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Abstract

Background: Accurate multiple sequence alignments of proteins are very important in
computational biology today. Despite the numerous efforts made in this field, all alignment
strategies have certain shortcomings resulting in alignments that are not always correct.
Refinement of existing alignment can prove to be an intelligent choice considering the increasing
importance of high quality alignments in large scale high-throughput analysis.

Results: We provide an extensive comparison of the performance of the alignment refinement
algorithms. The accuracy and efficiency of the refinement programs are compared using the 3D
structure-based alignments in the BAIIBASE benchmark database as well as manually curated high
quality alignments from Conserved Domain Database (CDD).

Conclusion: Comparison of performance for refined alignments revealed that despite the absence
of dramatic improvements, our refinement method, REFINER, which uses conserved regions as
constraints performs better in improving the alignments generated by different alignment
algorithms. In most cases REFINER produces a higher-scoring, modestly improved alignment that

does not deteriorate the well-conserved regions of the original alignment.

Background

The reliability and accuracy of many bioinformatics meth-
ods such as homolog identification, comparative mode-
ling, phylogenetic analysis and others depend heavily on
the quality of multiple sequence alignments. Heuristic
approaches such as progressive and iterative methods are
generally used to obtain multiple sequence alignments in
a computationally efficient manner. In progressive
approaches, a multiple alignment is generally built up
gradually by aligning the most similar sequences first and
successively adding in more distant relatives. A number of
alignment programs apply this strategy [1-3] by construct-

ing a global alignment over the entire length of the
sequences; they differ mainly in the procedure employed
to determine the order of the sequences to be aligned. Iter-
ative algorithms [4,5] generally attempt to improve the
overall quality of alignment by employing an objective
function and heuristic measures to obtain an optimal
alignment. Alternative approaches that utilize a co-opera-
tive strategy to integrate complementary algorithms [6,7]
and/or incorporate additional biological data [8,9] have
also been developed.
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Despite the numerous efforts made in this field, each of
these strategies has weaknesses that can result in align-
ments that do not reflect the correct evolutionary relation-
ships. This persistent difficulty of course reflects the fact
that aligning multiple sequences is a highly non-trivial
task (in both a biological and computational sense)
whose accuracy in practice depends largely on the choice
of input sequences, the objective function and the heuris-
tics employed. Therefore, the application of an alignment
refinement algorithm to an existing or automatically-gen-
erated alignment can be helpful for detecting alignment
problems. Alignment refinement as a post-processing
operation is particularly worthwhile considering the
increasing importance of high quality alignments in large
scale high-throughput analysis.

Alignment refinement has mainly relied on iterative
approaches [4,8,10-12]. Recently Wallace et al., [13] stud-
ied various iterative schemes and showed that perform-
ance of alignment algorithms can be improved by
including iteration steps during the progressive align-
ment. Another refinement program, RASCAL, imple-
mented by Thompson et al., [14] uses a knowledge-based
strategy to improve alignments where alignment is
decomposed into reliable and unreliable regions and only
unreliable alignment regions are modified.

Recently we reported a new algorithm, REFINER [15], that
refines a multiple sequence alignment by iterative realign-
ment of its individual sequences, using the predetermined
conserved core (block) model as a constraint. Realign-
ment of each sequence can correct misalignments
between a given sequence and the rest of the profile by
shifting the individual aligned blocks on that sequence yet
at the same time preserves the family's overall block
model (i.e., the sequence and structurally conserved
regions). The constraint prohibits the insertion of gap
characters in the middle of conserved blocks.

