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Abstract
Background: Predicting residues' contacts using primary amino acid sequence alone is an
important task that can guide 3D structure modeling and can verify the quality of the predicted 3D
structures. The correlated mutations (CM) method serves as the most promising approach and it
has been used to predict amino acids pairs that are distant in the primary sequence but form
contacts in the native 3D structure of homologous proteins.

Results: Here we report a new implementation of the CM method with an added set of selection
rules (filters). The parameters of the algorithm were optimized against fifteen high resolution
crystal structures with optimization criterion that maximized the confidentiality of the predictions.
The optimization resulted in a true positive ratio (TPR) of 0.08 for the CM without filters and a
TPR of 0.14 for the CM with filters. The protocol was further benchmarked against 65 high
resolution structures that were not included in the optimization test. The benchmarking resulted
in a TPR of 0.07 for the CM without filters and to a TPR of 0.09 for the CM with filters.

Conclusion: Thus, the inclusion of selection rules resulted to an overall improvement of 30%. In
addition, the pair-wise comparison of TPR for each protein without and with filters resulted in an
average improvement of 1.7. The methodology was implemented into a web server http://
www.ces.clemson.edu/compbio/recon that is freely available to the public. The purpose of this
implementation is to provide the 3D structure predictors with a tool that can help with ranking
alternative models by satisfying the largest number of predicted contacts, as well as it can provide
a confidence score for contacts in cases where structure is known.

Background
The correlated mutations (CM) analysis has been used to
predict pairs or networks of amino acids that are distant in
the primary sequence but form contacts in the native 3D
structure [1-5]. The basic presumption is that during evo-
lution, proteins accumulate sequence variability due to
spontaneous mutations. However, the variability within a
family of proteins should not affect the protein fold and
function. Thus, amino acid positions that are important

for the fold and the function should evolve in an orches-
trated manner to conserve both the fold and the function.

The CM method predicts contacting residues by analyzing
the correlated variability of the amino acid composition at
two or more positions within the multiple sequence align-
ment. Thus, the detection of homologous sequences and
the generation of the multiple sequence alignment are
crucial for the performance of the method. Both tasks
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require substitution rules and several approaches were
explored: (a) the CM based on amino acid identity [6]; (b)
the CM using substitution matrices [1] and (c) the CM
with statistically delivered pairing potentials [7]. The last
approach appears very promising; Vriend and coworkers
[7] achieved 20% mean accuracy on a set of 118 non-
redundant proteins taken from the HSSP database [8]
using 6 Å distance cut-off. Another promising direction of
predicting residue contacts is a combination of machine
learning and the CM method. In a series of studies Casa-
dio and co-workers applied neural networks in conjunc-
tion with the CM method to predict disulfide bridges [9]
and contacting residues [10,11]. Applying their method-
ology to a set of 173 non-homologous proteins resulted in
an average accuracy of 0.21 while automatic predictions
on 29 targets of CASP3 with the CORNET [10] server
resulted in an accuracy of 0.14. Recently, a novel neural
network method [12] that utilizes sequence information,
secondary structure and solvent accessibility predictions,
and the overall properties of the entire protein was devel-
oped in the Rost lab. On a test set of 633 proteins the
PROFcon server [12] achieved an accuracy from 0.1 to 0.4
depending on both the number of predicted pairs in
respect to the query length and the sequence separation.
To the best of our knowledge this is the best result
reported yet, however, the method is quite computation-
ally demanding. Rather than predicting pairs of contact-
ing residues, the statistical coupling analysis (SCA
method), developed in the Ranganathan lab was exten-
sively used to predict networks of interacting residues that
mediate allosteric transitions [5,13], functional specificity
[14] or energetic connectivity [4]. The predictions were
tested against the experiment and a very good agreement
was reported [14,15].

Despite the apparent progress made in developing reliable
methodology of predicting residues contacts, the accuracy
of the current methods is between 0.1 and 0.4. At the
same time, the CM generates many predictions with rela-
tively good scores and thus provides a large pool of pre-
dictions that contains a significant fraction of the true
contacts. Therefore, the problem lies not in improving the
sensitivity of the methodology, but in improving the accu-
racy, e.g. in reduction of the false positive ratio. The main
goal of this study is to suggest possible improvements in
the confidence of the predictions and to make the predic-
tions more protein-specific.

As previously mentioned, the correlated mutations
method reveals possible residue pairs within a protein
family. If the structural region is highly conserved within
the family, it is most likely that no variation in the amino
acid sequence will occur. In contrast, if the structural
region is not well conserved within the family members,
then the residue contacts most likely will not be preserved.

We wish to elucidate a more specific series of predictions
relative to a particular member of a given protein family.
Therefore, in this study the predictions made for a whole
protein family are subjected to a set of pairing rules with
respect to the biophysical properties of the amino acid
sequence of a protein of interest. To the best of our knowl-
edge this is the first attempt to incorporate biophysically-
related knowledge into the statistical methodology of the
correlated mutations approach.

