tend to be functionally important
or critical in maintaining structural integrity. A number of
groups have developed strategies to predict the effects of
missense mutations by using structural or evolutionary
information, or a combination of both. Most of these
methods claim prediction accuracies of between 70 – 80%
although comparison is extremely difficult due to the use
of different data sets and criteria for assigning a mutation
as having an effect or not. Chasman and Adams [7] pro-
posed a probabilistic method, and Krishnan and West-
head [10] evaluated decision trees and support vector
machines. Herrgard et al. [11] used structural motifs called
Fuzzy Functional Forms to predict the effects of amino
acid mutations on enzyme catalytic activity. Deleterious
human alleles were predicted by Sunyaev et al. [12] using
mostly structural information. By contrast, [13] used
purely sequence homology data in their SIFT (Sorting
Intolerant From Tolerant) algorithm, although adding
structural information resulted in significant improve-
ments [14]. Subsequent work has compared SIFT to SVMs
and random forests [15]. Cai et al. [16] used a Bayesian
framework to predict pathogenic SNPs. Verzilli et al. [17]
applied a hierarchical Bayesian multivariate adaptive
regression spline (hierarchical BMARS) model for binary
classification of the functional consequences of SNPs.
Within this model, samples from the posterior distribu-
tion were used to highlight properties of the mutated res-
idue that are most important in predicting its effect on
protein function.

All these methods require either structural or evolutionary
data to be available for predictions to be possible. How-
ever, there are many proteins that lack any detectable
sequence homology to known proteins or a solved 3D
structure. In these cases, many prediction methods break
down. Therefore a method is needed that can combine
both structural and evolutionary information but at the
same time tolerate the absence of either without manual
intervention. With this in mind we have applied Bayesian
networks to the problem of predicting the consequences

of a missense mutation on protein function. Bayesian net-
works are probabilistic graphical models which provide a
neat compact representation for expressing joint probabil-
ity distributions and inference. The representation and use
of probability theory makes Bayesian networks suitable
for learning from incomplete datasets, expressing causal
relationships, combining domain knowledge and data,
and avoiding over-fitting a model to training data. As
such, a host of applications in computational biology (for
example, see [18-20]) have used Bayesian networks and
Bayesian learning methodologies [21-23]. Our detailed
evaluation of Bayesian network performance in this work
is likely to be valuable to many groups working with Baye-
sian networks and biological data.

Bayesian networks
Our recent primer [24] introduces Bayesian networks to
the computational biologist. Briefly, given a set of varia-
bles x = {x1,..., xN}, which are represented as nodes in the
Bayesian network, a set of directed edges representing
relationships between nodes can be defined in a graph
structure. To allow efficient inference and learning, a
directed acyclic graph (DAG) must be formed, which
exploits the conditional independence relations between
variables. Using this model structure, model parameters θ
in the form of conditional probability distributions
(CPDs) between the connected variables may be learned.
With discrete data, these model parameters take the form
of conditional probability tables (CPTs). Throughout this
work, we have used the Bayes Net Toolbox for MATLAB
(BNT) [25]. The code used to produce the results pre-
sented in this paper is available on request from the
authors.

Learning from complete data
The Bayesian learning paradigm can be summarised as:

p(x|D) = ∫p(x|θ)p(θ|D)dθ

I.e., the predictive distribution for a new example observa-
tion, given a set of training examples D can be calculated

by averaging over all possible models θ the likelihood of
the example x given the model, multiplied by the likeli-
hood of the model given the training data. For a given

model structure  the model θ can be thought of as the
model parameters that encode the conditional probability

distributions between variables and their parents in .

Learning from incomplete data
One advantage of using Bayesian networks is that it is pos-
sible to learn model parameters from incomplete training
data i.e. in cases where variables are missing. To learn
from incomplete data, we used the Expectation-Maximisa-
tion (EM) algorithm, which estimates missing values by





Page 2 of 14
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:405 http://www.biomedcentral.com/1471-2105/7/405
computing the expected values and updating parameters
using these expected values as if they were observed val-
ues.

Structure learning

A fully connected network structure captures relationships
(dependencies) between all of the variables. A simpler,
more compact model may be produced if conditional
independencies between variables are learned. To do this,
we used the greedy search algorithm from the Matlab-
based structure learning package (SLP) [26] with tabular
CPDs and uninformative Dirichlet priors (BDeu). The
greedy search algorithm starts with a graph with no edges
between the nodes, and aims to maximise a score func-
tion: either the full Bayesian posterior or the Bayesian
Information Criterion (BIC). At each stage, the neigh-
bourhood of the current graph (the set of graphs that dif-
fer by adding, reversing or deleting an edge) are
considered, and the one with the highest score is chosen,
until convergence. We use the notation of Heckerman,

where h is a model structure hypothesis. From Bayes'
theorem the posterior distribution for network structures

p( h|D) is proportional to the marginal likelihood of the

data p(D| h). The full Bayesian posterior can be calcu-
lated [[27], equation 35], or the BIC approximation can
be used, which contains a term to describe how well the

maximum likelihood model s for structure h predicts

the data D, and a term that punishes model complexity.
For a model with d parameters, built from N samples, the
BIC score is:

Inference with missing data

Knowledge of the conditional probability distributions
between variables allows us to make predictions about the
expected states of variables even if some variables are
missing from the test data. For example, if structural infor-
mation about a test missense mutation is not available,
we can still infer whether the mutation has a functional
effect on the protein or not by marginalising over the
unknown variables. This is illustrated in a very simple
Bayesian network with three nodes, A, B, C, which can

take the values {a1,..., }, {b1,..., }, and {c1,...,

} respectively and a structure given by Figure 1. The

joint probability over all the variables is:

p(A, B, C) = p(A)p(B|A)p(C|A, B)