In this study we compare the performance of three pub-
lished alignment refinement algorithms. The accuracy and
efficiency of RASCAL [14], the Remove First (RF) method
from Wallace et al., [13] and REFINER [15] methods were
compared using the 3D structure-based alignments from
the BAIiBASE benchmark database [16] and a collection
of manually curated high quality alignments from Con-
served Domain Database (CDD) [17]. The quality of the
refined alignments was assessed in terms of various scor-
ing functions, by consistency with structure-structure
alignments from BAIiBASE, and measuring sensitivity in
profile-based database searches. As a practical matter, we
also report the CPU time required by the three methods.
This comparison study reveals that while none of the
refinement methods provide dramatic improvements, the
REFINER algorithm performs consistently well in con-
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junction with all alignment-generation algorithms tested.
Further, of the three methods studied REFINER best
avoids degrading the original alignment's quality.

Results and discussion

Improvement of alignment

Alignments generated by ClustalW version 1.83 [18],
Muscle version 3.52 [19], Dialign version 2.3 [20], FFTNSI
from the Mafft package version 5.743 [5,21], ProbCons
version 1.09 [22] and TCoffee version 3.93 [7], were
refined by three different methods: REFINER [15], RF
method [13] and RASCAL [14]. Since each of these refine-
ment methods seeks a multiple alignment with the high-
est score, we first compared their optimization procedures
by calculating scores from the refined alignments using
four different objective scores. Figure 1 shows the relative
improvement of refinement as measured by alignment
score, conservation score [SCORECONS score, [23]],
norMD score [24] and information content for the BAli-
BASE benchmark alignments. The percentage of refined
alignments that exhibit an improved score, i.e. where the
refined alignment has a higher objective score than the
original alignments, is found to be highest for REFINER
for all objective scores tested. When using alignment
score, SCORECONS score, norMD score and information
content, respectively, these percentages are 94%, 98%,
90% and 84% for REFINER, 92%, 90%, 86% and 63% for
the RF method, and 94%, 94%, 87% and 57% for RAS-
CAL. Notably, these values also reveal that REFINER pro-
duces fewer cases in which the objective score of the
refined alignments drops.

We observe similar results (Figure 2) when REFINER, RF
and RASCAL are applied to alignments from the CDD
alignment dataset. In this case, refinement algorithms
were applied to the original CDD alignments and objec-
tive scores are computed pre- and post-refinement.
Although the extent of positive improvement (REFINER:
45%, 42%, 34% and 68%; RF: 35%, 31%, 20% and 51%
and RASCAL: 41%, 25%, 11% and 32%) is much lower in
this dataset, relative to the other methods REFINER per-
forms consistently well for different scoring functions and
also results in fewer cases where alignment accuracy actu-
ally degrades following refinement.

While REFINER performs well numerically (in terms of
the objective score), the biological relevance of the refined
alignments should also be considered. In this context the
BAIiBASE sum-of-pairs (SP) scoring scheme [16] is
adopted to evaluate the quality of derived alignments. The
improvements in SP score exhibited by the REFINER, RF
and RASCAL refinement methods are illustrated in Table
1. The 'Default' columns in Table 1 provide the average SP
score for alignments generated by the individual align-
ment programs used in this benchmarking study, whereas
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Figure |

Improvement of objective scores after refinement (BAIiIBASE dataset). Histograms showing the relative improve-
ment after refinement for four objective scores: a) alignment score b) conservation score (SCORECONS score) c) norMD
score and d) information content for the BAIIBASE 3.0 alignment dataset are plotted. The X-axis represents bins of relative
improvement of the objective score while the Y-axis shows the percentage of alignments. Relative improvement of objective
score is measured as the difference between the final scores after application of REFINER, RF and RASCAL method divided by

the final score obtained from default alignment program output.

columns under 'RASCAL', 'RF' and REFINER provide the
average SP score obtained after applying that refinement
method to the corresponding default alignment. It is evi-
dent from the table that the REFINER method performs
most consistently well in improving the alignments gen-
erated by different alignment methods.

