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Abstract

Background: Recent progresses in high-throughput proteomics have provided us with a first
chance to characterize protein interaction networks (PINs), but also raised new challenges in
interpreting the accumulating data.

Results: Motivated by the need of analyzing and interpreting the fast-growing data in the field of
proteomics, we propose a comparative strategy to carry out global analysis of PINs. We compare
two PINs by combining interaction topology and sequence similarity to identify conserved network
substructures (CoNSs). Using this approach we perform twenty-one pairwise comparisons among
the seven recently available PINs of E.coli, H.pylori, S.cerevisiae, C.elegans, D.melanogaster, M.musculus
and H.sapiens. In spite of the incompleteness of data, PIN comparison discloses species
conservation at the network level and the identified CoNSs are also functionally conserved and
involve in basic cellular functions. We investigate the yeast CoNSs and find that many of them
correspond to known complexes. We also find that different species harbor many conserved
interaction regions that are topologically identical and these regions can constitute larger
interaction regions that are topologically different but similar in framework. Based on the species-
to-species difference in CoNSs, we infer potential species divergence. It seems that different
species organize orthologs in similar but not necessarily the same topology to achieve similar or
the same function. This attributes much to duplication and divergence of genes and their associated
interactions. Finally, as the application of CoNSs, we predict 101 protein-protein interactions
(PPIs), annotate 339 new protein functions and deduce 170 pairs of orthologs.

Conclusion: Our result demonstrates that the cross-species comparison strategy we adopt is
powerful for the exploration of biological problems from the perspective of networks.

Background cell offers a new window to explore the problems relating
The activity of cellular life relies on properly functioning  principles on the construction, function and evolution of
of the extremely complex interaction networks among life [1]. Progress in identifying the protein-protein interac-
numerous intracellular constituents. The analysis of the  tions (PPIs) within the protein interaction networks
topology and dynamics of these networks within a living ~ (PINs) has furnished us with powerful high-throughput
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approaches, such as the two-hybrid assay [2], affinity puri-
fication [3], protein chips [4] and phage display [5], as
well as computational methods [6,7]. To date, these tech-
nologies have generated large PINs for several model
organisms, such as H. pylori [8], S. cerevisiae [9,10], C. ele-
gans [11] and D. melanogaster [12] and large amount of
data has been deposited in publicly accessible databases,
including DIP [13], BIND [14], MINT [15] etc.

Both opportunities and challenges are present in the study
of molecular interaction networks. High error rate in high-
throughput data requires the enhancement of our abilities
in discrimination of true PPIs from false positives [16] as
well as data collection to avoid false negatives. Network
topology information can be used to predict protein func-
tions [17] and reformulate old questions from a network
perspective [18,19]. Besides, studies on complex networks
have uncovered unexpected nonrandom global organiza-
tional patterns, some of which also exist in PINs. One of
the most significant features is the scale-free organization
of PINs [11,12,20,21]. The scale-free topology is associ-
ated with the ability of resilience against components fail-
ure and environment changes [21,22]. To address the
possible mechanisms in the development of scale-free
structure of real PINs, several models based on gene dupli-
cation and divergence have been proposed [23,24]. It was
also found that signatures of hierarchical modularity are
present in PINs [12,20], which urges objective definition
and automatic identification of topological and func-
tional modules [25-27]. In addition, recent decomposi-
tion of PINs into motifs discloses some specific patterns of
PINs at the local level [28,29].

