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After the publication of [1], we were alerted to an error in our data. The error was an one-off
miscalculation in the extraction of position information for our set of true negatives. Our data set
should have used randomly selected non-edited cytosines (C) as true negatives, but the data
generation phase resulted in a set of nucleotides that were each one nucleotide downstream of
known, unedited cytosines. The consequences of this error are reflected in changes to our results,
although the general conclusions presented in our original publication remain largely unchanged.

Modifications to implementation
Changes to data sets
After correcting for the one off error in the data generation
phase, we re-evaluated the data sets for all three of the
genomes analyzed. Since the publication of our original
work, the mitochondrial genomes of all three species have
been updated. We therefore decided to revise our data sets
using the new (as of April 2006) GenBank files for Arabi-
dopsis thaliana, Brassica napus and Oryza sativa ([GenBank:
NC_001284, GenBank: AP006644, GenBank:
BA000029]).

As before, we focused on those edit sites associated with
coding regions. In reviewing these updated GenBank files,
we determined certain edit sites that were ambiguous for
one of three reasons. Some C → U editing sites could not
be reliably assigned to one coding region, while others
were not on the correct strand as the annotated coding
region. A smaller proportion of annotated edit sites were
not cytosines (C) in the genomic sequence on the strand
containing the relevant coding region. In addition, a few
coding regions involved complex processes such as trans-

splicing, and the annotated CDS coordinates did not yield
a coding sequence that could be translated to the reported
protein sequence. These discrepancies were of some con-
cern to us since we could not independently confirm the
presence or absence of editing. We therefore chose to
select a subset of edit sites from the annotated set that
were unambiguous and could be reliably assigned to a
coding region whose translation exactly matched the
annotated entry. From the set of 455 annotated edit sites
in the A. thaliana mitochondrial genome, we retained 344
edit sites as unambiguous (see Additional File 1). For the
B. napus genome, we retained 397 edit sites out of 428
annotated sites (see Additional File 2), and in the O. sativa
genome, we utilized 419 edit sites out of the 485 anno-
tated sites (see Additional File 3). For each set of true pos-
itives selected from the annotated edit sites, we chose an
equivalent number of true negatives after correcting for
the one off error.

As before, we used the set of true positives and negatives
from A. thaliana to train our genetic algorithm (GA) and
tested its performance using cross validation. We made
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one minor change to the method of cross-validation,
using 10-fold cross-validation. This process involves
reserving a randomly selected 10% of the known edited
and unedited sites for testing. The remaining 90% of the
data are used for training the GA. Ten such iterative splits
are conducted, with training and testing occurring after
each split. This has been demonstrated to reliably sample
the entire data space in a data set of this size [2]. The
results reported are the average of performance across all
ten iterative splits.

Changes to GA development and training
In the process of reviewing our results with the corrected
data, we had to modify our fitness function to improve
performance. Our new fitness function is derived from the
effect size statistic (also known as Cohen's d'), a measure
of how far apart the means of two distributions are [3]. In

this instance, the two distributions represent the GA
scores for known true positives and known true negatives
respectively (Figure 1). By using the effect size statistic, we
could maximize the distance between these two distribu-
tions' means. In other words, we could obtain the best
classification by ensuring that the means of the two distri-
butions were as far apart as possible. The effect size statis-
tic is calculated as follows:

where F(0) is the fitness value for a given GA organism,
S(CE) is the overall score for a given edited cytosine (as
obtained by the scoring function, see [1]) and S(CU) is the
overall score for a given unedited cytosine. The denomi-
nator is the mean of the standard deviations for edited
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Distribution of GA assigned scores for a test data set in A. thalianaFigure 1
Distribution of GA assigned scores for a test data set in A. thaliana. The distribution of GA assigned scores for one of 
the cross validation test data sets is shown here. This data set, which is fairly representative, had a total of 35 known edited 
sites and 37 known unedited sites, of which 23 known edited sites and 25 known unedited sites were in the 90% credible inter-
vals. The dashed lines indicate the boundaries of the 90% credible intervals; a score of 20,000 or less indicates a ≥ 0.9 probabil-
ity that the site is unedited and a score of 33,000 or greater indicates a ≥ 0.9 probability that a site is edited.
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cytosines (σ(CE)) and unedited cytosines (σ(CU)). This fit-
ness function provided a better measure of the perform-
ance of a given GA organism within the GA than the
original fitness function described in [1].

The objective values for each of the six variables remain as
before (see Additional File 4).

Based on this new fitness function, we identified the best
organism during 10-fold cross validation on the A. thal-
iana genome. This GA organism has a GA genome with
the following structure:

01010011111011110110110010001000100011110111
10001100101010010100001001010000111001000110
00000001

The above GA organism is now encoded in the updated
version of REGAL (RNA Editing site prediction by Genetic
Algorithm Learning) included here (see Additional File
5).