Each of the probabilities can be expressed as a conditional
probability table in this discrete case. If we wish to infer
the value of C given A = ai and B = bj then we can calculate
the probability of C taking each of the possible values, C
= ck for k = 1,..., NC by p(ck|ai, bj) read from CPTs. If we wish
to infer the value of C given only the value of A, we can
marginalise over the unknown variables (in this case, B).
Thus:






θ̂ 

ln ( | ) ln ( | , ) lnp D p D
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Example 3 node Bayesian networkFigure 1
Example 3 node Bayesian network. Example 3 node 
Bayesian network.
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Results and discussion
The systematic unbiased mutagenesis dataset of lac repres-
sor [28,29] and T4 lysozyme [30,31] were used to train
and validate the Bayesian networks. Classification of
'effect' and 'no effect' mutations was based on that of [17]
in which only those mutations resulting in a significant
loss of function were considered 'effect' mutations. As a
result, our lac repressor dataset consisted of 823 effect and
2422 no effect mutations, and our T4 lysozyme dataset
contained 312 effect and 1320 no effect mutations.

A total of fourteen variables were used to predict whether
or not a missense mutation affects protein function (Table
1; Note also the abbreviations introduced – taken from
the dataset of [17]). All these variables have been impli-
cated in previous studies as useful in discriminating
'effect' from 'no effect' mutations. Six of the variables are
continuous (ac, rac, rent, nrent, bf, and nbf), the rest are dis-
crete binary. The variables (excluding the class node) can
also be sorted into three groups based on the type of bio-
logical information they give: structural, evolutionary, or
in the case of nrent structural and evolutionary informa-
tion.

We used two basic types of Bayesian network structure in
this study: naïve and learned. In the naïve structure, the
effect node is a parent to all the other nodes in the network
structure. Details of the learned structure are provided
later. On each of these structures we performed seven
experiments:

• all:all: 15 node network trained and tested using all 14
variables listed in Table 1.

• all: noS: 15 node network trained on all variables, tested
with evolutionary information only (ac, rac, bf, nbf, bur,
trn, hlx, ifc, nrent nodes hidden).

• noS:noS: 6 node network (structural nodes missing)
trained and tested with evolutionary information only.

• all:noE: 15 node network trained on all variables, tested
with structural information only (nrent, rent, cnsd, ncnsd,
uslaa, uslby nodes hidden).

• noE:noE: 9 node network (evolutionary nodes missing)
trained and tested with structural information only.

• all:key: 15 node network trained on all variables, tested
using three key variables (ac, bur, bf). These key variables
were identified by analysing a number of learned struc-
tures.

• key:key: 4 node network trained and tested using key var-
iables only.

Results of these experiments are presented in Tables 2 and
3. We carried out both homogeneous and heterogeneous
cross-validation tests. Homogeneous cross-validation was
performed on both lysozyme and lac repressor datasets
separately, and a mixed set in which the two datasets were
pooled. In each case, data were randomised and divided
into 10 equal parts. One part was used as the test set and
the remainder as the training set. This procedure was
repeated 10 times so that each example (here it is each

p c a p b a p c a bk i j i k i j
b Bj

( | ) ( | ) ( | , )=
∈
∑

Table 1: Attributes used for predicting functional effects of missense mutations

Abbreviation Type Description Information

effect Discrete Effect of mutation on functionality Class

ac Continuous Solvent accessible area of native AA
rac Continuous Accessibility relative to maximum accessibility in training set
bf Continuous Normalised B-factor of native AA
nbf Continuous Normalised B-factor of structural neighbourhood of native AA Structural
bur Discrete Mutant AA is charged AA at buried site
trn Discrete Mutant AA occurs at glycine or proline in a turn
hlx Discrete Mutant AA occurs in helical region and involves glycine or proline
ifc Discrete Native AA is near subunit interface

nrent Continuous Phylogenetic entropy of structural neighbourhood of native AA Structural + Evolutionary

rent Continuous Normalised phylogenetic entropy of native AA
cnsd Discrete Native AA is at conserved position in phylogenetic profile
ncnsd Discrete Native AA is near conserved position in phylogenetic profile Evolutionary
uslaa Discrete Mutant AA is not in phylogenetic profile
uslby Discrete Mutant AA is not in the smallest AA class that includes the phylogenetic profile
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mutation) was used exactly once for testing. The mean
and standard deviation of the ten results were then calcu-
lated. In heterogeneous cross-validation, the data set of
one protein (e.g. lac repressor) was used as the training set
and that of the other protein (e.g. lysozyme) was used as
the test set.

Naïve Bayes classifier
all:all
As expected, overall error rates of less than 20% were
achieved in all cross validation tests with the all:all model

(Table 2, column 1). These results are consistent with pre-
vious studies reporting accuracies of 70 – 80% on similar
datasets using similar variables [7,10,17]. Furthermore, all
AUC values (Area under ROC curve – see Evaluation
measures in Methods section for details of all perform-
ance metrics), including those from heterogeneous cross
validation were at least 0.80 indicating a robust classifier
despite the naïvety of the network structure. We therefore
used results on the all:all model as a benchmark for the six
other experiments.

Table 2: Results with a naïve Bayes classifier.