Implementation
Simplified Correlated Mutations (CM) method (a 
pragmatic approach)
The correlated mutations and statistical conservation
analysis methods have been previously described in detail
(see Refs. [1,3,5,7,16] for excellent description of the
method). Our approach differs from the existing imple-
mentations of the CM methods, since we do not empha-
size the scoring scheme of the algorithm and the details of
theoretical formulation. Thus, we do not rank the predic-
tions and do not specify how many contacts should be
predicted. Instead of using the correlation score as usually
done in the CM analysis (see Ref. [3] and references
therein), we define a set of four parameters which are sub-
jects of optimization.

The optimization is done on a set of known high-resolu-
tion structures so that the true prediction ratio (the
number of true predictions divided by the total number of
predictions) is maximized. The sequences of these test
PDB files were submitted to the CM methodology to pre-
dict contacting residues. The predictions were then veri-
fied against the 3D structures. A prediction was
considered to be correct (true positive) when any two
heavy atoms of the side chains of the predicted residues
were within 6 Å distance [7]. Predictions of contacts sepa-
rated by less than six sequence positions (e.g. positions "i"
and "i+s", s < 6) were considered trivial and omitted from
the analysis. The optimization was done to maximize the
true predictions ratio (TPR = true predictions/all predic-
tions) by selecting the best values for several parameters
(Figure 1) as described below.

Purging the initial set of homologous sequences 
(parameter 1)
Each query sequence was subjected to a Ψ-Blast search
against the database of non-redundant sequences
obtained from the National Center for Biotechnology
Information. The cut-off E-value remained the default (E-
value = 10), but the number of output hits was increased
to 2000 to ensure a sufficiently large pool of homologues.
The resulting hits were then purged to remove short align-
ments (coverage less than 60% of the query sequence),
very similar hits with sequence identities > 90% and very
dissimilar hits with sequence identities < 20%. This
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approach differs from previous CM approaches because
we remove "bad" sequence prior to performing the CM
analysis. Now, the "bad" sequences will not affect the
quality of the multiple sequence alignment which is cru-
cial for the CM performance. The remaining homologous
sequences were further purged with CD-hit [17] to remove
homologous sequences at certain levels. This is similar to
applying a correction coefficient to the correlation for-
mula to downweigh information from very similar
sequences (see eq.(1) in Ref. [3]). The level of CD-hit
purging was considered the first parameter of the optimi-
zation, with a range variance of 90% to 40%. In addition,
the cases that returned less than 20 homologues amino
acid sequences were regarded as having little information
and were subsequently deleted from the protocol.

Excluding totally conserved residues (parameter 2)
The purged sequences were further subjected to CLUSTAL
W [18] to generate multiple sequence alignment. Some of
the positions of the multiple alignment were totally con-
served while others showed little variation. A totally con-
served position does not provide information necessary
for the CM analysis and thus is deleted in our implemen-
tation. However, to reduce the noise from the occasional
insertion of sequences dissimilar to the rest of the
sequences in the multiple sequence alignment, the defini-
tion of "totally conserved position" was slightly relaxed.
This second adjustable parameter in our approach was
varied from 100% to 80%. Figure 1 illustrates this param-
eter on an example of 10 sequences where Ala residue in

the position marked as "parameter 2" is presented in 9
sequences. Therefore if parameter 2 is set to 90 % or less,
this site will be omitted from the analysis. The fact that the
residue is not conserved in the remaining sequence indi-
cates that most likely the 10th sequence is not a member of
this particular family.

Definition of partially conserved position (parameter 3)
In our implementation of the CM method, we first
searched the multiple sequence alignment (MSA) for par-
tially conserved positions. The minimum degree of con-
servation was considered to be the third adjustable
parameter in our approach and was varied from 90% to
40%. This position (hereafter referred to as position I) is
then used to extract a sub-multiple sequence alignment
(sMSA), in which this position becomes totally conserved.
For instance, as shown in Fig. 1, if a position in a multiple
sequence alignment has Lys residue within 6 out of 10
sequences, the degree of conservation is 60% (see Figure
1) and thus this position will be considered further if the
parameter 3 is set to 60% or less. Removing all sequences
not containing Lys residue in this position will result in a
sub-multiple alignment that is shown separately in Figure
1. Similar sMSA's are constructed for all MSA positions
that satisfy parameter 3.

Finding correlated positions (parameter 4)
We then performed a second search within each sMSA
(see previous subsection) to find partially conserved posi-
tions (correlated positions or position II). If in a particular
sMSA position the given residue has a degree of conserva-
tion larger than a certain threshold, this position is con-
sidered to be correlated with the position I for which the
sMSA was constructed. This minimum degree of conserva-
tion for the position II in this second search was consid-
ered to be the fourth adjustable parameter in our
approach and was varied from 100% to 40%. An example
of such position is shown in Figure 1 as a position with
Asp residue in 4 of the 6 sMSA sequences resulting to a
degree of conservation of 66%.