As a powerful method, cross-species comparison often
provides insights into the underlying laws behind com-
plex biological phenomena. Motivated by this we propose
an efficiently computational strategy called NetAlign to
enable the comparative analysis of two PINs. NetAlign
searches for conserved network substructures (CoNSs)
that can pair in two PINs by integrating information on
interaction topology and protein sequences. It imple-
ments a modified graph comparison algorithm and a clus-
tering rule to accomplish pairwise comparison of PINs,
and includes two processes for scoring and evaluating the
identified CoNSs (figure 1). We apply the NetAlign
method to the seven PINs of E. coli, H. pylori, S. cerevisiae,
C. elegans, D. melanogaster, M. musculus and H. sapiens and
perform twenty-one genome-scale pairwise comparisons
among them (figure 2, 3, 4, 5, 6,7, 8,9, 10). We show that
beyond what is gleaned from the genome, PIN compari-
son not only reveals species conservation but also indi-
cates potential species divergence at the PIN level. And the
identified CoNSs are known or candidate conserved com-
plexes and can be used to predict PPIs, protein functions
and orthologs.
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Schematic of pairwise network comparison in NetA-
lign. The comparison between two PINs is accomplished by
a fast subgraph isomorphism algorithm and the resulting s-
CoNSs are connected maximal common subgraphs (MCS)
and exact matches of the two networks. The s-CoNSs are
further merged by a clustering rule to produce c-CoNSs that
allow inexact match among homologous regions of interac-
tion in the two networks. The identified s-CoNSs and c-
CoNSs are scored on the basis of their interaction topolo-
gies and evaluated by statistical significance.

Results

Conservation of PINs

As seen from the twenty-one pariwise comparisons, PINs
have only minor overlap (Table 1). This attributes to the
incompleteness of data and the difference among species.
We introduce an overlap score to evaluate the overlap
between any two PINs N and Nj. The overlap score is
defined as (Qg/Qy+T:/Ty)/2, where Q is the number of
conserved PPIs in N, derived from the comparison
between Nq and N, Q, is the the number of PPIs in Ng
Tc and T, are their counterparts in Ny. This score ranges
from O (i.e. Ngand Nynever overlap) to 1 (i.e. N and Ny
overlap completely). Obviously, given complete interac-
tion data, the overlap score can quantify species conserva-
tion from the view of PIN. Even in case of poor data, some
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Representative s-CoNSs. Each pair of matched conserved proteins from two different species is shown in one node with
their identifiers delimited by a slash; black edges are conserved PPIs existed in both PINs and constitute the s-CoNS, while red/
green edges are discrepant PPls observed only in the species on the left/right of the slash, respectively. a-d. These s-CoNSs
corresponds to the RNA polymerase (RNAP) of prokaryotes and are identified from the PIN comparison between E.coli (left)
and H.pylori (right) (figure 10). e. This s-CoNS is from the NetAlign analysis between H.sapien and M.musculus. It is a part of the
system of fibroblast growth factors (FGF) and FGF receptors (figure 8). Gene duplication present in this system results in great
redundancy for the identified s-CoNSs that 151 very similar s-CoNSs are identified. f. This is an s-CoNS harbored by the PINs
of S.cerevisiae and C.elegans, and it is a part of E2F/DP transcription factor complex (figure 4). Based on the discrepant red edge,
we predict that FI A10.2 interacts with T13H5.4 and this prediction is also present in the interolog database [32]. g-k. These
s-CoNSs constitute the complex of replication factor C (figure 3) and are derived from the comparison between the PINs of

S.cerevisiae and H.sapien.

implications can also be obtained. Given that the
observed PPIs are from random sampling of real PINs, the
overlap score can still reflect the conservation between
PINs to some extent. It seems that close species would
have larger overlap. For instance, although the two bacte-
rial PINs are not so large, they overlap with each other
more than with some other larger PINs such as that of
D.melanogaster; another example is the significant overlap
between the PINs of mouse and human, both of which are
nearly the smallest among the seven. In addition, there is

an obvious decrease in the number of identified c-CoNSs
compared with that of identified s-CoNSs and it suggests
great redundancy exists in s-CoNSs. In fact, this results
from gene duplication and divergence that make many
small and local duplicated interaction topologies in PINs.

What are the identified CoNSs with regard to? One way to
answer this question is to inspect their functions. We asso-
ciate proteins with their known biological functions using
the Gene Ontology annotations (GO; Oct 2005 version;

S.cerevisiae

H.sapiens

Figure 3

Representative c-CoNS: the complex of replication factor C (RFC). Figure 3-10 are representative c-CoNSs. Each c-
CoNS is shown in two separate panels each for a species; orthologous and transitively orthologous proteins are shown in the
same horizontal level in each panel. Black edges are conserved PPIs existed in both PINs and constitute c-CoNSs, while red/
green edges are discrepant PPls observed only in the species on the left/right panel, respectively.
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Figure 4
Representative c-CoNS: E2F/DP transcription factor complex.
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Figure 5

Representative c-CoNS: the general transcription and DNA repair factor [IH (TFIIH) complex.