Changes to REGAL output
In the course of reviewing our analysis, one aspect of the
assessment of performance seemed to be somewhat lim-
ited in applicability. In our assessment of performance
[1], we used sensitivity and specificity to demonstrate the
ability of our classifier to make reliable predictions. That
analysis provided an overall measure of the likelihood
that predictions are correct. However, we did not assign an
individual likelihood to each prediction so that users
might immediately assess the likelihood that any given
prediction is correct. We have now added an additional
feature to the REGAL software that allows for an estimate
of the likelihood that any given prediction is correct.

To implement this feature, we utilized the scores assigned
to each known edited and unedited cytosine in the train-
ing data. We stepped through the scores in increments of
1000 asking at each step how many false positives would
occur at that score level. We then identified a score level at
which the false positive rate is as low as possible (see
Additional File 4). In Figure 2, a score of 33,000 yields a
false positive rate of just 10%. In other words, the likeli-
hood that a cytosine with at least this score is edited is
90%.

Similarly we evaluated the range of scores and false nega-
tive rate at each level. The false negative rate at a given
score level provides information on the likelihood that a
prediction at that score is an unedited site. Figure 3 indi-
cates that a false negative rate of 10% occurs at a score of
20,000 or less. That is, a cytosine scoring 20,000 or less
would have a 90% likelihood of being unedited (see Addi-
tional File 4).

Since our analysis relies on Bayesian probability, these are
the 90% credible intervals [4]. We can interpret these as
roughly similar to the 90% confidence levels in a frequen-
tist statistical analysis [5,6]. In other words, when REGAL
predicts that a site is edited, and the score assigned to that
site is greater than 33,000, we have at least 90% confi-
dence that the prediction is true. Similarly, if REGAL were
to assign a score less than 20,000 for a cytosine, we would
have 90% or greater confidence that the site was unedited.
In considering the performance of REGAL with the other
methods for predicting edit sites in these genomes, we
consider only those predictions that are in the 90% credi-
ble interval range. Considering results from a set of credi-
ble intervals is a well-established and accepted practice in
the statistical analysis of classifiers [2, 5, ?, 7]. It allows us
to assess the performance of REGAL based on those pre-
dictions that have the greatest confidence.

Corrected results
The best performing organism generated by the GA has
been encoded as REGAL (RNA Editing site prediction by
Genetic Algorithm Learning), our method for predicting C
→ U edit sites in plant mitochondrial genomes. The opti-
mized weights for our six variables derived from this
organism are shown in Figure 4. The larger the numerical
value of the weight, the more important the variable is in
classification of cytosines as edited or unedited. As before,
the highest weight is assigned to amino acid transition
probability, supporting our earlier conclusion that a cer-
tain bias seems to exist for the editing of some amino
acids over others. In addition, the hydrophobicity of the
amino acid continues to be a key indicator of the likeli-
hood of editing. In contrast to our previous analysis, the
nucleotides in the -1 and +1 positions now have higher
weights, while codon position and codon transition prob-
ability are no longer significant contributors to accurate
classification of sites.

Using the optimized weights, we scored each cytosine in
the test data sets for A. thaliana, as well as the data sets
from B. napus and O. sativa. REGAL now has an overall
accuracy of 77%, with a sensitivity of 81% and a specifi-
city of 74%. In the 90% credible interval range, the overall
accuracy is 86%, with sensitivity of 89% and specificity of
83%. This is similar to our previously reported results,
with sensitivity actually higher with the new organism.
Specificity is somewhat reduced compared to our previ-
ously reported level. Nevertheless, the overall accuracy in
the 90% credible intervals remains identical to our previ-
ous findings.

The output from REGAL now includes two values. The
first is a score for a given cytosine assigned by the GA. Fig-
ure 1 shows the distribution of scores generated by REGAL
for one of the test data sets from A. thaliana. The second
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output from REGAL is the posterior probability that the
prediction is correct.

This value is estimated from the false positive and false
negative rates, as described in Implementation. In Figure
1, the 90% credible intervals, based on this estimated pos-
terior probability, are indicated by the dashed lines. In the
subsequent description of results and in comparisons to
other methods, we consider only the results from the 90%
credible intervals. As discussed in Implementation, this is
an accepted and well-established practice in evaluating
the performance of classifiers [2, 5, ?, 7].

Figure 5 shows the ROC curve for REGAL when reporting
sites in the 90% credible intervals. The ROC curve indi-
cates that REGAL remains a good classifier of edit sites,
since the curve is still well above what would be expected
for a random classifier (shown in the dashed line).