Filters for reduction of the false positive ratio
The predictions made by the CM were subjected to a set of
rules (filters) to filter out pairs that do not have comple-
mentary physical-chemical properties. The selection rules
are introduced using general biophysical considerations
and are not related to the pairing frequencies or residue
pairing preferences delivered from statistical studies of
residue contacts in the existing 3D structures. Residue
contacts observed in protein structures may not reflect
true residue interactions but rather could be caused by
other factors. For example, the statistically observed large
number of hydrophobic – hydrophilic residues' contacts
perhaps reflects the overall protein structure made of a
hydrophobic core surrounded by a hydrophilic shell of

Schematic representation of the correlated mutations algo-rithmFigure 1
Schematic representation of the correlated muta-
tions algorithm. The letter X stands for any residue not 
identical to the dominant residue in the corresponding posi-
tion. The panel "A" illustrates multiple sequence alignment 
(MSA) and panel "B" shows sub-multiple sequence alignment 
(sMSA). The sMSA is obtained by selecting all sequence of 
the MSA having Lys residue at the position marked as Param-
eter 3.

1:__A________X_______________________X________
2:__A________K_______________________X________
3:__A________X_______________________D________
4:__A________K_______________________D________
5:__A________K_______________________D________
6:__A________X_______________________X________
7:__A________K_______________________D________
8:__X________K_______________________X________
9:__A________X_______________________X________
10:_A________K_______________________D________
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residues. Thus, we believe that using biophysically-based
constraints better accounts for the driving mechanism of
correlated mutations. In addition, the CM method is fam-
ily specific, i.e. the predictions are based on the multiple
sequence alignment of the entire protein family. Thus, it
is possible that a prediction made for the entire family
may not be suitable for the particular query.

The filters are based on the general considerations of the
nature of the interactions between amino acids and thus,
strictly speaking, are neither delivered statistically nor
analytically, although small corrections in the original
assumption were made during the optimization phase
against the first set of proteins. Four physical-chemical
characteristics were applied: hydrophobicity, polarity of
the charge, hydrogen donor/acceptor pairing and
disulfide bridge formation. Thus, two residues are consid-
ered to be in energetically favorable contact if they can
form:

(a) a hydrophobic pair, i.e. when both residues in the pre-
dicted pair are hydrophobic ones (we included Trp in the
list of the hydrophobic residues).

(b) an ion pair, i.e. when the residues within the predicted
pair have opposite charges (His was included in the list of
charged residues).

(c) a disulfide bridge (two Cys residues in the predicted
pair).

(d) a hydrogen bond, i.e. hydrogen donor-acceptor pairs,
like Asn and Gln paired with Asp, Glu, His, Lys and Arg.

(e) pairs, in which donation of a hydrogen bond to a
hydrogen acceptor is possible, such as Ser, Thr or Tyr cou-
pled to Asp or Glu.

Thus, if a predicted pair falls within one of the above cat-
egories, the pair is accepted, otherwise the prediction is
deleted. In addition, during the optimization of the
parameters, it was found that Gly residue quite often
forms contacts with another Gly, and therefore Gly-Gly
rule was also included in the list of acceptable pairs. At the
same time very few true contacts were observed for Trp-
Phe, Phe-Ile, Trp-Leu, Trp-Pro Pro-Phe, Pro-Ile, Pro-Leu,
Pro-Met and Pro-Trp pairs and thus those pairs were
excluded from the list of acceptable predictions.

It should be emphasized that these selection rules are
applied in respect to the query sequence independently of
the multiple sequence alignment. Thus, the predictions
after the filters are query-specific. The selection rules are
shown in Figure 2. Filled squares correspond to acceptable
pairs, while empty squares correspond to pairs that are

rejected. For convenience we refer to this methodology as
Correlated Mutations with Filters (CMF).

Web server
The RECON (REsidue CONtacts) web based server is
intended to provide the scientific community with a pub-
licly available tool capable of predicting intra-residue con-
tacts by the correlated mutation method as described
above. The front page of the server provides the user with
options to either upload files with a sequence of interest
to the server or to paste a sequence into the input window.
Although the values of the four parameters are initially set
to the optimum values reported in this paper, the user has
the option to select other values from the list (with the 5%
increments). Selection from the list rather than from the
text fields is implemented in the server for convenience
(an inexperienced user does not have to spend time
understanding the appropriate range of the parameters),
reliability (to ensure an appropriate format of the input
data) and security (to reduce the number of manually
input data). Users can also select whether biophysical
constraints will be used during the calculations. Help but-
tons located at each selectable parameter and input field
activate pop-up windows with a detailed explanation of

Selection rules for predicted pair of residuesFigure 2
Selection rules for predicted pair of residues. Filled 
squares represent pairs that are allowed. The hydrophobic 
residues are in bold, hydrophilic residues in italic, hydrogen 
donor/acceptors are underlined.
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the meaning of the corresponding parameters or input
fields.