For comparison, we calculated the correlation coefficients
between the improvement of estimated (relative improve-
ment of objective scores) and real alignment accuracy
scores (relative improvement of SP score) for the BAli-
BASE benchmark set. For all scoring methods the correla-
tion coefficient is low (Table 2) for BAIiBASE alignments.
This could be due to the fact that the real alignment accu-
racy is estimated from the core regions [16] while objec-

tive scores are calculated taking into account the whole
alignments. This inconsistency between the correlation of
the objective score and SP score in BAIiBASE has been
reported elsewhere [25]. Nevertheless, on all test sets the
objective scores are better correlated to the improvement
of real alignment accuracies for REFINER-derived align-
ments than for RASCAL and RF method refinements.

Relationship between improvement of alignment accuracy
and benchmark difficulty

As the quality of an alignment improves, refinement pro-
cedures reach a point of diminishing returns. It is there-
fore useful to identify the circumstances under which
refinement is most likely to be helpful. We explored this
issue by correlating the improvement of alignment accu-
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Figure 2

Improvement of objective scores after refinement (CDD dataset). Histograms showing the relative improvement
after refinement for four objective scores: a) alignment score b) conservation score (SCORECONS score) c) norMD score
and d) information content for the CDD alignment dataset are plotted.

racy under refinement (in terms of SP score) and the qual-
ity of the initial alignment as measured by its objective
score, focusing on the REFINER method. Figure 3 shows
the relative improvement of refined alignment accuracy
compared to the input alignment's quality as expressed by
the SCORECONS score (panel a), norMD score (panel b)
and information content (panel c). It can be seen from the
figure that alignment refinement has its greatest impact
for initial alignments with lower objective scores and it is
noteworthy that the alignment accuracy typically gets bet-
ter upon refinement in these cases. So when the input
alignment's score is low (e.g. SCORECONS score range [0,
0.1], norMD score range [-0.3, -0.2] and information con-
tent range [0, 0.1]) performing alignment refinement is
most often beneficial. At higher levels of input alignment
quality (i.e., higher initial scores), however, it is also

encouraging that refinement can provide moderate
improvement yet seldom results in significant degrada-
tion.

Comparison of the sensitivitylspecificity of the refined
alignments

We used the program Hmmsearch from the HMMER 2.3.2
package [26] to perform database searches after convert-
ing the refined alignments generated by the REFINER, RF
and RASCAL methods to HMM profiles using the program
Hmmbuild from the HMMER 2.3.2 package. HMM mod-
els derived from the 280 CDD alignments in set_280 (see
additional file 1 for list) before and after each of the
refinement procedures were used to search the 'non-
redundant' database of protein chains (db10185, see
Methods for details).
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Table I: Impact on alignment quality following refinement.
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BAIIBASE ClustalW Dialign Mafft

reference
alignments

Default RASCAL RF REFINER Default RASCAL RF REFINER Default RASCAL RF REFINER

Reference | 0.65 0.63 0.66 0.66 0.62 0.65 0.67 0.62 0.70 0.69 0.69 0.71
Reference 2 0.78 0.80 0.80 0.80 0.78 0.80 0.79 0.79 0.83 0.82 0.83 0.82
Reference 3 0.66 0.69 0.67 0.68 0.65 0.64 0.65 0.66 0.76 0.73 0.75 0.77
Reference 4 0.67 0.68 0.66 0.70 0.67 0.71 0.66 0.69 0.75 0.73 0.70 0.77
Reference 5 0.65 0.67 0.66 0.68 0.67 0.65 0.64 0.67 0.76 0.73 0.72 0.76

Average 0.682 0.694 0.69 0.704 0.678 0.690 0.682 0.692 0.760 0.740 0.738 0.766

Increment (%) 0 1.760 1.173 3.226 0.000 1.770 0.590 2.065 0.000 -2.632 -2.895 0.789