[31]) and analyze the GO annotations within CoNSs. Due
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Representative c-CoNS: ATP synthase.

to the hierarchical structure of GOs, for each protein we
propagate its GO annotations upwards through the GO
hierarchy and retrieve all the relevant GO annotations. We
define that a CoNS to be functionally homogenous, if it
contains at least a GO annotation that satisfies the follow-
ing conditions: (1) for either of the corresponding two
species, at least half of its proteins in the CoNS have this
GO annotation; (2) the annotation is sufficiently specific,
namely at least at GO level four from the root of the GO
hierarchy. It is found that more than 80 percent of the
CoNSs are homogenous, that is, CoNSs are also function-
ally conserved across species. Furthermore, to get an esti-
mation of the function distribution of the CoNSs derived
from a pairwise PIN comparison, we consider ten func-
tional categories concerning cellular function selected
from top levels of the GO hierarchy. For each CoNS, the

most frequent function categories satisfying the above
conditions are assigned to every protein in it. Then the
function categories assigned in all the CoNSs are pooled
together and the frequency of each function category is
computed. We find that the most plenty functions are
related to cellular metabolism and energy, and the func-
tions involving in transport, signaling and cell cycle are
also abundant (figure 11).

Divergence of PINs

Species divergence is usually studied in terms of genomes.
However, it is obvious that species divergence must also
be present at the level of PINs. Here, by virtue of CoNS dif-
ference between species, we probe the conservation of the
interaction topology of orthologs across species. Since s-
CoNSs are exactly matched subnetworks, it indicates that

oy
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Figure 7

Representative c-CoNS: synaptosomal neurotransmitter release.
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Representative c-CoNS: system of fibroblast growth factors (FGFs) and FGF receptors.

different species harbor many locally conserved interac-
tion regions that are topologically identical. Many s-
CoNSs are almost the same except for minor differences
due to matching permutations and it reflects the duplica-
tion of genes and interactions. On the other hand, many
of the matched c-CoNSs of different species show that
although they have similar framework of interaction
topology, their detailed topological organizations can be
different. This also arises from duplication and divergence
of genes and the associated interactions. For instance, the
RNA polymerase (RNAP) identified from the PIN compar-
ison between E.coli and H.pylori (figure 2a-d, 10) shows
difference of the two bacteria in transcription. Four very
similar s-CoNSs with minor matching differences consti-
tute the corresponding c-CoNS of the RNAP. It suggests
that the symmetric interaction topology of the E.coli
RNAP results from a duplication event and the RNAP of
H.pylori lacks this duplication and serves as a prototype of
this molecular machine. So it seems that homologous
local regions of interaction which are topologically iden-
tical are popular across species and these regions consti-
tute larger interaction regions that are topologically

different but similar in different species. In addition to our
above analysis of function homogeneity, it is conjectured
that different species achieve similar or the same biologi-
cal functions by organizing orthologs in a similar but not
necessarily the same interaction topology. Theoretically,
any species-to-species difference in c-CoNSs discloses the
difference of the corresponding two species in some
aspect. Currently, however, due to the incompleteness of
data, some of the identified differences may be false. But
with the fast growth of data, our method offers a way to
discover species difference and explore the problem of
species divergence at the network level.

