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Abstract

Background: Owing to the rapid expansion of RNA structure databases in recent years, efficient
methods for structure comparison are in demand for function prediction and evolutionary analysis.
Usually, the similarity of RNA secondary structures is evaluated based on tree models and dynamic
programming algorithms. We present here a new method for the similarity analysis of RNA
secondary structures.

Results: Three sets of real data have been used as input for the example applications. Set | includes
the structures from 5S rRNAs. Set Il includes the secondary structures from RNase P and RNase
MRP. Set Il includes the structures from [6S rRNAs. Reasonable phylogenetic trees are derived for
these three sets of data by using our method. Moreover, our program runs faster as compared to
some existing ones.

Conclusion: The famous Lempel-Ziv algorithm can efficiently extract the information on repeated
patterns encoded in RNA secondary structures and makes our method an alternative to analyze
the similarity of RNA secondary structures. This method will also be useful to researchers who are

interested in evolutionary analysis.

Background

RNA secondary structures play an important role in deter-
mining the functions of RNA molecules. Some of them
have been accepted as good data for evolutionary analysis.
With the completion of the sequencing of the genomes of
human and other species, major structural biology
resources have been harnessed to predict functions. More
and more RNA structures are accumulated and we know
little about their functions. This calls for the development
of cost-effective computational methods to predict RNA
functions, which will provide preliminary information for
biologists and guide biological experiments. Earlier stud-
ies usually adopt dynamic programming algorithms and

tree models. Shapiro et al [1] proposed to compare RNA
secondary structures by using tree models. Hofacker et al
[2] compared RNA secondary structures by aligning the
corresponding base pairing probability matrices that were
computed by McCaskill's partition function algorithm
[3]. Because these methods rely on dynamic programming
algorithms, they are compute-intensive. Constructing tree
models is based on the idea that the stems or helices dom-
inantly stabilize the secondary structures. So they ignore
their primary sequences and focus on so-called elemen-
tary units (stem and loop, etc) for the similarity analysis.
There are other works, in which tree models were con-
structed to analyze the similarity of RNA secondary struc-
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tures [4-8]. Recently Liao et al [9] have proposed to use
graphs to represent RNA secondary structures and then
derive some invariants from graphs to compare RNA sec-
ondary structures. This idea is from the study of DNA
sequences [10-13]. It has been stated [10] that invariants
actually reflect some characterizations of biological struc-
tures or sequences and may be regarded as indicators.
Some information will be lost, however, and how to
obtain and select suitable invariants to characterize bio-
logical sequences so as to compare DNA sequences effec-
tively is still unsolved. What's more, the graphical
representations don't work well when the size of the RNA
secondary structure is large. Obviously, for complex RNA
secondary structures, more information is lost, which will
affect the similarity analysis. Popular tools for optimal
alignment of RNA secondary structures include RNAdis-
tance [1], RNAforester [14] etc. RNAdistance uses the tree
models to coarsely represent RNA secondary structures,
and compares RNA secondary structures based on tree edit
distance measure. RNAforester supports the computation
of pairwise and multiple alignment of structures based on
tree alignment measure.

In this paper we propose a novel method for the similarity
analysis of RNA secondary structures, where pseudoknots
are also taken into account. In our approach, each second-
ary structure is transformed into a linear sequence. The
linear sequence not only contains the information on the
corresponding RNA primary structure, but also contains
the information on the base pairing.

Furthermore, standard and famous Lempel-Ziv algorithm
[15] is employed for the similarity analysis. Of course, we
have tested the validity of our method by analyzing three
sets of real data. The results obtained by our method are
comparable to those given by other authoritative meth-
ods. What's more, the whole process is easy to operate. It
can yield results rapidly.