BAIIBASE Muscle Probcons T-Coffee

reference
alignments

Default RASCAL RF REFINER Default RASCAL RF REFINER Default RASCAL RF REFINER

Reference | 0.66 0.66 0.67 0.67 0.72 0.72 0.70 0.73 0.68 0.68 0.69 0.68
Reference 2 0.80 0.81 0.80 0.80 0.83 0.83 0.82 0.82 0.81 0.83 0.82 0.82
Reference 3 0.71 0.71 0.71 0.73 0.76 0.73 0.75 0.77 0.63 0.62 0.62 0.64
Reference 4 0.71 0.72 0.68 0.72 0.77 0.75 0.71 0.77 0.71 0.71 0.70 0.72
Reference 5 0.70 0.71 0.67 0.71 0.76 0.74 0.71 0.75 0.73 0.73 0.69 0.74

Average 0716 0.722 0.706 0.734 0.768 0.754 0.738 0.77 0.704 0.714 0.704 0.720

Increment (%) 0.000 0.838 -1.397 2.514 0.000 -1.823 -3.906 0.260 0.000 1.420 0.000 2.273

The database search sensitivities at 1% and 5% error rates
are given in Table 3. The sensitivities of sequence profiles/
HMMs have increased only when employing REFINER,
and the database search sensitivities fall slightly for the
other two refinement methods. Admittedly the overall
improvement in sensitivity is not dramatic but it does
imply that in this scenario the REFINER algorithm pro-
duces better refined alignments.

Comparison of average run times for refinement

Finally, we compare the average computation time
required for each of the refinement algorithms. The CPU
time cost is an important practical factor that influences
the utility of an algorithm to a great extent. Table 4 shows
the average CPU time for refinement of five reference
benchmark sets from BAIiBASE 3.0 for each of six align-
ment-generation programs. The 'Default' column displays
the time spent generating the alignment used as input to
each refinement program. RASCAL proves to be the fastest
refinement method while RF method seems to be very
expensive in comparison. REFINER's runtime characteris-
tics are similar to those of RASCAL for all five BAIiBASE
references.

Although the computational complexity may be similar
for RF and REFINER due to their similar approaches to the
problem, implementation differences appear to account
for the disparity in speed between the two methods. Spe-
cifically, RF is a Perl script which performs multiple sys-

tem calls within its innermost iteration loop, including
invocations of the program(s) Muscle and/or ClustalW to
perform sequence realignment operations. In contrast
REFINER is a C++ binary that has no nested system calls
and includes a fast dynamic programming engine to do
sequence realignment operations.

Conclusion

The alignment of multiple sequences is a very important
task and still remains a challenging problem. Acknowl-
edging the difficulty of that challenge, an alternate
approach to the underlying problem has been examined
here: augmenting alignment-generation procedures with
a separate alignment-refinement algorithm capable of
repairing those errors that remain. Iterative refinement
algorithms generally attempt to improve the overall qual-
ity of alignment by employing objective functions and
heuristics to obtain an optimal alignment. Most iterative

Table 2: Correlation coefficients between the improvements of
estimated and real alignment accuracy scores.

REFINER RF RASCAL
Alignment Score 0.236 0.188 0.167
Conservation score 0.228 0.164 0.162
norMD score 0.338 0.308 0.287
Information content 0.18 0.15 0.15
Average 0.258 0.201 0.191
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Figure 3

Relationship between improvement of alignment accuracy and benchmark difficulty. The relative improvement of
the alignment accuracy (Y-axis) calculated as improvement of SP (Sum-of-Pair) score is plotted against the quality of alignment
input to REFINER, as measured by three objective scoring functions (X-axis). a) Conservation (SCORECONS) score b) norMD
score c) information content. The central line in each box shows the median value, the upper and lower boundaries of individ-
ual box show the upper and lower quartiles, and the vertical lines extend to a value 1.5 times the inter quartile range. Outlier

values are shown outside the whiskers.
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Table 3: Sensitivity values estimated from the ROC curves at 1% and 5% error rates (fraction of false positives)

Search method Error rate Original After_ REFINER After_RF After RASCAL
HMMER 1% error rate 0.47 0.48 0.46 0.45
5% error rate 0.54 0.56 0.54 0.54

refinement methods face the challenge of how to escape
from sub-optimal alignments. Therefore, the main differ-
ences among the existing methods lie in the effective def-
inition of an objective function and intelligent design of
the method's heuristics.