Cross-validation Trained on: All All NoS All NoE All key
Tested on: All NoS NoS NoE NoE key key

mixed AUC 0.83 ± 0.01 0.70 ± 0.02 0.70 ± 0.02 0.81 ± 0.02 0.81 ± 0.02 0.80 ± 0.02 0.79 ± 0.01
MCC 0.44 ± 0.04 0.27 ± 0.03 0.27 ± 0.03 0.43 ± 0.03 0.43 ± 0.03 0.41 ± 0.02 0.35 ± 0.06
Overall error rate 0.19 ± 0.01 0.24 ± 0.01 0.24 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.21 ± 0.00
Effect error rate 0.35 ± 0.05 0.52 ± 0.03 0.52 ± 0.03 0.26 ± 0.07 0.26 ± 0.07 0.24 ± 0.07 0.41 ± 0.04
No effect error rate 0.15 ± 0.02 0.18 ± 0.01 0.18 ± 0.01 0.17 ± 0.01 0.17 ± 0.01 0.17 ± 0.02 0.17 ± 0.03
sensitivity 0.47 ± 0.12 0.37 ± 0.06 0.37 ± 0.06 0.37 ± 0.06 0.37 ± 0.06 0.36 ± 0.09 0.38 ± 0.16
specificity 0.92 ± 0.03 0.88 ± 0.02 0.88 ± 0.02 0.96 ± 0.02 0.96 ± 0.02 0.96 ± 0.03 0.92 ± 0.05

lac rep AUC 0.84 ± 0.02 0.74 ± 0.02 0.74 ± 0.02 0.82 ± 0.02 0.82 ± 0.02 0.80 ± 0.02 0.80 ± 0.02
MCC 0.47 ± 0.03 0.33 ± 0.06 0.33 ± 0.06 0.46 ± 0.04 0.46 ± 0.04 0.44 ± 0.03 0.39 ± 0.05
Overall error rate 0.18 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.19 ± 0.01 0.21 ± 0.00
Effect error rate 0.27 ± 0.05 0.40 ± 0.04 0.40 ± 0.04 0.20 ± 0.06 0.20 ± 0.06 0.18 ± 0.09 0.36 ± 0.05
No effect error rate 0.16 ± 0.02 0.19 ± 0.02 0.19 ± 0.02 0.18 ± 0.02 0.18 ± 0.02 0.19 ± 0.03 0.18 ± 0.03
sensitivity 0.47 ± 0.10 0.36 ± 0.12 0.36 ± 0.12 0.37 ± 0.08 0.38 ± 0.08 0.34 ± 0.12 0.41 ± 0.13
specificity 0.93 ± 0.03 0.92 ± 0.04 0.92 ± 0.04 0.96 ± 0.02 0.96 ± 0.02 0.97 ± 0.04 0.92 ± 0.04

lysozyme AUC 0.83 ± 0.02 0.68 ± 0.04 0.68 ± 0.05 0.81 ± 0.04 0.81 ± 0.04 0.78 ± 0.04 0.77 ± 0.04
MCC 0.40 ± 0.05 0.23 ± 0.06 0.23 ± 0.06 0.38 ± 0.08 0.38 ± 0.08 0.36 ± 0.11 0.28 ± 0.09
Overall error rate 0.17 ± 0.02 0.24 ± 0.01 0.24 ± 0.02 0.17 ± 0.03 0.17 ± 0.03 0.16 ± 0.02 0.21 ± 0.03
Effect error rate 0.40 ± 0.05 0.63 ± 0.05 0.63 ± 0.05 0.39 ± 0.12 0.39 ± 0.12 0.33 ± 0.13 0.54 ± 0.09
No effect error rate 0.13 ± 0.02 0.15 ± 0.01 0.15 ± 0.01 0.13 ± 0.03 0.13 ± 0.03 0.15 ± 0.02 0.14 ± 0.02
Sensitivity 0.43 ± 0.11 0.39 ± 0.07 0.39 ± 0.07 0.38 ± 0.17 0.38 ± 0.17 0.28 ± 0.09 0.36 ± 0.11
Specificity 0.93 ± 0.03 0.84 ± 0.02 0.84 ± 0.02 0.93 ± 0.07 0.93 ± 0.07 0.97 ± 0.01 0.89 ± 0.04

Train: lac rep AUC 0.80 0.66 0.67 0.78 0.78 0.77 0.77
MCC 0.40 0.23 0.23 0.35 0.35 0.35 0.35
Overall error rate 0.20 0.27 0.24 0.17 0.17 0.16 0.16

Test: lysozyme Effect error rate 0.52 0.65 0.63 0.41 0.41 0.32 0.32
No effect error rate 0.10 0.14 0.15 0.14 0.14 0.15 0.16
Sensitivity 0.58 0.46 0.39 0.33 0.33 0.26 0.26
Specificity 0.85 0.80 0.84 0.95 0.95 0.97 0.97

Train: lysozyme AUC 0.81 0.71 0.71 0.80 0.80 0.79 0.79
MCC 0.43 0.37 0.37 0.41 0.41 0.42 0.42
Overall error rate 0.20 0.22 0.22 0.20 0.20 0.19 0.19

Test: lac rep Effect error rate 0.34 0.43 0.43 0.25 0.25 0.18 0.18
No effect error rate 0.17 0.17 0.17 0.19 0.19 0.20 0.20
Sensitivity 0.45 0.46 0.46 0.33 0.33 0.30 0.30
Specificity 0.92 0.88 0.88 0.96 0.96 0.98 0.98

Column: (1) trained on all variables, tested with all variables observed; (2) trained on all variables, tested without any structural information (NoS) 
– only evolutionary variables observed; (3) trained and tested using only five evolutionary nodes; (4) trained on all variables, tested without any 
evolutionary information (NoE) – only structural variables observed; (5) trained and tested using only eight structural nodes; (6) trained on all 
variables, tested with only key variables observed (see later section); (7) trained and tested using only the three key variables.
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Missing structural information (all:noS and noS:noS)
Performance dropped significantly with a 6 node network
utilising only evolutionary information (noS:noS, Table 2,
Column 3), with most AUC values reduced by over 10%
from the all:all model. In particular, with homogeneous
cross validation on lysozyme data AUC value decreased
from 0.83 to 0.68, and MCC value was as low as 0.23.
Even when structural information was used in training the
network (all:noS, Table 2, Column 2), results were not
improved possibly because variables are treated as inde-
pendent in a naïve structure and so variables with missing
values have little influence when they are marginalised
over.