In Tables 1, 2, 3, we report the corrected performance
measures for REGAL for the three mitochondrial genomes
analyzed, A. thaliana, B. napus and O. sativa. The new GA
organism has much higher sensitivity across all three
mitochondrial genomes than previously reported, and
accuracy remains similar. Specificity (calculated as posi-
tive predictive value (PPV), see [1]) is somewhat reduced,
as might be expected given the wider distribution of scores
for known true negatives seen in Figure 1. The full set of
predictions for each of the three genomes is included (see
Additional Files 6, 7 and 8).

Comparing REGAL to other methods
We have updated Tables 4, 5, 6 to reflect our corrected
results when comparing REGAL performance to the other
methods for predicting edit sites in plant mitochondrial
genomes. REGAL has a higher overall accuracy than the
three other methods [8,9]. Of the methods available for

GA score required for 0.9 or greater likelihood that a cytosine is editedFigure 2
GA score required for 0.9 or greater likelihood that a cytosine is edited. We use the false positive rate to estimate 
the likelihood (posterior probability) that a given cytosine predicted to be edited is in fact edited. At a false positive rate of 
10%, the posterior probability that a predicted edit site is a true edit site is 0.9. This corresponds to a GA assigned score of 
33,000 or higher as shown in this plot.
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is unedited
tosine is unedited. Similar to Figure 2, we use the false neg-
sine will be unedited. The false negative rate of 10% corre-
ne with a score of 20,000 or less will have a 0.9 or greater 
analyzing these data, REGAL has the highest sensitivity
(89%). In other words, REGAL is the best method to uti-
lize to identify C → U edit sites in these genomes. How-
ever, it may yield more false positives because the
specificity (PPV) for REGAL is lower than for PREP-Mt [9],
the next best method based on this assessment. The PPV
difference between PREP-Mt (PPV of 86%) and REGAL
(PPV of 83%) is relatively small. Furthermore, overall
accuracy for REGAL (86%) is higher than for PREP-Mt
(84%). As a result, we believe REGAL remains a valid
alternative to the existing methods for predicting C → U
edit sites in plant mitochondrial genomes.

We regret any inconvenience the error in the data genera-
tion phase may have caused. We wish to thank Jeffrey P.
Mower for bringing this error to our attention, and Saria
Awadalla for conducting an independent review of the
software prior to publication of this correction.

GA score required for 0.9 or greater likelihood that a cytosine Figure 3
GA score required for 0.9 or greater likelihood that a cy
ative rate to estimate the posterior probability that a given cyto
sponds to a GA assigned score of 20,000. Therefore, any cytosi
likelihood of being unedited.
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GA optimized weights for six variables in REGALFigure 4
GA optimized weights for six variables in REGAL. We selected six variables and utilized the GA to optimize the weights 
for these variables (correction of Figure 1 from [1]). The greater the importance of a variable, the higher the value as shown 
here. Variables were abbreviated as follows: 1 = transition probability for amino acid pre- and post-edit; 2 = position of the 
candidate edit site within the codon; 3 = transition probability for codon pre- and post-edit; 4 = likelihood that editing will yield 
a more hydrophobic amino acid than the unedited codon; 5. = nucleotide in the -1 position; 6 = nucleotide in the +1 position.
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ROC curve for REGALFigure 5
ROC curve for REGAL. The updated ROC curve for REGAL (correction from Figure 3 in [1]) is shown here. This repre-
sents the performance of the classifier as assessed using the 90% credible intervals as discussed in the text. The dashed line 
indicates performance of a random classifier. REGAL's performance is shown on the solid line with boxes.

Table 1: Overall performance of REGAL on A. thaliana.

Known Edited Sites
Total: 17 – 26

Known Unedited Sites
Total: 18 – 28

Predicted Edited Site True positive
19.4 (± 3.4)

False positive
3.3 (± 1.2)

Sensitivity: 0.91 (± 0.06)
Specificity: 0.85 (± 0.06)

Predicted Unedited Site False negative
2.0 (± 1.1)

True negative
19.7 (± 3.8)

PPV: 0.86 (± 0.05)
Accuracy: 0.88 (± 0.05)

We tested the performance of REGAL on known edited and unedited sites from three mitochondrial genomes. The results from A. thaliana were 
obtained after 10 iterations of cross-validation using on average 33 edited and 33 unedited sites per testing data set (see Implementation for details 
of 10-fold cross-validation). The overall accuracy in this genome was 81%, with sensitivity of 81% and specificity of 80%. Within the 90% credible 
intervals, on average 22 edited sites and 23 unedited sites were assessed. We report the range of values as obtained from the cross-validation. Since 
the proportion of true positives to true negatives varied slightly in each test data set, we report both specificity and positive predictive value (PPV).
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Table 2: Overall Performance of REGAL on B. napus.