In this study we conducted an extensive comparison of the
performances of three different alignment refinement
algorithms. The accuracy and efficiency of the refinement
programs such as, RASCAL [14], RF method [13] and
REFINER [15] were compared using the 3D structure-
based alignments from the BAIiBASE benchmark database
as well as a diverse set of manually curated high quality
alignments from the Conserved Domain Database. A
comparison in terms of different objective scoring func-
tions found better performance for alignments refined by
REFINER rather than the RF or RASCAL methods. The bio-
logical relevance of the refined alignments was also
assessed, where we adopted the BAIiBASE sum-of-pair
(SP) scoring scheme to evaluate the refined alignments'
quality. Though none of the methods displayed dramatic
improvements, REFINER performed consistently well for
alignments generated by six different alignment algo-
rithms. Correlation analysis between improvements in

the predicted accuracy (objective score) and the real accu-
racy (SP score) also suggested better overall performance
by REFINER algorithm.

Further, we tried to identify the range of initial alignment
quality in which REFINER is most successful at improving
the alignment. High-quality input alignments are difficult
for refinement algorithms to improve without also mak-
ing additional deleterious modifications. Because the
good input alignments also tend towards higher objective
scores, for these purposes the input alignment's objective
score is viewed in a general sense a proxy for the difficulty
that alignment presents to a refinement algorithm. The
impacts of refinement by the REFINER algorithm are very
prominent in the lower ranges of initial alignment quality
where REFINER provided significant improvements. For
higher quality input alignments (i.e., higher ranges of the
input's objective score) although REFINER still found
improvements, the impact of refinement is reduced. This
might indicate that those alignments were already been
optimized and therefore were less prone to changes.

We have also described a way to validate the quality of a
refined alignment by examining the performance of its

Table 4: Comparison of average run time (in seconds) for the BAIIBASE 3.0 benchmark dataset.

BAIIBASE ClustalW Dialign Mafft

reference
alignments

Default RASCAL RF REFINER Default RASCAL RF REFINER Default RASCAL RF REFINER

Reference | 10.58 10.34 51.06 1.93 22.21 10.00 3846 1.65 26.03 10.33 53.55 1.67
Reference 2 64.93 12.62 206.58 26.67 175.67 12.61 179.62 18.97 123.58 11.61 129.75 18.85
Reference 3 98.81 25.84 495.25 35.98 304.23 24.84 397.11 35.60 241.69 21.69 237.96 32.35
Reference 4 49.79 23.04 370.85 13.95 496.04 24.08 607.02 11.18 222.70 22.08 271.87 891
Reference 5 35.66 13.23 327.00 15.19 201.33 12.00 300.00 12.93 103.00 10.00 209.00 13.45

Average 51.95 17.01 290.15 18.74 239.90 16.71 304.44 16.07 143.40 15.14 180.43 15.05
BAIiIBASE Muscle Probcons T-Coffee

reference
alignments

Default RASCAL RF REFINER Default RASCAL RF REFINER Default RASCAL RF REFINER

Reference | 23.21 10.00 49.83 2.09 29.34 10.54 38.67 2.37 20.54 10.62 36.79 1.73
Reference 2 116.66 12.20 124.50 16.10 167.12 12.25 170.50 13.47 160.74 21.23 166.29 18.34
Reference 3 267.28 24.84 261.86 36.76 289.49 20.84 283.72 31.38 284.11 21.78 265.29 38.84
Reference 4 267.70 24.58 272.55 11.00 362.29 22.08 443.12 11.26 403.40 12.08 415.00 7.57
Reference 5 111.00 8.00 215.00 20.41 203.00 8.00 206.00 15.64 188.00 10.00 232.00 14.03

Average 157.17 15.92 184.75 17.27 210.25 14.74 228.40 14.82 211.36 15.14 223.07 16.10
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sequence profile in homology searches. This validation
test provides a useful quality control in the typical situa-
tion where one does not have a reference alignment. In
addition, it demonstrated that the sensitivity of sequence
profiles/HMMs increased when employing the REFINER
method but fell slightly for the other two refinement
methods studied.

