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Abstract

Background: Designing novel proteins with site-directed recombination has enormous
prospects. By locating effective recombination sites for swapping sequence parts, the probability
that hybrid sequences have the desired properties is increased dramatically. The prohibitive
requirements for applying current tools led us to investigate machine learning to assist in finding
useful recombination sites from amino acid sequence alone.

Results: We present STAR, Site Targeted Amino acid Recombination predictor, which produces
a score indicating the structural disruption caused by recombination, for each position in an amino
acid sequence. Example predictions contrasted with those of alternative tools, illustrate STAR'S
utility to assist in determining useful recombination sites. Overall, the correlation coefficient
between the output of the experimentally validated protein design algorithm SCHEMA and the
prediction of STAR is very high (0.89).

Conclusion: STAR allows the user to explore useful recombination sites in amino acid sequences
with unknown structure and unknown evolutionary origin. The predictor service is available from
http://pprowler.itee.ug.edu.au/star.

Background Site-directed (as opposed to random) recombination sys-

Recombinant DNA techniques, such as DNA shuffling,
generate more diverse libraries than random mutagenesis
with a relatively high fraction of functional proteins [1-4].
Like mutagenesis but unlike de novo protein design,
recombination deals with native sequences whose effec-
tiveness for some particular function is established. As
protein design tools, recombinatorial techniques dramat-
ically reduce the combinatorial space of possible
sequences to an area which can be explored in vitro more
easily.

tematically reduces the amino acid sequence space for
consideration by identifying specific sites in parental
sequences at which their parts can be interchanged [2].
This paper develops and evaluates a method that uses
machine learning to suggest recombination sites solely
from the amino acid sequences of the parents. Alternative
tools may be more precise but require either parents to be
structurally resolved [5] or phylogenetically well-charac-
terised [6].

SCHEMA predicts structural disruption by gleaning con-
tact maps of parents [5]. The principle of SCHEMA applies
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to recombination site identification (using SCHEMA's so-
called S-profile) or to evaluate the folding potential of
specific hybrids (using SCHEMA's E-value). RASPP
(Recombination as a Shortest-Path Problem) was intro-
duced to generate and evaluate candidate hybrids using
the E-value [7].

SCHEMA's S-profile essentially identifies sequence seg-
ments that are likely to fold independently from the rest
of the protein [5]. The profile is the series of sums of pos-
sible disruptions (caused by recombination) within a
window centered on each residue of the protein (see
Equation 1). The assumption behind SCHEMA is that
protein function is preserved by not interfering with these
structural "building blocks". Different segments are sam-
pled from a family of parent proteins to be recombined
with the main structural features left intact [5]. Indeed,
sites identified by SCHEMA match successful recombina-
tion sites used in in vitro experiments [5]. Additionally, the
application of SCHEMA on the Slactamase and cyto-
chrome P450 families has been helpful in evaluating (and
maximising) the ratio of folded and functional enzyme
hybrids [3,8]. Note, SCHEMA's "building blocks" must
not be confused with domains or other structural or func-
tional subdivisions (motifs, modules or exons). By plac-
ing recombination sites only at the boundaries of such
structural subdivisions, exploration is severely hampered
[2]. Additionally, to enhance a function, intra-domain
segments may need to be perturbed.

Unfortunately, SCHEMA requires the full tertiary descrip-
tion of the protein structure (as in the Protein Data Bank,
PDB). This requirement severely limits the number of can-
didate proteins to the small group that are already
resolved. Due to the expensive, time-consuming and com-
plicated nature of structure determination, the number of
proteins with known structure is likely to remain compa-
rably small to the number of known sequences.

FamClash is another method for evaluating the potency of
hybrids [6]. FamClash checks for every amino acid pair [i,
j] (residue at position i in parent 1 and position j in parent
2) if charge, volume and hydrophobicity is in agreement
with the conserved properties at [i, j] in the protein family
both parents belong to. To determine the conserved prop-
erties of the family a preprocessing step is necessary. Each
residue pair in the mth member of the family forms a

V%, HI% ] with CT = C(k)

+ C(I), where k is the residue at position i in m and [ at j
and C(-) is the value of a lookup table containing the
charge of the residue (V is the volume and H the hydro-
phobicity, respectively). The space is partitioned into
cubes. Residue pairs whose coordinates are within one

unique 3D coordinate [ Cjj,
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cube are defined to be similar. A position [i, j] is conserved
if 20% of the family members have a residue pair for [i, j]
that is within the cube. Each residue pair in the hybrid can
now be assessed with the triplet of the mean values of the
conserved residue pairs in the protein family. Any devia-
tion between hybrid and conserved property in the family
is denoted as a "clash". Positions with no conservation are
simply ignored. A limitation of FamClash is its reliance on
members of the parents' protein family. A sufficiently
large protein family needs to be established and analysed
to properly identify conservation.