Results

Materials

Three sets of real data are used to test our method. RNA
secondary structures in set II are from RNase P and RNase
MRP. They are distantly related and there is little sequence
homology between them. These secondary structures are
used to test distant RNA secondary structures. They are
mainly obtained from the RNase P Database [16] and the
remaining secondary structures are obtained from [17].
The names of the RNA secondary structures from RNase P
are: Synechocystis sp.PCC6803, Anacystis nidulans PCC6301,
Pseudoanabaena sp.PCC6903, Anabaena sp.PCC7120, Por-
phyra purpurea chloroplast, Thermotoga maritima, Agrobacte-
rium tumefaciens, Rhodospirillum rubrum, Bacillus subtilis,
Reclinomonas americana mitochondria, Sulfolobus acido-
caldarius, Methanococcus jannaschii, Halobacterium cutiru-
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brum, Human (nuclear) P. The RNA secondary structures
from RNase MRP are obtained from [17], whose names
are: Human, Bovine, Mouse, Rat. RNA secondary structures
in set I are from 5S rRNAs. They are provided by Maciej
Szymanski, who has developed the 5S Ribosomal RNA
Database [18]. The names of the 55 rRNAs used in our
study are Halobacterium spl, Pyrodictium occultum, Sulfolo-
bus spl, Actinia equina, Dicyema misakiense, Basidiobolus
magnus, Chrysaora quinque, Christiansenis pallida and
Planocera recticulata. RNA secondary structures in set I1I are
from 16S rRNAs. The names of the 16S rRNAs are Thermo-
proteus tenax, Halobacterium, Bacteoides, Bacillus, Mus mus-
culus, Synechococcus, Thermotoga, Saccharomyces cerevisiae,
Homo sapiens, Escherichia coli, Methanococus vannielli, Ther-
mococcus celer, Vairimorpha and Methanobacterium.

The similarity analysis of set | and set Il by using our
method

The goal of our study is to compare RNA secondary struc-
tures and analyze their similarity. Given a set of RNA sec-
ondary structures, our method requires the following
main operations for the similarity analysis: Firstly the
non-linear complex RNA secondary structures are trans-
formed into linear characteristic sequences. Secondly,
these linear sequences are decomposed according to the
rule of Lempel-Ziv algorithm to evaluate the LZ complex-
ity. Thirdly, the similarity degree between any two struc-
tures is measured by our distance formula, as shown in
Method section. Lastly, by arranging all the values into a
matrix, we obtain a pair-wise distance matrix. It contains
the information on the similarity of this set of RNA sec-
ondary structures. We have used our method to analyze
the similarity of set I and set II, respectively. Its validity
may be better reflected by its application to reconstruct
phylogenetic trees. Hence, for the two sets of data, we
input their pair-wise distance matrices, obtained by our
methods, into the Neighbor program in the Phylip pack-
age [19], respectively. By choosing Neighbor-joining
option, we obtain two phylogenetic trees for the two sets,
which are drawn by Treeview program [20] and are shown
in Figure 1 and Figure 2.

Discussion

Lempel-Ziv algorithm is an algorithm that is related to
minimal length encoding. Its successful application to the
evolutionary analysis of DNA sequences has indicated
that Lempel-Ziv algorithm is an alternative to the similar-
ity analysis of biological sequences. To our knowledge,
the concept of applying Lempel-Ziv algorithm to the sim-
ilarity analysis of RNA secondary structures hasn't been
adopted by any other researcher. The introduction of our
method in Method section indicates that this is a relatively
simple and rapid method for the similarity analysis of
RNA secondary structures. We owe the efficiency of this
method mainly to the Lemple-Ziv algorithm, which can
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Neighbor-joining tree for the data in set l. It is obtained by our method and drawn by Treeview program.

effectively extract the repeated patterns encoded in linear
sequences.

For comparison, we employ RNAforester program to per-
form the similarity analysis on the same data. This pro-
gram calculates the similarity score for any pair of RNA
secondary structures under the proposed scoring scheme.
The similarity relationship is displayed in a cluster tree. By
performing the RNAforester program on set I and set II,
we obtain two cluster trees, as shown in Figure 3 and Fig-
ure 4. The numbers in the interior nodes of the cluster
trees usually represent the similarity scores between the
two sub-clusters that the interior nodes connect, respec-
tively. Note that we set 0.7 as the clustering threshold
when we run RNAforester program. Thus the similarity
score that is not less than 0.7 will be replaced by 0 in the
cluster tree. The efficiency of RNAforester program in ana-
lyzing the data from set I and set II is evaluated by Figure
3 and Figure 4.