Since the REFINER method was designed as an alignment
refinement tool, extensive benchmarking, validation and
comparison of its performance is vital. Therefore, we con-
ducted comparison tests on large benchmark data sets and
found that REFINER on average provided moderately bet-
ter performance in terms of improving the quality of an
input alignment. However, we have also shown that sig-
nificant improvements are possible, particularly for initial
alignments with lower values of one of the various com-
mon objective functions. Obtaining such improvements
manually or by re-running another automated alignment
generation algorithms is both uncertain and time-con-
suming. Therefore, as a practical matter, refinement meth-
ods such as REFINER do appear well worth the time spent
on their application to alignments of interest.

Our previous study [15] established the concept that rea-
lignment of each sequence can correct misalignments
between a given sequence and the rest of the profile and
at the same time preserves the family's overall block
model. In contrast, the current manuscript describes a
comparison of three different methods available for the
refinement of multiple sequence alignments using a
standard benchmark dataset (BAIiBASE 3.0). The per-
formance of the refinement methods is compared in
terms of profile sensitivities for homolog retrieval and
CPU time usage. Furthermore, we analyzed how different
strategies for using refinement programs are appropriate
depending on the quality of the input alignment (i.e., its
difficulty). We are not aware of another analysis like the
one presented here, and believe that it will be helpful to
researchers in the sequence analysis field when attempting
to decide if their alignment tasks can benefit from the use
of one or more refinement programs.

Methods

Benchmark dataset

We used the BAIiBASE 3.0 [16] alignment benchmark set
and a subset of the Conserved Domain Database (CDD)
[17] to validate the performance of different alignment
refinement methods. The BAIiBASE benchmark set con-
tains 386 reference alignments, whereas our CDD dataset
collects 280 manually curated 'root alignments' from
CDD version 2.03. (CDD organizes related curated align-
ment models into hierarchies; a root alignment corre-
sponds to the top-level alignment in a CDD hierarchy). To
compare the sensitivity of profiles constructed from

http://www.biomedcentral.com/1471-2105/7/499

refined alignments, we used these 280 root alignments
(set_280, see additional file 1 for list).

Overview of the refinement algorithms

REFINER

The REFINER algorithm refines an existing alignment by
systematically realigning each sequence to the profile con-
structed from the remaining sequences in the family. The
algorithm performs one or more iterations of refinement;
each iteration contains a phase of 'block shifting' followed
by a 'block editing' phase. The refinement is constrained
by the block model defined for a given alignment, where
a block is a region containing no gaps on any sequence; a
block is specified simply by a start position and residue
length. The order in which the sequences are realigned
(using a fast block-based dynamic programming algo-
rithm) is randomized to avoid bias and make the use of
multiple iterations more effective. Convergence is
declared when no further improvement of overall align-
ment score is observed or all iterations have been per-
formed. A detailed description of the algorithm can be
found in Chakrabarti et al., 2006 [15].

RF method

The Remove First (RF) scheme from Wallace et al., [13] is
similar to REFINER but it does not use constraints
imposed by the block structures. In each iteration step of
the RF method a sequence is realigned to the remaining
alignment and if the resulting alignment is better, it is kept
and used as input for the next iteration. The iteration cycle
is terminated if the alignment score converges, or upon
completing 2N? iterations, where N is the number of
sequences. Two different programs were used to align
sequences in this protocol; ClustalW [18], which maxi-
mizes the Average Score, and Muscle [19], which maxi-
mizes the logarithmic expectation (LE) score. In this study
we compared the quality of alignments after refinement
by RF method using LE scoring scheme.