Missing evolutionary information (all:noE and noE:noE)
In contrast to results achieved without structural informa-
tion, there was little or no effect on performance when
evolutionary information was either missing during test-
ing (all:noE, Table 2, Column 4) or missing during both
training and testing (noE:noE, Table 2, Column 5). Again,
due to the naïvety of the structure, similar results were
achieved by the all:noE and noE:noE models with AUC val-
ues of around 0.80 and overall error rates below 0.20.

Overall, results suggest that structural information is more
important than evolutionary information in predicting
the functional consequences of a missense mutation in

Table 3: Results with a learned Bayesian network.

Cross-validation Trained on: All All NoS All NoE All key
Tested on: All NoS NoS NoE NoE key key

mixed AUC 0.84 ± 0.01 0.64 ± 0.01 0.70 ± 0.02 0.72 ± 0.02 0.82 ± 0.02 0.63 ± 0.03 0.80 ± 0.02
MCC 0.46 ± 0.03 0.11 ± 0.03 0.10 ± 0.16 0.26 ± 0.22 0.44 ± 0.03 0.40 ± 0.04 0.40 ± 0.04
Overall error rate 0.17 ± 0.01 0.67 ± 0.01 0.23 ± 0.00 0.36 ± 0.28 0.18 ± 0.01 0.18 ± 0.01 0.18 ± 0.01
Effect error rate 0.27 ± 0.05 0.75 ± 0.01 0.15 ± 0.24 0.40 ± 0.25 0.29 ± 0.07 0.24 ± 0.06 0.25 ± 0.05
No effect error rate 0.16 ± 0.01 0.11 ± 0.03 0.21 ± 0.03 0.29 ± 0.18 0.16 ± 0.02 0.18 ± 0.01 0.18 ± 0.01
sensitivity 0.41 ± 0.07 0.93 ± 0.01 0.13 ± 0.21 0.51 ± 0.33 0.41 ± 0.08 0.31 ± 0.04 0.31 ± 0.09
specificity 0.95 ± 0.02 0.15 ± 0.02 0.96 ± 0.07 0.68 ± 0.47 0.95 ± 0.03 0.97 ± 0.01 0.97 ± 0.01

lac rep AUC 0.85 ± 0.01 0.47 ± 0.03 0.73 ± 0.02 0.70 ± 0.02 0.82 ± 0.02 0.61 ± 0.02 0.81 ± 0.02
MCC 0.52 ± 0.02 0.11 ± 0.03 0.32 ± 0.04 0.43 ± 0.04 0.46 ± 0.05 0.42 ± 0.04 0.42 ± 0.03
Overall error rate 0.17 ± 0.01 0.60 ± 0.01 0.24 ± 0.01 0.19 ± 0.01 0.18 ± 0.01 0.19 ± 0.01 0.19 ± 0.01
Effect error rate 0.25 ± 0.03 0.72 ± 0.01 0.46 ± 0.03 0.20 ± 0.06 0.21 ± 0.05 0.17 ± 0.07 0.22 ± 0.06
No effect error rate 0.15 ± 0.01 0.16 ± 0.02 0.19 ± 0.01 0.19 ± 0.01 0.18 ± 0.01 0.20 ± 0.01 0.19 ± 0.01
sensitivity 0.51 ± 0.03 0.86 ± 0.02 0.40 ± 0.03 0.33 ± 0.03 0.38 ± 0.06 0.30 ± 0.02 0.33 ± 0.02
specificity 0.94 ± 0.01 0.24 ± 0.02 0.88 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.98 ± 0.01 0.97 ± 0.01

lysozyme AUC 0.86 ± 0.02 0.51 ± 0.06 0.67 ± 0.05 0.78 ± 0.04 0.83 ± 0.05 0.70 ± 0.04 0.78 ± 0.05
MCC 0.47 ± 0.06 0.09 ± 0.05 - 0.37 ± 0.10 0.40 ± 0.10 0.37 ± 0.12 0.34 ± 0.12
Overall error rate 0.17 ± 0.03 0.75 ± 0.02 0.19 ± 0.00 0.16 ± 0.02 0.16 ± 0.02 0.16 ± 0.02 0.16 ± 0.02
Effect error rate 0.38 ± 0.14 0.80 ± 0.01 - 0.30 ± 0.13 0.34 ± 0.11 0.32 ± 0.13 0.33 ± 0.14
No effect error rate 0.10 ± 0.03 0.05 ± 0.08 0.19 ± 0.00 0.15 ± 0.02 0.14 ± 0.02 0.15 ± 0.02 0.15 ± 0.02
Sensitivity 0.55 ± 0.19 0.98 ± 0.02 0.00 ± 0.00 0.29 ± 0.10 0.36 ± 0.09 0.30 ± 0.09 0.26 ± 0.09
Specificity 0.90 ± 0.07 0.07 ± 0.02 1.00 ± 1.00 0.97 ± 0.02 0.95 ± 0.02 0.97 ± 0.01 0.97 ± 0.01