At first, we compare Figure 1 with Figure 3. From Figure 1,
we observe that: 1. Actinia equina, Chrysaora quinque and

Planocera recticulata are grouped closely (they belong to
Animalia); 2. Basidiobolus magnus and Christiansenis pallida
are grouped closely (they belong to fungi); 3. Pyrodictium
occultum, Halobacterium spl and Sulfolobus spl (they belong
to Archaebacteria) are clearly separated from the rest; 4.
Dicyema misakiense is placed closer to Animalia than to
fungi (it belongs to mesozoa). The relationship described
by our method is in accordance with the one described in
[21,22]. In contrast to Figure 1, we find in Figure 3,
obtained by using RNAforester program, that Halobacte-
rium spl is separated from the cluster that Pyrodictium occul-
tum and Sulfolobus spl belong to. Obviously this is not
reasonable. Then we compare Figure 2 with Figure 4.
From Figure 2, we observe that our result is consistent
with the theory that is suggested in [23-26]: MRP evolved
from a Eukaryotic Nuclear P in the nucleus of an early
Eukaryote. Figure 2 indicates that mrpRNA are more sim-
ilar to eukaryotic pRNA than to prokaryotic pRNA. Fur-
thermore, Synechocystis sp.PCC6803, Anacystis nidulans
PCC6301, Pseudoanabaena  sp.PCC6903,  Anabaena
sp.PCC7120 and Porphyra purpurea chloroplast are grouped
closely, named cluster I for convenience; Thermotoga mar-
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Neighbor-joining tree for the data in set Il. It is obtained by our method and drawn by Treeview program.

itima, Agrobacterium tumefaciens and Rhodospirillum rubrum
are grouped closely, named cluster II. Cluster I and cluster
1T are adjacent. In Figure 4, Halobacterium cutirubrum is put
far away from Methanococcus jannaschii. Furthermore, Ana-
cystis nidulans P is separated far from Synechocystis sp.P and
Anabaena sp.P. Bacillus subtilis and Reclinomonas americana
mitochondria aren't placed closely. This conformation
doesn't accord with the one demonstrated by Collins et al.

In general, our method can compare secondary structures
reasonably, with the results consistent with those from
[23-26]. For the two data sets, our algorithm performs bet-
ter than RNAforester program. Additionally, our analysis
results favor the proposal that RNA secondary structures
are useful materials for evolutionary analysis.

It seems that our method is heavily biased towards com-
paring sequences, not secondary structures. However, in
fact, this is not the truth. We now apply Lempel-Ziv algo-
rithm directly to RNA sequences to see whether the result
obtained by this method is better than ours. As a result,
the phylogenetic tree for the data in set Il has much diver-
gence from ours, shown in Figure 5 (drawn by Treeview).

It's obvious that there exists unreasonable topology that
depicts the similarity relationship of these RNA secondary
structures in Figure 5. For example, Thermotoga maritima,
Agrobacterium tumefaciens and Rhodospirillum rubrum are
placed close to the RNase MRP RNAs and are separated far
away from the branch for Synechocystis sp.P and Anabaena
sp.P, etc, which simultaneously leads to the separation of
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Cluster tree for the data in set . It is obtained by using RNAforester program. The tree is derived based on the similarity
scores between any pair of RNA forests.
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Neighbor-joining tree for the data in set Il. It is obtained by performing LZ algorithm on RNA primary structures, i.e. the
step to extract linear characteristic sequences from RNA secondary structures has been ignored.

Sulfolobus acidocaldarius from Methanococcus jannaschii and
Halobacterium cutirubrum. In nature, Thermotoga maritima,
Agrobacterium tumefaciens and Rhodospirillum rubrum
belong to Eubacterial RNase P and should be grouped
close to Synechocystis sp.P and Anabaena sp.P, etc. Figure 5
has favored our claim, i.e. our characteristic sequences do
grasp some information on RNA secondary structures
(base pairing).

The introduction of the Lempel-Ziv algorithm to the sim-
ilarity analysis makes our algorithm run fast. Table 1 lists

the general time and space complexity of our method and
RNAforester program. In Table 1, the relationship
between the size (length) of RNA secondary structure and
the time complexities hasn't been indicated explicitly for
the RNAforester program. We may make approximate
estimation. In theory, the total number of the nodes of an
RNA forest scales linearly with the size of the RNA second-
ary structure. For RNA secondary structures that exist in
nature, the maximum length of an unpaired region and
the branching degree can be considered to be bounded by
some constants, which determines that the degree of an
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Table I: Time/Space complexities of our method and the RNAforester program.

Algorithm Name Running Time

Space requirement Reference

9RNA forester
bOur method

O(|F,|IF,|deg(F,)deg(F,))
O(N?)

O(|F, ||FyJmax(deg(F,), deg(F2)))
O(N?)