Known Edited Sites
Total: 258

Known Unedited Sites
Total: 263

Predicted Edited Site True positive
229

False positive
51

Sensitivity: 0.89
Specificity: 0.81

Predicted Unedited Site False negative
29

True negative
212

PPV: 0.82
Accuracy: 0.85

The performance of REGAL on the B. napus mitochondrial genome is shown here. REGAL was tested on 397 known edited sites and an equivalent 
number of known unedited sites. The overall accuracy in this genome was 77%, with sensitivity of 83% and specificity of 72%. Of the full set of 
known edited and unedited sites, 258 known edited sites and 263 known unedited sites were in the 90% credible intervals. Because the numbers of 
true positives and true negatives are slightly different, PPV as well as specificity are shown.

Table 3: Overall Performance of REGAL on O. sativa.

Known Edited Sites
Total: 262

Known Unedited Sites
Total: 287

Predicted Edited Site True positive
228

False positive
52

Sensitivity: 0.87
Specificity: 0.82

Predicted Unedited Site False negative
34

True negative
235

PPV: 0.81
Accuracy: 0.84

For the O. sativa mitochondrial genome, we tested REGAL on 419 known edited sites and 419 randomly selected, unedited sites. The overall 
accuracy for this genome was 75%, with sensitivity of 79% and specificity of 71%. In the 90% credible intervals, there were 262 known edited sites 
and 287 known unedited sites. We report PPV as well as specificity.

Table 4: Comparison of REGAL vs. Classification Trees.

Classification Trees REGAL

Sensitivity Specificity Accuracy Sensitivity Specificity (PPV) Accuracy

A. thaliana 0.65 0.89 0.71 0.91 0.85 (0.86) 0.88
B. napus 0.63 0.89 0.69 0.89 0.81 (0.82) 0.85
O. sativa 0.64 0.88 0.71 0.87 0.82 (0.81) 0.84
Overall 0.64 0.89 0.70 0.89 0.83 (0.83) 0.86

Performance measures for predicting RNA editing were compared to the results as reported for classification trees [8]. We report both specificity 
and PPV (in parentheses after specificity values). REGAL has higher accuracy and sensitivity than classification trees in all three mitochondrial 
genomes.

Table 5: Comparison of REGAL vs. Random Forests.

Random Forests REGAL

Sensitivity Specificity Accuracy Sensitivity Specificity (PPV) Accuracy

A. thaliana 0.70 0.81 0.74 0.91 0.85 (0.86) 0.88
B. napus 0.73 0.81 0.77 0.89 0.81 (0.82) 0.85
O. sativa 0.72 0.81 0.72 0.87 0.82 (0.81) 0.84
Overall 0.72 0.81 0.74 0.89 0.83 (0.83) 0.86

REGAL outperforms a second technique from [8] using random forest trees for the identification of C → U editing sites in mitochondrial genomes. 
As before, we report PPV in parentheses.
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Table 6: Comparison of REGAL vs. PREP-Mt.

PREP-Mt REGAL

Sensitivity Positive Predictive 
Value

Accuracy Sensitivity Specificity (PPV) Accuracy

A. thaliana 0.79 0.86 0.82 0.91 0.85 (0.86) 0.88
B. napus 0.87 0.87 0.87 0.89 0.81 (0.82) 0.85
O. sativa 0.81 0.85 0.83 0.87 0.82 (0.81) 0.84
Overall 0.82 0.86 0.84 0.89 0.83 (0.83) 0.86

To compare performance between REGAL and PREP-Mt [9], we had to recalculate the reported values for specificity and accuracy as described in 
[1]. We have compared performance for the three mitochondrial genomes that were shared in common between the PREP-Mt and REGAL 
analyses. We report both specificity and PPV (in parentheses) for our results.
Additional material
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Additional File 4
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for each of the six variables utilized in the GA are reported here. These val-
ues are derived from the observed frequencies in the training data from A. 
thaliana. We also include the false positive and false negative rates for the 
range of GA scores from 0 to 60,000. These values are used in estimating 
the posterior probability that a given prediction in REGAL is correct.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-406-S4.pdf]

Additional File 5
REGAL and scripts for GA evolution. The complete set of scripts required 
for evolving, training and testing the GA and the implementation of the 
GA as REGAL are provided as a compressed tar archive.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-406-S5.gz]

Additional File 6
GA assigned scores and predictions for A. thaliana. The set of known 
edit sites and known unedited sites used in one iteration of testing from A. 
thaliana are included here. The overall score for each edit site, the esti-
mated confidence in the prediction and the REGAL prediction are listed.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-406-S6.txt]

Additional File 7
GA assigned scores and predictions for B. napus. Similar to the previ-
ous file, this includes the overall scores, estimated confidence and predic-
tions for the set of known edited and unedited sites in the B. napus 
genome.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-406-S7.txt]

Additional File 8
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