Saraf et al. developed OPTCOMB [9], which like RASPP
identifies the optimal recombination sites and, addition-
ally, is able to limit the parental sequence fragments for
the library to the most promising ones. FamClash [6] is
used as an objective function. Thus, OPTCOMB identifies
recombination sites which produce hybrids with the min-
imal number of clashes. Like RASPP, OPTCOMB is able to
use any function that evaluates a protein including
SCHEMA [9] or the current method.

Using machine learning methods, we developed STAR
(Site Targeted Amino acid Recombination predictor), to
extend a SCHEMA-like analysis to proteins for which no
structure has been solved. STAR predicts the maximum
number of connections that can be broken by recombina-
tion for each position in the parent - SCHEMA's single-
parent S-score (see Equation 1). A minimum in this STAR-
profile corresponds to a region where the protein structure
has lower contact density and thus less prone to be cor-
rupted by recombination.

Notably, SCHEMA's S-score has largely been superseded
by the E-value (which is now the recommended choice
according to the original SCHEMA authors). Since the
intention here is partly to explore the applicability of
machine learning tools to assist in the determination of
recombination sites, we choose to focus on the simpler
strategy based on the S-score as calculated from a single
sequence.

For comparison, I-Mutant2.0 [10], MUpro [11] and Con-
seq [12] predict stability changes caused by single-point
mutation from amino acid sequence data. These methods
are not specifically designed to assist in the determination
of recombination sites.

However, by exhaustively testing all possible amino acid
substitution for each position, we can identify crucial
amino acids within the sequence, and compare these
scores with STAR's. [-Mutant2.0 and MUpro are both
machine learning-based and predict a stability change
(positive or negative) of the whole protein for a given sin-
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Table I: The STAR-score prediction accuracy.

Configuration r

FFNN (0 hidden) 0.56
FFNN (20 hidden) 0.56
FFNN (40 hidden) 0.56
BRNN (7+7 hidden) 0.66

The STAR-score prediction accuracy (established from test data using
the correlation with the calculated STAR-score) when sequence data
was presented directly to the machine learning algorithm.

gle-point mutation. If a residue is crucial for retaining the
current structure, substitutions would result in large nega-
tive predictions. Conseq uses phylogenetic trees to calcu-
late a conservation score for each residue which should
correlate with the importance of it.

Implementation

The goal is to develop a model using machine learning
methods to predict SCHEMA's single-parent S-profile from
an amino acid sequence. From a machine learning point
of view, the goal presents a significant challenge since
SCHEMA relies crucially on structural features, not amino
acid composition. As per Equation 1 the S-score counts
the number of connections that break if position i serves
as the point at which sequence parts are exchanged.

i jtw=-2 j+w-1

Si= > X D (1)

j=i—w+l k=j  I=k+1

S; describes, for each sequence position i, the number of
contacts within the window (i - w, i + w) that could be bro-
ken if the recombination site is positioned ati. ¢;; = 1 if res-
idues k and [ are in within 4.5 A of one another, and ¢, =
0 otherwise. In the multi-parent S-score, ¢y, is derived from
a multiply-aligned contact map [5]. ¢;; only counts when
the two residues k and I come from different parents and
represent different amino acids. The single-parent S-score
neglects the overlap between parents and is thus an upper
bound of the multi-parent S-score (and converges to it
with decreasing parent sequence similarity). To follow the
configuration used by [5], w is set to 14 residues.

To build a data set for training and evaluating machine
learning models, the binary contact map was derived for
each of the proteins in a 945-protein data set (extracted
from PDB) by employing a Euclidian cut-off distance of
4.5 A. Equation 1 is then determined for each residue in
the set. For practical purposes, the single-parent S-score is

normalised to fall in the 0-1 interval: S,N = tanh(S;/max)

where we have preset max = 637 from gleaning the data
set. We call this score the calculated STAR-score. The
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sequence set represents a diverse range of proteins and has
no pairs with more than 25% sequence similarity [13].
The data set is made available from the predictor home

page.