CoNSs vs. complexes

During the analysis of the identified CoNSs, another ques-
tion concerns us: to what extent do the CoNSs overlap
conserved complexes or pathways? In order to give a
rough estimate of this, we use the MIPS yeast complex rep-
ertoire as a reference to evaluate the identified yeast c-
CoNSs derived from the six pairwise PIN comparisons
between yeast and the other species. Only those MIPS
complexes that are manually annotated independently

S.cerevisiae C.elegans
Figure 9
Representative c-CoNS: nucleocytoplasmic transport.
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Figure 10
Representative c-CoNS: bacterial RNA polymerase (RNAP).

from the DIP data are considered, that is, we exclude all
the complexes in MIPS category 550 that are based on
high-throughput experiments. We compare the c-CoNSs
with the reference complexes, and if the proportion of the
intersecting proteins between a yeast c-CoNS and a MIPS
complex exceeds a threshold the c-CoNS is accepted as a
hit. Under the 80% overlap threshold, 70 hits concerning
61 c-CoNSs are found, which accounts for about 35% of
the 172 yeast c-CoNSs (Table 2).

It is found that some c-CoNSs correspond to the whole
complexes, some are parts of a certain complex and some
overlap several different complexes. For instance, c-CoNS
1 from S.cerevisiae vs. C.elegans completely overlaps MIPS
complex 410.40.30, the DNA replication factor C that
consists of five subunits RFC1, RFC2, RFC3, RFC4 and
RFC5 (this complex is also identified from the compari-
sons of S.cerevisiae with D.melanogaster and H.sapien); c-

Table I: Overview of the twenty-one pairwise comparisons of PINs.

CoNS 26 and c-CoNS 58 from S.cerevisiae vs. D.mela-
nogaster compose the entire MIPS complex 500.10.30, the
translation initiation factor (elF), and the former contains
three subunits GCD7, GCN3 and GCD2, the latter
includes the remaining two subunits GCD6 and GCD1;
part of c-CoNS 2 from S.cerevisiae vs. M.musculus overlaps
four proteins STE7, KSS1, STE11 and FUS3 out of the five
proteins of MIPS complex 470.20, a complex involved in
the activation of MAP kinase (MAPK) in the Ras pathway.
These demonstrate the validity of cross-species compari-
son for identifying conserved functional modules in PINs
and the non-hit c-:CoNSs may be candidate complexes or
pathways for experimental validation.

Prediction of PPIs

Based on the cross-species conservation of CoNSs, there
are two ways to make use of the conserved PPIs in the
identified CoNSs (Table 3). The first is rather simple. A

E.coli H.pylori S.cerevisiae C.elegans D.melanogaster M.musculu H.sapien
E.coli - 0.020 0.026 0 0.009 0 0
H.pylori 713 - 0 ~0 0 0 0
S.cerevisiae 19/8 I/1 - 0.010 0.020 0.082 0.064
C.elegans 0/0 I/1 103/32 - 0.005 0 0
D.melanogaster 8/3 0/0 358/101 114/70 - 0.044 0.073
M.musculu 0/0 0/0 164/7 5/3 24/13 - 0.309
H.sapien 0/0 0/0 109/23 7/6 112/18 504/25 -

The upper triangle displays overlap scores of pairwise PIN comparisons. The lower triangle shows the number of identified s-CoNSs over the

number of identified c-CoNSs of each such comparison.
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Function distribution of the identified CoNSs. Each pie chart represents the distribution of the ten functional categories
of the CoNSs derived from a pairwise PIN comparison. The area of each pie chart is approximately scaled according to the

number of conserved proteins involved in the CoNSs.

conserved PPI observed in two species is probably also
present in the third species, especially when the three spe-
cies belong to the same evolutionary branch. Such-and-
such, a conserved PPI observed in more species is more
likely to appear in other species. Totally, we collect 1178
conserved PPIs (additional file 1). These PPIs are useful
references to check newly observed PPIs and can be trans-
ferred to other species. The second is also intuitive. Due to

the conservation of CoNSs, discrepant PPIs (see red or
green edges in figure 2, 3, 4, 5, 6, 7, 8, 9, 10 for examples)
that are formed by conserved proteins in a CoNS but exist
in only one of the two species have a high probability to
be also present in the other species. Operationally, we use
s-CoNSs to make predictions. Given an s-CoNS derived
from the comparison between two PINs Nj and Ny, as
well as conserved proteins Ag, By of N and their counter-
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Table 2: Representative result of comparisons between yeast c-CoNSs and MIPS complexes.