[27]

a|F,| is the number of nodes in the forest F;and deg(F) is the degree of F; N is the average size.

RNA forest is expected to stay a constant. Hence the run-
ning time O(|F,||F,|deg(F,))deg(F,))[27] is equivalent to
O(n,n,), where n;n, is the product of the sizes of the two
RNA secondary structures being compared.

On the other hand, we have compared the execution time
of our method with that of RNAforester by using some
RNA secondary structures of various sizes. The results are
listed in Table 2. It's obvious that our algorithm performs
faster.

Additionally, we have performed our program on a set of
16S rRNAs, whose secondary structures are more complex
and the sizes of which are relatively larger. The result is
shown in Figure 6, drawn by Treeview. Their similarity
relationship has been reasonably derived by our method.
Thermoproteus tenax, Halobacterium, Methanococus vannielli,
Thermococcus celer and Methanobacterium have been clus-
tered together, which is consistent with the fact that they
are of Archaea. Mus musculus, Saccharomyces cerevisiae,
Homo sapiens, Vairimorpha are clustered together, which is
consistent with the fact that they are of Eucaya. The left are
of Bacteria.

Conclusion

Here we have proposed a new method to analyze the sim-
ilarity of RNA secondary structures (pseudoknots are
taken into account). It is a simple method that yields
results reasonably and rapidly. Our algorithm is not nec-
essarily an improvement as compared to some existing
methods, but an alternative for the similarity analysis of
RNA secondary structures. The new method doesn't
require sequence alignment and the construction of tree
models. It is based on linear characteristic sequences that
we define for RNA secondary structures and the famous
Lempel-Ziv algorithm that relates to minimal length
encoding. The characteristic sequences contain the infor-

mation from RNA primary structures and the base pairs
formed in RNA secondary structures. The Lempel-Ziv
algorithm effectively extracts the information on the
repeated patterns encoded in long sequences. The exam-
ple applications of our method to three sets of real data
and its comparison with other methods verify the validity
of our method. From the comparisons, we conclude that
our method performs well on distantly related RNA sec-
ondary structures. In our approach, complicated compu-
tation is avoided. The whole process is easy to operate.
What's more, the size of RNA secondary structure is not
problematic.

Of course, there is defect in our approach: when non-lin-
ear RNA secondary structures are transformed into linear
characteristic sequences, some information may be lost.
However, our test has indicated that our method can yield
results reasonably, i.e. our method can extract some key
information from RNA secondary structures.

Methods

Lempel-Ziv algorithm and LZ complexity

Let S, Q and R be sequences over a finite alphabet A, I(S)
be the length of S, S(i) be the ith element of S and S(i,j) be
the subsequence of S that starts at position i and ends at
position j. Note that S(i,j) = &, for i > j. The contatenation
of Q and R forms a new sequence S = QR, where Q is
called a prefix of S, and S is called an extension of Q if
there exists an integer i such that Q = S(1, 7).

An extension S = QR of Q is reproducible from Q denoted
by Q — S, if there exists an integer p < 1(Q) such that R(k)
= S(p+k-1), for k = 1,2,.., I(R). For example: AACUT —
AACUTACU with p = 2. A non-null sequence S is produc-
ible from its prefix S(1, j), denoted by S(1, j) = S, if S(1,
j) = S(1, I(S) - 1). For example: CCUA = CCU AU AUT
with p = 3.

Table 2: Execution times required by our algorithm and the RNAforester program.

Species Name

Execution Time required by RNAforester

Execution Time required by our method

<Two 5S rRNAs 12.62 s
dTwo RNase P RNAs 3536s
eTwo 16S rRNAs 1583.12 s

1.52's
6.96 s
176.68 s

The two algorithms have been performed on the same representative RNAs for comparison. Letter s represents seconds. In <, Halobacterium spl
and Christiansenis pallida are chosen to compare. In 9, Porphyra purpurea chloroplast and Bacillus subtilis are chosen to compare. In ¢, Thermotoga and

Saccharomyces cerevisiae are chosen to compare.
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Neighbor-joining tree for the data in set Ill. It is obtained by our method and drawn by Treeview program.

The difference between producibility and reproducibility
is that the former allows for an extra "different" symbol at
the end of the extension process which is not permitted in
the latter. Therefore an extension which is reproducible is
always producible but the reverse may not always be true.