Model development

PSI-BLAST profiles are used successfully for most protein
structure prediction problems, including secondary struc-
ture, residue contacts, and surface accessibility [14,15]. In
a standard fashion, each protein chain in the data set is
represented using the PSI-BLAST profile (PSI-BLAST is run
with 3 iterations over Genbank's non-redundant protein
set). The profile implicitly incorporates information
about sequence variability and the location of indels
within a family of proteins [14].

We evaluate two major types of machine learning algo-
rithms, namely Support Vector Regression and Neural
Networks. Both types have repeatedly been found supe-
rior for relevant prediction problems (e.g. secondary
structure prediction [14,16,17], contact number and sol-
vent accessibility prediction [15]). The input window size
of all models is set to 15 residues: the residue for which
the SCHEMA score is predicted and then 7+7 residues
immediately upstream and downstream, respectively. We
use 2-fold crossvalidation to develop and test models,
meaning that one simulation run involves training and
testing two models. Each model is trained on half the data
and tested on the remaining half but controlled so that
each data point appears as a test point in exactly one
model. Preliminary simulations with the used models
showed that the differences between 10-fold and 2-fold
crossvalidation are negligible (not shown). To minimize
the computational time required, we consistently use 2-
fold crossvalidation to develop and test the models. How-
ever, we repeated the runs to guarantee consistency in the
results. The average accuracy is reported below.

The STAR-score is not predicted with a reasonable accu-
racy if the machine learning algorithm is presented with
only the sequence data encoded using PSI-BLAST profiles
(see Table 1). Instead we first present the sequence to an
already existing secondary structure predictor and then
use its output as the input to our STAR-score predictor. To
predict the secondary structure, we use the Continuum
Secondary Structure Predictor [17] which produces a
probability for each secondary structure state. Notewor-
thy, the Continuum Secondary Structure has a state-of-
the-art classification accuracy of Q5 = 77.3 and from pre-
liminary trials we note there is no significant difference in
STAR-score prediction accuracy if the true secondary struc-
ture is used as input instead.

The simple Feed Forward Neural Network (FFNN) and the
Bidirectional Recurrent Neural Network (BRNN) [18] are
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Table 2: The STAR-score prediction accuracy.

Configuration r

FFNN (0 hidden) 0.86
FFNN (20 hidden) 0.86
FFNN (40 hidden) 0.86
BRNN (7+7 hidden) 0.89
&SVR (Linear) 0.82
&SVR (Gaussian) 0.80
1-SVR (Gaussian) 0.83

The STAR-score prediction accuracy (established from test data using
the correlation with the calculated STAR-score) when sequence data
was presented as the predicted 3-class Continuum Secondary
Structure.

trained and evaluated on the 945-protein data set. Train-
ing uses gradient descent to minimise the error as meas-
ured on the single output node. The learning rate is 7 =
0.001. A variety of hidden node numbers h (including not
using a hidden layer at all) are trialled. For all neural net-
works, training data is presented in batches of 100 win-
dows before the weights are changed. A total of 40,000
sequences were presented in random order before we
stopped training. In preliminary studies this number was
seen as sufficient for convergence.

Recent findings suggest that Support Vector Regression
(SVR) exceeds the accuracy reached by many neural net-
works [19,20]. Essentially, support vector regression oper-
ates by finding so-called support vectors that collectively
represent the function in a feature space. A kernel function
maps the input sequence encoding into the feature space.
Support vector regression can be understood as minimis-
ing a tube wrapped around the hypothesis function. Dur-
ing training, the "tube" is defined by an &insensitive loss
function (where ¢ represents the size of a margin to the
hypothesis function). Sample targets outside this margin
are penalised. For & we use the standard value of 0.1. We
examine optimisation using &SVR and 1-SVR with the
same protein data set. »-SVR replaces the ¢ hyper-parame-
ter with v, to control the number of support vectors (v =
0.5 in all simulations). The standard stopping criterion is
used and C was set to 0.5 (which delivered a better result
than the standard value of 1). We trial both the Linear and
Gaussian kernel functions (with y= 1). Note, the explora-
tion of the parameter space is far from being exhaustive.

We use the correlation coefficient r between the calculated
STAR-score ¢; and the predicted score p; where the index i
represents the position in the sequence, r is defined for a
single chain.

A=) (o =P
") o) (2)
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where () is the mean. Ideal performance means that t;and
p; are perfectly and positively correlated r = 1 All reported
result values are averages over all chains (when they
appear as test cases).

Results and discussion

The results when using the predicted secondary structure
as input are shown in Table 2. BRNN seems to perform
slightly better than the other algorithms but the small
number of trials prohibits us from ranking them confi-
dently.