S.cerevisiae vs. No. of hits No. of involved c- Representative results
CoNSs
c-CoNS Overlap MIPS complex Overlap No. of common
proportion proportion proteins
E.coli 5 100% 70 100% 2
6 5 6 100% 430 50% 2
8 100% 80 100% 2
H.pylori 0 0 0 0 0 0 0
C.elegans | 100% 410.40.30 100% 5
6 100% 110 100% 4
I 10 8 67% 440.30.10.20 100% 2
18 100% 177 40% 2
D.melanogaster 2 83% 140.10.20 71% 5
3 100% 360.10.10 47% 7
5 100% 410.40.30 100% 5
13 100% 120.2 100% 4
40 34 26 100% 500.10.30 60% 3
58 100% 500.10.30 40% 2
M.musculus 2 31% 470.20 80% 4
3 3 3 100% 133.10 60% 6
5 100% 510.160 75% 3
H.sapien | 83% 510.180.10.30 56% 5
2 100% 133.10 60% 6
10 9 3 71% 410.40.30 100% 5
13 100% 510.70.20 25% 3

parts Ap, By of Npin the s-CoNS, if Arand B do not inter-
act, but A and B, interact, then the interaction Aq-Bj is
transferred to A-By (see figure 2f for an example). At last,
101 new PPIs are predicted (additional file 2).

On the whole, our method is similar to the prediction of
PPIs from interologs that are defined to be orthologous
pairs of interacting proteins in different organisms [32].
However, the two methods are different in determining
whether a PPI can be transferred. The latter method trans-
fers a PPI between species on the basis of the joint
sequence similarity of the corresponding two pairs of
interacting proteins, while our method transfers a PPI
based on the conservation of local interaction topology
between species. The current interolog database includes
predicted PPIs for C.elegans and D.melanogaster. We
compare our predictions with them and find that our only
one prediction for C.elegans is collected in the database
but the fourteen predictions for D.melanogaster are not
present. It is natural that the two methods can intersect,
since the conservation of sequences and the conservation
of interactions are consistent sometimes. However, a PPI
discarded by the interolog method may also be supported
by our method if it is part of a high score CoNS. So, to
some extent, our method is complement of the interolog
method.

Prediction of protein functions

We have seen that CoNSs are functionally homogenous
and have significant coverage with known complexes. So
it is natural to guess that if many proteins in a CoNS have
the same function, the remaining proteins would also
have that function. Based on this idea, we strictly analyze
the GO annotation enrichment in c-CoNSs with a p-value
< 0.001 and predict new protein-GO annotation associa-
tions whenever the following conditions are satisfied: (1)
the set of proteins in a c-CoNS is significantly enriched for
a particular GO annotation (p-value < 0.01); (2) the GO
annotation satisfies the conditions for functional homo-
geneity. Then for both species, all remaining proteins in
the c-CoNS are predicted to have the enriched GO anno-
tation.

To assess the overrepresentation of a GO term, we com-
pute a p-value of significance by a hypergeometric test that
answers the question: when sampling X proteins (the set
of c-CoNS proteins) out of Y proteins (the set of proteins
of the species), what is the probability that x or more of
the X proteins belong to a GO functional category shared
by y of the Y proteins? To control the rate of false positive,
the p-value is further Bonferroni corrected for multiple
testing. The analysis of eukaryotic c-CoNSs gives 339 pre-
dictions of protein-GO annotation associations (addi-
tional file 3).
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Table 3: Conserved and predicted PPls.
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E.coli H.pylori S.cerevisiae C.elegans D.melanogaster M.musculus H.sapien
The number of 33 8 367 122 285 128 235
conserved PPIs
The number of 2 2 12 | 14 36 34

predicted PPls

The first row shows the number of conserved PPIs of each species derived from the identified CoNSs. The second row shows the number of new
PPIs predicted on the basis of discrepant PPIs formed by conserved proteins in CoNSs.