Any non-null sequence S can be built from a production
process by iterative self-deleting-building process where at
the ith step S(1, h;;) = S(1, h;), D =S(1,0) = S(1, 1). An
m-step production process of S leads to a parsing of S into
H(S)=S(1,h;)®S(h;+ 1, hy)e...eS(h, +1,h,) which
is called the history of S, and H,;(S)= S(h;, + 1, h;) is called
the ith component of H(S).

A component H;(S) and the corresponding production
step S(1, h;;) = S(1, h;) are called exhaustive if S(1, h; ;)
— S(1, h;) is not true. A history is called exhaustive if each

of its components (with a possible exception of the last
one) is exhaustive. What's more important, the exhaustive
history of any non-null sequence is unique. For example,
for the sequence S = UUCGAGGUCGGA, its exhaustive
history is EH(S)= UeUCeGeAeGGeUCGGeA.

Let ¢(S) be the number of components in the exhaustive
history of S. It is the least possible number of steps needed
to generate S according to the whole Lempel-Ziv algo-
rithm, so ¢(S) becomes an important complexity indica-
tor.

Linear characteristic sequences of RNA secondary
structures

Usually, A, C, G, U are used to denote the four
bases(nucleotides) in RNA sequences (primary struc-
tures). An RNA sequence can thus be represented by R =
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T175.....T,, where 7; is called the i"(ribo)nucleotide. Each r;
belongs to the alphabet {A, C, G, U}. The secondary struc-
ture of an RNA molecule is the collection of base pairs that
occur in its 3D structure. For each secondary structure,
there are two terminals: 5'-terminal and 3'-terminal. Fig-
ure 7 shows a simulated RNA secondary structure. Its RNA
sequence (from 5'-terminal to 3'-terminal)is:

GGGAAACUGGAAGGCGGGGCGAACGUCGGCCCCAGU
GAAGUCAAAUGGAGCGUACACGGACCAUUAUG-
GGCUAA.

In this section, we will define linear characteristic
sequences for RNA secondary structures. In other words,
we will transform non-linear RNA secondary structures
into linear sequences. In our research, a group of consec-
utive base pairs (including one base pair) is called a helix
and i is called the position of nucleotide r;. The open
regions surrounded by single stranded bases are called
loops. Each helix is numbered from the 5'-terminal to 3'-
terminal: The first helix is called Helix1, and the second
helix is called Helix2,......etc. The rule for transformation
is as such: For an RNA secondary structure S with N heli-
ces, write its RNA sequence with the letters in Helix1
upper case and the rest small case; then write in succession

Helix 1

/”'G

5‘

GGGAAACUGG AAGGCGICI'T l (lfr(T"

http://www.biomedcentral.com/1471-2105/7/493

its RNA sequence with the letters in Helix2 upper case and
the rest small case;.......then write in succession its RNA
sequence with the letters in HelixN upper case and the rest
small case. Now a linear sequence has been obtained by
following the above-mentioned rule. We call it linear
characteristic sequence of S, abbreviated to L(S). Take the
simulated secondary structure for example, it has five Hel-
ices.

According to our rule, the linear characteristic sequence of
the simulated secondary structure is as follows:

gggaaacuggaaggcGGGGCgaacgucgGCCCCagugaagucaaaugs
agcguacacggaccauuaugggeuaagggaaacuggaaggcgggycgaACGU
CGgccccagugaagucaaallGGAGCguacacggaccauuaugggcuaag-

ggaaa

cuggaaggcggggcegaacgucggcecccagugaAGucaaauggageguacacg-
gaccauuaugggCUaagggaaacuggaa

ggcggggcgaacgucggccccagugaaguCaaauggagcguacacggaccau-
uaugGgcuaagggaaacuggaaggcssss

cgaacgucggccccagugaagucaAAUGgagcguacacggacCAUUaug-
ggcuaa

Helix2

g Ga CCCCG—G C UG

G

A

A
4]

Helix4
Helix 3

Figure 7

A
NEe, oA

GA&? GUA

Gg c A

Helix5

A simulated secondary structure. It contains a pseudoknot. And five Helices are formed according to our definition.
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which is obtained by adjoining the following five
sequences in succession.