RASCAL

The refinement program RASCAL [14] uses a different
algorithmic approach than RF and REFINER. RASCAL first
clusters multiple sequence alignments into potential func-
tional subfamilies and identifies well-aligned, reliable
regions in each subfamily. RASCAL then performs a single
realignment of each badly aligned region using an algo-
rithm similar to that implemented in ClustalW [18].

Alignment programs used to align BAIiBASE dataset

Six multiple alignment programs were used to generate
alignments as inputs for the refinement algorithms. These
are: ClustalW version 1.83 [18], Muscle version 3.52 [19],
Dialign version 2.3 [20], FFTNSI from the Mafft package
version 5.743 [5,21], ProbCons version 1.09 [22] and
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TCoffee version 3.93 [7]. The default settings of the
parameters were used for each alignment program.

Quality assessment

When using the BAIiBASE benchmark, we used the
bali_score [16] program to assess the accuracy of each test
case. The Sum-of-Pair (SP) scoring scheme is employed to
test the accuracy of refined alignments. The SP score is the
ratio of the number of correctly aligned pairs of core block
positions in the test alignment to the number of aligned
pairs in the reference alignment.

In the case of CDD alignments we evaluate the refined
alignments by calculating the objective scores SCORE-
CONS [23] and norMD [24], both having been previously
suggested for the analysis of alignment quality. In addi-
tion, we calculated the alignment score and information
content for each alignment as a measure of quality. The
alignment score is measured as the sum of Position Spe-
cific Scoring Matrix (PSSM) scores over all aligned posi-
tions of an alignment. Information content was calculated
based on counting the number of different amino acid
types per aligned column and comparing with the
number expected based on standard Robinson & Robin-
son [27] amino acid background frequencies.

Another way to validate alignment refinement methods is
to examine the performance of a refined alignment in
homology-based database searches. To compare the data-
base search sensitivity of the profiles or Hidden Markov
Models (HMMs) computed from alignments before and
after the refinement procedure, we first constructed a list
of true positives for the conserved domain families from
set_280. True positives here were defined as those pro-
teins/domains which were structurally similar, as defined
by the VAST algorithm [28,29], to the representative struc-
ture of CDD alignments. First, for each CDD alignment
we chose a representative structure so that the CDD foot-
print on this structure and the corresponding structural
domain/chain boundaries (domain definitions from
MMDB structure database have been used [30]) are con-
sistent to a degree of 80% mutual overlap. By CDD foot-
print we mean the region on a structure between the first
and the last residues aligned in CDD. For CDD align-
ments that have a corresponding MMDB structural
domain, the VAST structure neighbors of an MMDB
domain/chain are retrieved from the non-redundant set of
MMDB chains. This set of 10185 chains (db10185) was
constructed by single-linkage clustering, based on BLAST
E-values of 1080 or less, from all the entries in the MMDB
structure database [30].

We used HMMER [26] to test the ability of the refined
sequence profiles to find the corresponding VAST neigh-
bors in the db10185 dataset of structural chains. The sen-

http://www.biomedcentral.com/1471-2105/7/499

sitivity-specificity analysis was performed by calculating
Receiver Operating Characteristic (ROC) curves and ROC
statistics. For a given protein family one can calculate the
fraction of detected true positives and false positives at
each similarity measure cutoff (E-value for HMMER). Sen-
sitivity here is defined as the number of true positives
detected divided by the overall number of true positives in
the database. The fraction of false positives is calculated as
the ratio between the number of false positives found and
the overall number of false positives in the database. To
compare profile sensitivity before and after the refinement
we made measurements at 1% and 5% false positive error
rates.

Abbreviations
CDD Conserved Domain Database

SP Sum-of-Pairs

HMM Hidden Markov Models

PSSM Position Specific Scoring Matrix
CPU Central Processing Unit
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