Discovery of orthologs

Orthologs are proteins in different species that evolved
from a common ancestor by speciation and they are often
deemed as having the same or similar biological func-
tions. An important aspect of protein functions is the
physical interactions of proteins with other molecules, in
particular, with other proteins. Based on the concept that
similarity in interaction topology may indicate similarity
in function and thus orthologs, we deduce orthologs. In
our prediction, we only consider s-CoNSs with a p-value <
0.001 and containing at least three conserved PPIs as
acceptable orthologous local interaction regions, and take
paired proteins as potential orthologs. Finally, we predict
170 pairs of orthologs that are not reciprocally best BLAST
hits (additional file 4). We then compare our predictions
with the Inparanoid database that collects pairwise
ortholog groups of eukaryotes [33], and find that 23 of
our 159 predictions on eukaryotes are present in it. To
some degree, this result reflects the validity of our
method. Clearly, by combining the conservation of inter-
action topology and sequences our method can make up
for some true orthologs ignored by traditional methods.

Discussion

A related method that performs pairwise network align-
ment between species is the PathBLAST method [34-36],
which offers a general solution to the problem of PIN
comparison. This method searches for small seed linear
high-scoring alignments and aggregates them by dynamic
programming. The decomposition of problem by Path-
BLAST into sub-problems is expensive in time, although
each sub-problem can be solved in linear time. This fact
limits its online application so that the PathBLAST server
restricts a query to small scale (with no more than 5 pro-
teins and 4 PPIs) linear topology and focuses on the iden-
tification of conserved protein interaction paths. Here, we
take a completely different way. The core of our NetAlign
method is subgraph isomorphism, in our case that is the
identification of connected maximal common subgraphs
(MCSs) of two PINs, and the followed clustering. In prin-
ciple, subgraph isomorphism is NP-hard and cannot be
solved for arbitrarily large networks. However the actual
constraints on PIN comparison, such as limited sizes of

PINs and ortholog correspondence, confine the solution
space of the problem. In addition, the time-consuming
and repetitious operations in searching for disconnected
MCSs are avoided, which reduces the recursion tree dur-
ing the search greatly. All of these make the solution of
genome-scale PIN comparison feasible and efficient. The
server supported by the NetAlign strategy can accept an
arbitrarily connected query PIN and searches a target PIN
for CoNSs with arbitrarily topological organization [37].
These features widen its application. The resulting s-
CoNSs and c-CoNSs tell us different information on PINs
as shown at above. The PathBLAST method allows gaps
and mismatches in the alignments, while ours don't. Con-
sidering the relative poor quality of current data, we con-
cern ourselves with more conserved local interaction
topology and aim to identify conserved interaction
regions that are highly confident. Our method circum-
vents related fuzzy matching problem by clustering and
the discrepant PPIs reported are actually gaps, but they do
not participate in the solving procedure as in PathBLAST.
On the whole, NetAlign and PathBLAST are different solu-
tions to the same problem. By virtue of their different
design philosophy and principle, they have different
advantages.

It is well known that high-throughput data suffer errors,
such as false positives and false negatives. However, our
comparative strategy is not sensitive to this kind of noise.
As described in the methods section, the identified CoNSs
are filtered according to the statistical significance of their
scores. This process prefers CoNSs with a non-random-
like configuration and size, and effectively decreases the
impact of random errors. Here, we give a simple estima-
tion of the impact of false positives. Suppose the p-value
cutoff of the statistical filter is p, the fractions of false pos-
itives of the two compared PINs are q, and t,, respectively.
For the two cases that lead to errors, namely two false pos-
itives match each other and a false positive matches a true
positive, their probabilities are q,t, and q, (1-t,)+(1-q,)t,,
respectively. Taken together, p(q,+t,-q,t, )" gives the prob-
ability that a CoNS with n false conserved edges occurs in
the result. In our analysis, only those CoNSs with a p-
value < 0.05 are taken into account, that is p = 0.05;
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according to a recent estimation [16], q,~0.5, t,=0.5; so,
the probability that a wrong conserved edge occurs is less
than 4 percent. Considering the rapid damp of the proba-
bility of error occurrence with n, it is obvious that our
method is reliable even under high fraction of false posi-
tives. As for false negatives, since discrepant PPIs in CoNSs
are shown as color edges, it facilitates the identification of
them and thus reduces their impact. As a vivid demonstra-
tion, we perform six additional pairwise comparisons
between a larger S.cerevisiae PIN derived from the DIP
20050126 release and the above PINs of the other six spe-
cies. The result is almost the same as that of the yeast core
subset, except that 34 new PPIs of yeast and 27 new PPIs
of other species are involved (data not shown). Compar-
ing with its size that is of 4770 proteins and 15199 PPIs
and about double size of the core yeast PIN, the difference
is negligible. It is obvious that cross-species PIN compari-
son provides a robust way to analyze PPIs.