Train: lac rep AUC 0.72 0.43 0.68 0.70 0.77 0.57 0.75
MCC 0.30 - 0.23 0.21 0.36 0.34 0.35
Overall error rate 0.17 0.19 0.27 0.21 0.17 0.17 0.17

Test: lysozyme Effect error rate 0.33 - 0.65 0.57 0.41 0.35 0.35
No effect error rate 0.16 0.19 0.14 0.16 0.14 0.15 0.15
Sensitivity 0.20 0.00 0.46 0.25 0.35 0.26 0.26
Specificity 0.98 1.00 0.80 0.92 0.94 0.97 0.97

Train: lysozyme AUC 0.79 0.44 0.65 0.58 0.78 0.66 0.78
MCC 0.41 -0.11 0.32 0.06 0.42 0.40 0.41
Overall error rate 0.20 0.39 0.24 0.25 0.20 0.20 0.20

Test: lac rep Effect error rate 0.22 0.84 0.46 0.30 0.26 0.23 0.23
No effect error rate 0.19 0.28 0.19 0.25 0.19 0.20 0.19
Sensitivity 0.32 0.13 0.40 0.01 0.35 0.30 0.33
Specificity 0.97 0.78 0.88 1.00 0.96 0.97 0.97

See Table 2 for column details. Note that MCC score or effect rate cannot be shown if all mutations are predicted as 'no effect'.
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both lac repressor and T4 lysozyme, for the dataset used.
Indeed, although evolutionary information has some pre-
dictive power, utilising only structural information
appears to be sufficient for accurate prediction, compara-
ble to that of the all:all model.

A note on structural flexibility
It has previously been suggested that the B-factor and
neighbourhood B-factor of the native amino acid are the
most important predictors of functional effects of SNPs
[17]. However, the need to use B-factor information limits
a method to structures from X-ray crystallography; such
information is not available for NMR structures (although
these do have their own internal flexibility measures). We
found that removing the bf and nbf nodes from the all
node network made little significant difference to overall
performance with AUCs ranging from 0.80 to 0.83 in
homogeneous cross-validation and 0.78 and 0.82 in het-
erogeneous cross-validation (results not in Table). This
suggests that accurate prediction is possible without using
structural flexibility information, although that is not to
say that structural flexibility is not important, rather, other
variables have compensated effectively for its loss.

Learned structure

Using both the Bayesian and BIC scoring functions
employed by the greedy search algorithm we learned
structures from lac repressor and lysozyme datasets sepa-
rately and the two datasets combined ('mixed'). As with
the naïve Bayes classifier, we evaluated each structure
using both homogeneous ten-fold and heterogeneous
cross-validation. There was little significant difference in
performance between the two scoring functions, or
between structures learned on different datasets. The main
difference was in the number of edges in the resulting
DAGs. For our mixed dataset, there were 35 edges with
BIC, and 48 with full Bayesian scoring. Using Occam's
Razor, we prefer the simplest of equally good models, and
take the Bayesian network structure learned from the
mixed dataset, using the BIC scoring function, as our

model structure , which is illustrated in Figure 2. With
a harsher penalty for extra edges, the DAG learned using
the BIC scoring function, should contain edges which are
more likely to be biologically meaningful. It is important
to note that the Bayesian networks with learned structure
(or structure determined from conditional independence
relations identified by an expert) capture the relationships
between all the variables, and are not designed solely to
discriminate for classification of a single variable based on
the other variables. This is a significant advantage of the
Bayesian network: we can infer the value of any varia-
ble(s) based on the value of any other variable, so we have

constructed a model which can not only predict effect/no
effect, but can infer the value of any of the attributes.

all:all

Little significant improvement in homogeneous cross val-

idation performance was gained from using structure 
(Table 3, column 1) over the simple naïve structure (Table
2, column 1). This was because the naïve structure is spe-
cifically designed for classification, whereas our learned
structure is the 'best' structure for capturing the relation-

ships between all of the variables. The learned structure 
performs as well in classification of effect as the naïve
structure, but has the added advantage that it can be used
to predict the values of any of the variables, from any of
the other variables.

Structure  appeared to perform worse than the naïve
structure during heterogeneous cross-validation, espe-
cially when trained on lac repressor and tested on lys-
ozyme data. Here, AUC decreased from 0.80 to 0.72
despite lower effect error rates at the selected threshold
(0.33 vs 0.52). The low AUC value of 0.72 may be decep-
tive since a significant number of points on the ROC curve
lie below the convex hull (Figure 3) and as such are non-
optimal classifiers [32]. Therefore, measuring the per-
formance of a classifier which represents a single point on
both the ROC curve and the convex hull (circled in Figure
3) was more useful in this case. As described in Methods,
we chose the point at cost ratio 3.0 (where false positives
cost three times more than false negatives) as this helps
balance the 'effect' and 'no effect' misclassification error
rates (important in datasets such as ours that are biased
towards negative examples). At this selected threshold,
overall error (0.17) and effect error rate (0.33) were lower

for structure  than the naïve structure (0.20 and 0.52
respectively). However, MCC value was also lower (0.30
vs 0.40) and no effect error rate was higher (0.16 vs 0.10)
which illustrates the difficulty in selecting a measure to
compare different models not only between different
studies but within the same study as well.

Missing structural information (all:noS and noS:noS)

The model learned from all the variables and tested using
only evolutionary information (all:noS, Table 3, column
2) performed poorly achieving AUC values less than 0.50
(worse than random) and error rates above 0.75. Given

the number of connections in  and the potential for
inferring the missing structural information in the test













Page 7 of 14
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:405 http://www.biomedcentral.com/1471-2105/7/405
data, the all:noS model was surprisingly worse than the
noS:noS model (Table 3, column 3).