Helix1:
gggaaacuggaaggcGGGGCgaacgucgGCCCCagugaagucaaaug-
gagcguacacggaccauuaugggeuaa

Helix2:
gggaaacuggaaggcggggcgaACGUCGgccccagugaagucaaallG-
GAGCguacacggaccauuaugggcuaa

Helix3:
gggaaacuggaaggcggggcgaacgucggcecccagugaAGucaaaug-
gagcguacacggaccauuaugggClaa

Helix4:

gg8gaaacuggaaggcggggegaacgucggecccagugaaguCaaaug-
gagcguacacggaccauuaugGgeuaa

Helix5:

g8gaaacuggaaggcggggegaacgucggecccagugaagucaAAUG-
gagcguacacggacCAUUaugggcuaa

Distance computation and pair-wise distance matrix

Lempel et al have proposed that, for any given sequences
QandS, ¢(QS) <¢(Q)+ ¢(S) always remains valid. This for-
mula shows that the steps required to extend Q to QS are
always less than the steps required to build S from .
Recently, Otu et al [28] concluded that the more similar
the sequence S is to sequence Q, the smaller ¢(QS) - ¢(Q)
is. That is ¢(QS) - ¢(Q) depends on how much § is similar

to Q.

For example, let Q, S, R represent three short RNA
sequences defined over the alphabet {A, C, G, U}, where
S = UUACGUAAUGU,Q = AGUCCCUAGGA, R = UAC-
CGAUAAG. By the rule mentioned above, the correspond-
ing exhaustive histories of S, Q, R, SR, QR, SQ are: EH(S)
= UeUAeCeGeUAAeUGeU, EH(Q) =
AeGeJeCeCCUSAGG®A, EH(R) = UsAeCeCGeAU®AASG,
EH(SR) = UeUAeCeGeUAAeUGeUUACCeGA*UAAG,
EH(QR) = AeGeUeCeCCUSAGGeAU*ACeCGeAUAASG,
EH(SQ) -
UeUAeCoeGoUAA®UGeUAGeUCeCCeUAGG®A. We can
find that we need 2 steps to build R from S, 4 steps to
build R from Q, 4 steps to build Q from S. So we say R is
more similar to S than to Q. The reason is that S and R
share the common patterns UAC and UAA.

Based on this hypothesis, Otu et al have used the Lempel-
Ziv algorithm to successfully construct phylogenetic trees
from DNA sequences, which verifies the efficiency of Lem-
pel-Ziv algorithm in analyzing the similarity of linear bio-
logical sequences.

http://www.biomedcentral.com/1471-2105/7/493

Therefore we adopt the following formula to evaluate the
distance between secondary structures S and Q, which is
slightly different from [28]:

A(L(S)L(Q)) — ¢(L(S)) + c(L(Q)L(S)) — ¢(L(Q))
(L(S)L(Q)) + c(L(Q)L(S))
0, §=Q

RA(S,Q) = 5#Q

The denominator in [28] is equivalent to
[c(L(S)L(Q))+c(L(S)L(Q))]/2, which leads to the fact that
the distance calculated by the formula proposed in [28]
will always be twice as much as the distance calculated by
our formula. As you know, a constant will not affect the
similarity analysis at all. We choose to use the formula
mentioned above mainly because its expression is sim-
pler. The formula in [28] has been proven to be a distance
metric by Out et al. Thus Rd(S, Q) also satisfies the condi-
tions required by a distance metric.

It's obvious that the more similar S is to Q, the smaller
c(L(S)L(Q))-c(L(S)) and c(L(Q)L(S))-c(L(Q)) are, and
then the smaller R4(S,Q) is.

Generally, given n RNA secondary structures Sy, S,,......, S,,,
we can obtain their linear characteristic sequences by the
above-mentioned rule, which are L(S,), L(S,),....... L(S,,).
They are linear sequences defined over alphabet {A, C, G,
U, a, ¢, g u,} and carry the information on RNA secondary
structures. Then, by using Lempel-Ziv algorithm, the dis-
tance between any pair of structures, Rd(S; S;), may be
rapidly computed. By arranging them into a matrix, a pair-
wise distance matrix is obtained, denoted by RD. RD
=(Rd(S; S;)) contains the information on the similarity/
dissimilarity between any pair of RNA secondary struc-
tures.

Based on what Otu et al have proven, we can easily con-
clude that our distance metric is also valid for inferring
phylogeny of species because it satisfies all the conditions
for phylogeny analysis. Hence our pair-wise distance
matrix may be input the programmes for phylogeny infer-
ence to study the phylogeny for RNA molecules based on
their secondary structures.
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