Furthermore, what we talk about here is only two-way
comparison, an extension to n-way (n > 2) comparison is
needed to identify CoNSs across multiple species. For
instance, the E2F/DP transcription factor complex is iden-
tified in all the three pairwise comparisons among H.sap-
ien, M.musculus and D.melanogaster (figure 4) and the
complex of replication factor C (RFC) is also discovered in
the pairwise comparisons among S.cerevisiae, C.elegans,
D.melanogaster and H.sapien (figure 3). These essential
molecular machines are highly conserved across species.
The n-way extension of the current method will shed light
on these conserved interaction topologies and give more
reliability as well as conservation on PPI evaluation.

Conclusion

We propose a computational strategy to perform genome-
scale comparative analysis of PINs and apply this
approach to the seven largest PINs currently available. In
spite of the incompleteness of data, PIN comparison ena-
bles us to identify species conservation and divergence
present at the network level. We find that the identified
CoNSs are conserved not only in topology, but also in
function. And the detailed investigation of the yeast
CoNSs shows that many of the CoNSs correspond to com-
plexes. Besides, based on the species-to-species difference
in CoNSs, we infer potential species divergence. We find
that different species harbor many conserved interaction
regions that are topologically identical and these regions
can constitute larger interaction regions that are topologi-
cally different but similar in framework. So it seems that
different species organize orthologs in similar but not nec-
essarily the same topology to achieve similar or the same
function. To exemplify the application of the identified
CoNSs, we reformulate the problems of PPI prediction,
function annotation and ortholog assignment from a net-
work perspective. Our result demonstrates that the cross-
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species comparison strategy we adopt is powerful for the
exploration of biological problems in PINs.

Methods

We develop an efficient computational procedure called
NetAlign for comparison of two PINs. NetAlign searches
for CoNSs that can pair in two PINs by integrating infor-
mation on interaction topology and protein sequences. It
implements a modified graph comparison algorithm and
a clustering rule to accomplish pairwise comparison of
PINs, and includes two processes for scoring and evaluat-
ing the identified CoNSs (figure 1). We apply the NetAlign
method to the seven PINs of E. coli, H. pylori, S. cerevisiae,
C. elegans, D. melanogaster, M. musculus and H. sapiens and
perform twenty-one genome-scale pairwise comparisons
among them.

Preprocessing of PINs

We download data of the seven largest PINs currently
available from the DIP. The PIN of S.cerevisiae is from the
DIP 20041003 core subset that contains validated PPIs in
the budding yeast, and the other six are from the DIP
20050126 release. After removing PPIs among different
species and self interactions, we obtain the resulting PINs
of E.coli (398 proteins and 473 PPIs), H.pylori (702 pro-
teins and 1359 PPIs), S.cerevisiae (2593 proteins and 6272
PPIs), C.elegans (2621 proteins and 3951 PPIs), D.mela-
nogaster (7025 proteins and 20726 PPIs), M.musculus (304
proteins and 250 PPIs) and H.sapiens (731 proteins and
805 PPIs).

Graph model of PINs

In NetAlign, we model a PIN as a labeled, undirected
graph N(P,I), where P is a series of vertices representing
proteins and [ is a set of edges representing PPIs. To com-
pare two PINs N (P, 1) and Ny(Pr,Iy) from different spe-
cies, it is necessary to identify the correspondences of
vertices and edges in them. The correspondence between
a vertex Aq in Nq and a vertex Apin Ny is established, in
other words, they are labeled the same, if they are putative
orthologs. The ortholog relation is determined by a bi-
directional BLAST search between the two species, which
consists of two BALST searches, one from each direction,
both with an E-value < 10-7. This removes discrepancy in
ortholog assignment arising from a uni-directional BLAST
search. The correspondence between a pair of conserved
PPIs Aq-Bg in Ny and A-Byin Ny is defined, if Ag corre-
sponds to Arand B, corresponds to By simultaneously.