The average correlation coefficient between the predicted
and calculated STAR-score for BRNN on test data (set
aside from the 945-protein set using cross-validation) is
0.89 (1.0 represents perfect agreement, and 0.0 represents
random agreement) and the mean squared error is
0.0028. Approximately 18% of the sequences from the
STAR data set have a sequence similarity exceeding 25%
with sequences in the training dataset of the Secondary
Structure Predictor [21]. To ensure that the overlap does
not influence the estimated accuracy, we assessed the
STAR prediction accuracy specifically for the sequences
which had less than 25% similarity with the set used for
training the secondary structure predictor. The average
correlation coefficient on these 771 was 0.88 (average
mean squared error is 0.0028).

The most essential piece of information in the S-profile is
the positions of minima [5]. In addition to the correla-
tion, the distance between the positions of the minima in
the predicted function and in the target function, illus-
trates the suitability of the method for protein design. The
average distance between the position of the predicted
and the target minima is a mere 3.42 residues for the
BRNN-model.

The high correlation between the scores and the low aver-
age distance between their minimas, illustrate the feasibil-
ity of replacing the S-score with STAR - allowing the user
to explore structural building blocks in silica of yet unre-
solved or even hypothetical protein with little loss of pre-
cision.

The web interface of STAR requires the user to input a sin-
gle amino acid sequence (in the FASTA format), and then
predicts the single-parent SCHEMA profile. The profile
can be presented as a graph - allowing the user to quickly
assess regions of low connectivity lending themselves to
recombination. The individual scores are also presented
numerically with added details (including the continuum
secondary structure). A suitable recombination site is thus
one with a low score, i.e. a position which - should it be
the point of exchange - disrupts few, predicted connec-
tions in the parent sequence.
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The SCHEMA-profile, the STAR-profile, and post-processed profiles for Conseq, MUpro and I-Mutant2.0 for
the protein 1BLS. (a) The multi-parent S-scores (normalised) along with the calculated and predicted STAR-scores for IBLS.
The profiles indicate the number of disrupted connections (y-axis) at each sequence position (x-axis). (b) The post-processed
score from MUpro for 1BLS. The profile indicates the structural stability change caused by mutation (y-axis) for each sequence
residue (x-axis). (c) The post-processed score from |-Mutant2.0 for 1BLS. The profile indicates the structural stability change
caused by mutation (y-axis) for each sequence residue (x-axis). (d) The post-processed score from Conseq. The profile indi-
cates the level of amino acid conservation (y-axis) for each sequence residue (x-axis). The successful recombination sites from
a random DNA shuffling experiment are added to each graph and plotted as vertical lines [1].

A family of Cephalosporinase genes from four microbial
species subjected to random DNA shuffling yielded an
eight-fold increase of moxalactamase activity in a single
cycle of shuffling [1]. We presented the sequence of PDB
entry 1BLS (one of the four Cephalosporinase used in the
original study) to STAR. We calculated the single-parent S-
score (the calculated STAR-score) from the contact map of
1BLS and the multi-parent S-score using a sequence align-
ment between 1BLS and 1G68 (also used in the original
study, exhibiting 40% sequence identity with 1BLS). Both

SCHEMA-profiles were superimposed on top of the pre-
dicted STAR-score (see Figure 1). We also present the suc-
cessful recombination sites as determined from the
original random shuffling experiment. The same data was
used for evaluating the original SCHEMA algorithm (cf.
[5]). For practical reasons we were unable to test Fam-
Clash (but cf. [22])

As can be seen in Figure 1, the successful recombination
sites match the minima of all profiles with the exception
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Figure 2
The 1BLSprotein structure. Three residues are identified,
each translating into divergent SCHEMA- and STAR-scores.

of the site close to the C-terminus. The last site is deemed
unsuitable by both the original SCHEMA algorithm and
STAR. The full structure shown in Figure 2 illustrates that
regions which have divergent SCHEMA- and STAR-scores
are at the surface of the molecule and should typically
have lower connectivity (a generalisation that STAR seems
to use).

To put the example prediction in context, we adapted
alternative methods not explicitly designed for this pur-
pose but potentially useful for identifying recombination
sites. The predicted stability change of I-Mutant2.0 and
MUpro is summed up over all 19 possible amino acid
substitution for each position of the amino acid sequence.
The lower the score for an amino acid, the more sensitive
the current structure is to perturbations. The score profile
is smoothed with a kernel averaging over 10 neighboring
residues, normalised and inverted to compare neatly with
STAR's profile. This post-processed prediction thus has
minima at positions with high substitution tolerance.
Conseq predicts a conservation-score which is similarly
smoothed. This modified Conseq-profile has minima at
positions with low evolutionary diversity. Low evolution-
ary diversity is taken to indicate essential residues for
structure or function of the protein.