There could be a number of reasons for the poor perform-
ance of the all:noS model. The model may have learned
during training that structural information is more impor-
tant to prediction than evolutionary information. Conse-
quently, without structural information during testing,
the model has problems since it has down-weighted the
evolutionary nodes relative to the structural nodes. Alter-
natively, it may not be possible to accurately infer values
at the structural nodes from evolutionary information. By
contrast, it is essential that the noS:noS model makes full
use of the evolutionary information since structural infor-
mation is unavailable in both training and testing. Even
though cross validation results with noS:noS were worse
than the all:all model with AUC values ranging from 0.65
– 0.73 and overall error rates up to 0.27, they were better

than the all:noS since full weight is given to the evolution-
ary nodes.

Missing evolutionary information (all:noE and noE:noE)
When marginalising over unknown evolutionary varia-
bles (all:noE, Table 3, column 4), predictions in most cases
were comparable to the all:all model. However, poor
results were achieved during homogeneous cross valida-
tion on mixed data and heterogeneous cross validation,
especially training on lysozyme and testing on lac repres-
sor data (AUC 0.58). In these cases, it appears that values
at the evolutionary nodes with missing data could not be
predicted accurately from the structural information dur-
ing testing thus confusing the model. As expected, the
noE:noE model trained and tested using structural varia-
bles only performed as well as the all:all model across all
cross validation tests (Table 3, column 5).

Learned Bayesian network structure Figure 2
Learned Bayesian network structure . Learned Bayesian network structure  (using greedy search with BIC scoring 
function from mixed dataset). Key to node labels is shown in Table 1.
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Tolerance to incomplete training data

Bayesian networks are capable of learning model parame-
ters from incomplete data. Here we test the tolerance of
the Bayesian networks by training on incomplete data. In
every training example, we hide n nodes (chosen ran-
domly for each training case). We do this for the naïve

Bayes classifier, and the learned structure , and vary n
from 0 to 14. The CPTs are learned using the iterative EM
algorithm on the missing values. Figure 4 shows the
results of homogeneous cross-validation when trained on
incomplete data from the 'mixed' dataset, and tested
when all nodes are observed. Note that using this method,
different sets of n nodes are chosen to have missing data
between different training cases, therefore here we were
testing the general ability of the Bayesian network to tol-
erate incomplete data rather than the effect of when cer-
tain nodes were missing data in all examples (as in the
previous section).

Figure 4 shows that the performance of both the naïve and

 structures (measured by AUC value) were robust to
incomplete training data, with an area under the ROC

curve of over 0.80 maintained even when nine of the fif-
teen nodes were not observed in every example. With very
sparse data (more than 9 nodes hidden), the naïve Bayes
classifier performed better than the learned structure. This
was probably because the conditional probability tables
(CPTs) of the naïve structure only model the relationship

of effect with each variable, whereas the CPTs of 
depend on the relationship between multiple variables.
From Figure 2, we can see that a number of nodes are

dependent on three variables in , which perhaps
explains the performance decrease when the model is not
trained on sets of four or more variables. For example,
when 11 variables are missing, an AUC value of 0.73 is

achieved by , whereas when 12 variables are missing,
performance decreases to that of random classifier (AUC
< 0.5). Nevertheless, overall tolerance to incomplete train-
ing data by both Bayesian networks was encouraging con-
sidering the potential sparsity of either evolutionary and
structural information for a significant number of pro-
teins, especially structural genomics targets. Other
machine learning methods such as SVMs or decision trees
are unable to handle incomplete data in this way.

Training set size

In order to assess how much data is needed for training
the Bayesian networks, sequential learning of the model
parameters was performed. The 'mixed' dataset was
divided into two. One half was used as the test validation











Classifier performanceFigure 4
Classifier performance. Performance of naïve Bayes clas-
sifier and structure  with parameters learned from incom-
plete data. The AUC (area under the ROC curve) is plotted 
against the number of nodes (n) randomly chosen to have 
missing data within the test examples.
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ROC curve for learned structure Figure 3
ROC curve for learned structure . ROC curve for 
learned structure  trained on lac repressor, tested on lys-
ozyme. The blue line is the ROC curve. The red line is the 
convex hull of the ROC curve. The circled point which lies 
on both of these curves is the classifier with the selected 
threshold (cost ratio = 3.0).
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set, and the Bayesian networks were trained on the other
half. Figure 5 shows a plot of training set size vs. classifier
performance, measured using area under the ROC curve.
The result is as expected. The naïve model (with its 43
parameters) gradually improves its performance as its
parameters are sequentially learned, with excellent per-
formance after 400 examples (and good after as few as

50). The learned BN structure  has 182 free parameters
and it out performs the naïve classifier after 1000 training
examples.

Interpreting the structures

The learned structure  is one of many Markov equiva-
lent structures which could have been learned from this
data. There are also many other network structures which
could suitably encode the relationships between the vari-
ables. Using Markov chain Monte Carlo (MCMC) meth-
ods, we constructed a set of 'good' model structures, and
averaged over these models to form a posterior distribu-
tion of model structures. Figure 6 shows a plot of the fre-
quency of connections made in the set of 'good' structures
from ten runs of the MCMC simulation over 10000 sam-
ples, after a 'burnin' of 1000 samples. The darker squares
indicate a higher observed frequency of an edge connect-
ing each pair of nodes. From this, one can identify strong
relationships between highly correlated variables. The use of MCMC methods to study the posterior distri-

bution over networks has the advantage of revealing rela-
tionships between the input variables. For instance, in
Figure 6, the top row shows which variables are most
strongly related to effect, and this is used later to develop
simplified classifiers.