Network comparison

The aim of NetAlign is to identify CoNSs, which may
derive from a common ancestor, in two PINs. The identi-
fication of CoNSs is naturally formulated as subgraph iso-
morphism which is a well-know NP-hard problem. To be
exact, we take network comparison as enumerating all the
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maximal common subgraphs (MCSs) in two networks. To
avoid meaninglessly repetitious combinations of compo-
nents in disconnected MCSs during the solution of the
problem, we only take connected MCSs into account and
define them as s-CoNSs (single CoNSs; see figure 2 for
examples). This greatly reduces the searching space of the
problem.

To solve the MCS problem of two networks No(Pq1q)
and N(Py,I;), an edge compatibility graph G = (V,E) is
built. Here, V is a set of corresponding edge pairs and is
defined as V = {(iqm, i) | iqm € lo/ Ity € Iy if iy, corre-
sponds to iy, }; E establishes the connection between two
edge pairs vy, = (i, ir,) and vy = (iqp, igp,), Where iq,, ig, €
I ity iy € Ipy as follows: E = {(vy, v )| vi, vic € Vs if i, iqp
and iy, ipy,, and if either i, iq, in N are connected via a
vertex corresponding to the vertex shared by ip,, iy, in Ny,
Or iy, igpand iy, iy, are not adjacent in Ny and Ny, respec-
tively}. Each complete maximal subgraph in the graph is
a MCS between N and Ny. The problem is then trans-
formed into an all maximal cliques problem, which
requires enumerating all the complete maximal sub-
graphs. Bron-Kerbosch algorithm is a fast and widely used
algorithm for this [30]. Here we implement a variant of
this algorithm, which detects all cliques representing con-
nected MCSs.

Clustering CoNSs

Each identified s-CoNS is a solution of the network com-
parison and is an exact match between two subnetworks
in the two PINs. However, redundancy exists in regions of
interaction where paralogs interact and s-CoNSs can over-
lap each other. Besides, there may be inexact match
between the conserved interaction regions in the two PINs
due to loss, duplication and divergence of genes and their
associated interactions or data incompleteness; and, these
regions can be disconnected. In order to handle these, we
introduce c-CoNSs (clustered CoNSs; see figure 3, 4, 5, 6,
7,8,9, 10 for examples) by merging similar s-CoNSs. Two
s-CoNSs are clustered if their number of intersecting verti-
ces is equal to or greater than 80% of the smaller one for
either of the two species. Three or more s-CoNSs are clus-
tered by the rule of single linkage, that is, the clustering
relation is transitive. If an s-CoNS can not be clustered
with others, it forms a c-CoNS itself.

Scoring strategy

A CoNS is scored based on its size, i.e. the number of con-
served PPIs it has, and its connectivity. Each connected
component of a CoNS is considered independently and
scored as n(n+1)/2, where n is the number of conserved
PPIs in it. The ultimate score of the CoNS is the sum of
these individual scores. This simple strategy gives higher
scores to CoNSs with larger size and better connectivity,
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since they are more likely to occur not by chance but by
conservation in evolution.

Statistical evaluation

In order to evaluate the statistical significance of an iden-
tified CoNS, we compute a p-value that is based on the dis-
tribution of top scores obtained by applying the above
method to randomized data. A PIN is randomized by ran-
domly shuffling the labels associated with the vertices and
rewiring the edges but preserving the number of edges of
the vertices. We perform 1000 rounds of comparisons
between the randomized versions of the two PINs and
estimate the p-value of a CoNS as the fraction of runs
which result in a CoNS with the same or greater score. All
the CoNSs taken into account in the analysis followed
have a p-value < 0.05 unless specified explicitly.
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