[-Mutant2.0, MUpro and Conseq predictions along with
the biological verified recombination sites of 1BLS are

http://www.biomedcentral.com/1471-2105/7/437

shown in Figure 1. I-Mutant2.0 and MUpro predict
minima at the verified recombination sites-supporting the
assumption to cut at less sensitive regions (high accept-
ance of substitutions). Conseq on the other hand does not
seem directly applicable for the identification of recombi-
nation sites. It should be noted however that the experi-
mental recombination data for 1BLS is far from
exhaustive. Our comparison merely serves to illustrate
that currently there appears to exist no silver bullet for
recombination site prediction.

STAR uses continuum secondary structure as input. How-
ever, STAR does more than avoid breaking helices. Rat
reductase (1AMO) has a bundle of short helices, inter-
rupted by coiled segments (around residues 375-450). As
the user of the online service can verify, STAR recognises
the bundle and predicts a constant high connectivity
score.

PurN and GART glycinaminid ribonucleotide transformy-
lase (70% sequence identity) were recombined and func-
tional hybrid proteins were selected [23,24].
Recombination was restricted to occur between amino
acid position 50 and 150. In Figure 3, the multi-parent S-
profile determined from the PDB entry 1CDD and GART
[24] is shown. The predicted STAR-profile was generated
from the sequence of 1CDD. For comparison the graph
also shows the calculated single-sequence S-profile for
1CDD. In spite of the high sequence similarity between
1CDD and GART, the single- and multi-parent profiles are
very similar. The 1CDD structure is incomplete for resi-
dues 110-133 and hence the calculated S-profiles are
undefined for this segment. The predictor was presented
with the full sequence (which is known for 1CDD) and
correctly characterises this segment as unsuitable for
recombination. Finally, we removed all residues in the
unknown sequence segment to illustrate the predictors
ability to cope with incomplete sequence data.

MUpro and I-Mutant2.0 performed poorly on 1CDD
(data not shown). Conseq failed completely to generate
an output since 1CDD has too few family members to
generate the required alignment.

Conclusion

SCHEMA-based guidance can increase the fraction of
properly folded proteins resulting from a single round of
recombination from a mere 9% to 75% [8]. However,
access to tertiary and quaternary structures is limited,
imposing a severe restriction on the use of algorithms like
SCHEMA. If exploration beyond the few sequences that
have been rigorously characterised is required (e.g. to use
promising products generated by an initial round of
recombination), we cannot use methods that assume
access to tertiary or quaternary structure.
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Figure 3

The SCHEMA-profile and the STAR-profile for the protein ICDD. The multi-parent S-score for 1CDD and GART
(normalised) and the single-parent S-score for ICDD (normalised), along with the predicted STAR-score for 1CDD. The gap is
caused by the lack of information in the PDB file for residues 110 to 133. The prediction for the complete sequence accurately
disqualifies recombination in this area, while agrees with the prediction generated for a sequence in which these 23 residues
were removed. The successful recombination sites from a DNA shuffling experiment are added and plotted as vertical lines

[23, 24].

As at April 2006, there are about 35,000 structurally
resolved proteins in the Protein Data Bank but several
hundreds of thousands of known proteins in sequence
databases. Since STAR requires only the protein sequence
as input, it enables the protein engineer to choose candi-
date proteins on the basis of functional properties (say,
specific enzymatic activity), and not be limited to those
for which full structural or extensive protein family infor-
mation is available.

STAR has been trained on data generated by the normal-
ised version of the single-parent S-profile on the basis of
resolved protein structures, representative for the whole
protein universe (as known through PDB). STAR is able to
generalise so that each position in any hypothetical or yet
unresolved protein can be accurately evaluated in relation
to its potential to disrupt the structure (should it be used
as a recombination site). In this context, we review recent
algorithms intended for predicting structural stability
changes caused by single-point mutagenesis, and adapt
them to similarly serve to identify sites prone to disrupt
structure.

Availability
¢ Project name : STAR

¢ Project home page : http://pprowler.itee.uq.edu.au/star

¢ Operating System(s): Platform independent
¢ Programming language: Java servlet
e Licence: a licence is required for non-academic use
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