However, biologically meaningful relationships between
the other variables are also revealed. With the exception of
the trivial relationship between ac and rac, the second row
of Figure 6 shows strong links between ac, nrent, and rent,
reflecting a well known biochemical relationship between
solvent accessibility of residues and phylogenetic variabil-
ity: the solvent exposed surface loops of protein structures
show greater evolutionary variability than the unexposed
hydrophobic core residues. Similar effects that concur
with known protein chemistry relate measures of flexibil-
ity (nbf, bf) to phylogenetic variability. Equally under-
standable are the strong link between G and P residues in
turns (trn) and evolutionary conservation at the specific
sequence position of G/P (indicated by rent, cnsd) but not
to a neighbourhood measure (nrent, ncnsd), and the rela-
tionship between protein interface positions (ifc) and
neighbourhood flexibility measures (nbf).

From Figure 6, one can see that the effect node has the
strongest relationships with bur, nbf, ac, uslaa, and uslby (in





Posterior distribution of relationshipsFigure 6
Posterior distribution of relationships. Strength of rela-
tionships between variables, identified through analysis of 
edges connecting pairs of nodes in MCMC structure learning. 
A dark square indicates a strong relationship; a white square 
a weak relationship.
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Training set size. Performance of naïve Bayes classifier and 
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descending order). There are very few direct connections
between effect and trn, hlx, ifc, cnsd, and ncnsd. As expected,
nodes such as bf and nbf, and rent and nrent are highly cor-
related, which suggests some redundancy within the net-
work and one node could be used to predict the value of
the other. Both structural and evolutionary information
are represented by the nodes most frequently directly con-
nected to effect, although the top three most common
nodes, bur, nbf and ac, represent only structural informa-
tion. This, together with the strong performance of the
Bayes classifier without evolutionary information (Table
2, columns 4 and 5), suggests that evolutionary properties
of the mutated residue have little direct influence on pre-
diction if structural information is present.

Our finding that solvent accessible area of the native
amino acid, whether the amino acid is charged at a buried
site, and the flexibility of its structural neighbourhood are
all important predictors of effect agrees to some extent
with Chasman and Adams (2001) who found that struc-
ture based accessibility and B-factor features have the
most discriminatory power. The strong performance of
accessibility measures probably reflects the finding of [5]
and [6] that mutations affecting the hydrophobic core are
more likely to destabilise the protein and thus affect func-
tion. Perhaps mutations on the surface are more likely
affect function if they are conserved, as suggested by the
strong relationship between accessibility and phyloge-
netic entropy (ac with rent and nrent). Conversely,
whether or not the mutation breaks either a helix or turn
does not appear to be critical to predicting effect although,
again, secondary structure information may become more
powerful when used in conjunction with other features.

A simplified Bayesian network
Whilst the nodes directly connected to the effect node are
not essential to prediction if certain other nodes are
present (as demonstrated by the removal of the structural
flexibility nodes nbf and bf, with no significant loss of per-
formance), in theory, the value of the effect node can be
predicted using only the nodes which are directly con-
nected to it in the learned structures. The other variables
become d-separated from effect; i.e. with a structure, and
the conditional independence relations it implies, the
effect node is conditionally dependent on only the nodes
it is connected to when they are observed.

We tested this hypothesis by constructing two simple four
node networks: a naïve structure (Figure 7a), and structure

3 (Figure 7b) learned using the greedy search algorithm

and the BIC scoring function as above. These networks
consisted of only the three nodes, bur, nbf and ac, with the
strongest relationships with effect as shown in Figure 6.

Across all cross-validation tests, the four node naïve Bayes
classifier trained and tested using only the three key varia-
bles (key:key, Table 2, final column) performed extremely
well with only a minor decrease in performance over the
all:all model. In homogeneous cross validation, AUC val-
ues ranged from 0.77 to 0.80 and the maximum overall
error rate was just 0.21. In heterogeneous cross validation
tests, the AUC also remained high (0.77 and 0.79) with
overall error rates as low as 0.16 for training on lac repres-
sor and testing on lysozyme data. There were no signifi-
cant differences between the performance of the four
node learned structure (key:key, Table 3, final column)
and that of the naïve structure, which suggests little value
in the connections between variables.

Conclusion
We have applied Bayesian networks to the task of predict-
ing whether or not missense mutations will affect protein
function with comparable performance to other machine
learning methods. However, the strength of the Bayesian
network lies in its ability to handle incomplete data and
to encode relationships between variables; both of which
were exploited here to derive some biological insight into
how a missense mutation affects protein function.

A number of models were learned in this work. Due to the
unbalanced datasets we analysed ROC curves and selected
a suitable cost ratio in order to choose a probability
threshold for the classifiers. This allowed us to compare
classifiers in a meaningful way. From this analysis we con-
cluded that a naïve network structure is sufficient for accu-
rate prediction of the effect of a missense mutation with
AUC values around 0.80. We also found that the structural
environment of the amino acid is a far better predictor of
the functional consequences of a missense mutation than
phylogenetic information. This was demonstrated by the
more accurate performance of a naïve classifier that just
uses structural information compared to that which uses
just evolutionary information. There were no significant
performance gains when using a learned network struc-
ture, however the learned structure did allow relation-



Simplified Bayesian networksFigure 7
Simplified Bayesian networks. Four node networks using 
the three key variables shown to have the strongest relation-
ship with the effect. (a) Naïve Bayes classifier, (b) learned 
Bayesian network structure 3.
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ships between variables to be analysed, in particular by
analysing the posterior distribution of model structures,
we found the top three strongest connections with the
effect node all involved structural nodes. With this in
mind, we derived a simplified Bayesian network that used
just these three structural descriptors (solvent accessible
area of the native amino acid, whether the amino acid is
charged at a buried site, and the flexibility of its structural
neighbourhood) without significant decrease in perform-
ance. Given the importance of structure, it would be inter-
esting to learn if certain amino acid changes are more
predictive of effect than others. For example, both
cysteine, which forms disulphide bridges, and proline,
with its unique ring structure, are often critical to the
integrity of a protein structure so one would expect a
mutation involving either of these residues to change the
structure significantly. This will provide the basis for
future work.

Methods
Evaluation measures
A number of measures were applied to evaluate each clas-
sifier: error rates (fraction of mis-classified examples), sen-
sitivity (true positive rate) and specificity (true negative
rate). We also used Matthews' correlation coefficient
(MCC), which is a correlation measure designed for com-
parison of unbalanced datasets such as ours. A value of +1
indicates perfect classification, and -1 indicates misclassi-
fication of every example. The MCC is defined as:

where TP are true positives, TN are true negatives, FP are
false positives, and FN are false negatives obtained from
evaluating the classifier on the test data.

Since we have a Bayesian network classifier, with a proba-
bility associated with each classification, the metrics
above depend on the value of the classification threshold
p that is used. To assess performance across a range of val-
ues of the probability threshold we plotted a receiver
operator characteristic (ROC) curve. The ROC curve is a
plot of the sensitivity versus (1-specificity) for all feasible
ratios of costs associated with misclassification errors
(equivalent to plotting true positive rate versus false posi-
tive rate). The area under the curve (AUC) is a measure of
the performance of a binary classifier. A classifier no better
than random gives an AUC of 0.5, a perfect classifier gives
an AUC of 1.0.

Choosing a classification threshold
In order to perform a fair comparison of classifiers, we
choose the classification threshold p, represented by a
point on the ROC curve for which the curve has a gradient

(ΔTPrate/ΔFPrate) of CFP/CFN – the ratio of costs between
False Positives and False Negatives, and which is closest to
the point (0, 1). In this work we use a cost ratio of 3.0, due
to the unbalanced nature of the datasets containing 3742
mutations which have no effect on protein function and
1135 which do effect protein function. This is close to 3:1,
and by weighting the cost of a false positive, CFP, as three
times more costly (to the classifier) than a false negative,
CFN, we obtain a classifier with reasonably well balanced
error rates. This means the classifier is less likely to predict
everything as an effect (than with an equal cost ratio of
1.0) and make many false positive errors, which would
give a high effect error rate. (Without doing this, we may
be comparing classifiers with very different properties. i.e.
ones with quite different specificities and sensitivities).
The method is applied to the ROC curves obtained from
the probabilistic classification scheme and we present the
results for the classification threshold p corresponding to
the point on the convex hull of the ROC curve where the
gradient is closest 3.0. (We choose a point on the convex
hull since any point on the ROC curve not on the convex
hull is a non-optimal classifier [32]).

Data discretization
There were a number of challenges buried in these data.
Continuous data was non-Gaussian, making it unsuitable
for modelling as a continuous Gaussian node in a Baye-
sian network. There were also no obvious boundaries at
which to separate the data into discrete categories. Our
solution was to fit a number of Gaussians to the data
using an Expectation-Maximisation based algorithm that
automatically chooses the number of classes. It begins
with one Gaussian, and iteratively splits the Gaussian with
the largest weight, until adding extra classes does not
increase the maximum likelihood of the model. Full
details are provided below. This allowed us to form dis-
crete classes from continuous data, which gave better per-
formance than simply splitting the data into three classes
of equal range (results not shown). We therefore used this
strategy in all our analyses.

The E-M algorithm
The Expectation Maximisation algorithm is a well estab-
lished efficient algorithm for fitting Gaussian mixture
models to data. The main draw-back of the algorithm is its
sensitivity to initialisation, and the need for multiple runs
with different numbers of mixtures in order to choose the
maximum likelihood model. Here we present a adapta-
tion to the method which is deterministic and automati-
cally chooses the number of Gaussians. It begins with one
Gaussian, and iteratively splits the Gaussian with the larg-
est weight, until adding extra mixtures does not increase
the maximum likelihood of the model. Given a data set X
= {x1,..., xN} of N cases of d-dimensional data, a single
cluster μ1 is initialised at the mean of the data. A Gaussian

MCC
TP TN FP FN

TP FP TP FN TN FP TN FN
= × − ×

+ + + +
( ) ( )

( )( )( )( )
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with diagonal covariance equal to the standard deviation
of the data in each dimension is placed at μ1 The weight of
this cluster is set to one p(j = 1) = 1.

The probability p(j|xi) is calculated for each data point xi.

For a set of j mixtures, the update equations follow. These
are iteratively performed until the maximum likelihood is
reached, i.e. ML = log∑i∑jp(j|xi)

E-step:

M-step:

When the ML stops increasing, the Gaussian with the larg-

est weight p(j) described by μj and sj is split into two Gaus-

sians at  and , each with the same covariance sj. The

new Gaussians are placed +/- a distance of the largest
eigenvalue in the direction of the principle eigenvector of

the covariance matrix sj from μj. (The Gaussians are then

renamed). The EM steps above are performed until the
maximum likelihood configuration is reached. This proc-
ess is repeated until the ML score is no higher than with
one less Gaussian. At each stage, the centres and covari-
ances of the Gaussians are saved. Thus the algorithm ter-
minates with a set of Gaussians that are at best no better
than the set at the previous stage with one less Gaussian,
so the saved set from the previous stage is used.

Classification of each data point xi is taken as a hard clas-
sification into the most likely class given by argj max
p(j|xi).
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