After the "Submit query" button is pressed, the home-
made CGI Perl program controls the correctness of the
input sequence. It will either verify that the submitted file
is in the FASTA format or that the sequence contains the
appropriate letters (20 amino acids name in the one-letter
format plus letter X for an unknown residue). If mistakes
are discovered, a pop-up window appears informing the
user of the error. This popup also contains instructions for
correcting the mistake made, so the user may resubmit the
sequence.

If the submitted input is error-free, the program then dis-
plays information on the progress and completion of each
calculation step. After simulations are completed, a new
window appears containing the submitted sequence and
the list of residue pairs predicted to interact. The residues
are colored according to their physical-chemical classifica-
tion (hydrophobic, polar, basic, acidic groups). A small
embedded visualization script makes it easy to compre-
hend where in the sequence the predicted residues are
located. When a user clicks on the predicted pair it gets
highlighted both in the predicted contact list and in the
displayed sequence. The program also offers the user an
option to download the prediction results in a plain text
file format.

PDB files used for testing
The optimization of both CM and CMF protocols was
accomplished using a set of high resolution structures.
They were chosen using the Dunbrack cutting utility [19]
applying two selection criteria (resolution smaller than
0.9 Å and sequence identity less than 20%). These criteria
assure that the structures are of high quality and that they
provide a diverse set of test cases in terms of their
sequences. This selection yielded 29 structures (as of
November, 2005). In 14 cases, the Ψ-Blast search against
the non redundant database of sequences revealed less
than the required 20 homologous sequences. Thus, the
number of sequences/structures was dropped to 15. It can
be argued that a training set of 15 structures may be too
small to be representative of contact space. However, the
set provided 9619 contacts in total, which is satisfactory
from a statistical point of view. We refer to this set as the
first dataset.

The second test was performed on a larger set of PDB
structures obtained again from the Dunbrack server using
a resolution criterion of 1.1 Å. The files from the previous
test were excluded. This resulted in 137 files. However,
not all sequences generated enough homologues in the Ψ-
Blast search, which reduced the final number of test cases
to 65. We refer to this set as the second dataset.

Results
Optimizing the parameters
Each sequence of the first dataset was subjected to both
CM and CMF algorithms. The predictions were made by
varying the four adjustable parameters in increments of
0.1. Thus, for each sequence we generated many sets of
predictions. The results, shown in Figure 3, show the peak
of the distribution for both CM and CMF at a true positive
ratio (TPR) of approximately 10%. Two observations can
be made from a comparison of the CM and CMF results.
The CMF reduces the overall number of predictions by
approximately 6 times, but keeps the predictions with
high TPR (see the distribution at TPR > 0.5). This feature
is the core of our approach.

The above results were obtained by varying all four adjust-
able parameters. Since we do not score the predictions, we
adopted the following strategy to find the optimal values
of the adjustable parameters. Each query sequence gener-
ated a pool of predictions obtained by varying the adjust-
able parameters. From this pool we selected ten
predictions with the best TPR for each sequence in the first
dataset. The selection was done separately for the CM and
CMF results. In certain cases, the TPRs were very good and
were even equal to 1.0 (100% accuracy), but the predicted
contacts were very few. To gain some statistical signifi-
cance we neglected all cases that resulted to less than 6
predictions per query sequence. Thus, collecting 10 best
results for all query sequences resulted in a pool of predic-
tions that were used to count the frequencies of the values
of the adjustable parameters (Figure 4). The maximal fre-
quency among the best TPRs was found to occur at differ-

True predictions ratio (TPR) as a function of all predicted contactsFigure 3
True predictions ratio (TPR) as a function of all pre-
dicted contacts. The predictions were made varying the 
values of all four adjustable parameters.
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ent parameter values for the CM and CMF. In the case of
the CM, the optimal values for the four parameters were
0.9, 0.9, 0.8 and 0.9, respectively. In the case of CMF, they
were 0.5, 0.9, 0.8 and 0.8, respectively.

Benchmarking the first dataset
We again benchmarked the first dataset while keeping the
parameters fixed at their optimal values. This resulted in a
mean TPR of 0.14 for the CMF and a mean TPR of 0.08 for

the CM protocols, indicating that the CMF outperformed
the CM. The effect of selection rules is illustrated in Figure
5. Here we show the predicted TPRs of the CMF plotted
against the TPRs of the CM for each sequence in the first
dataset. The four parameters were kept fixed at their opti-
mal values for the CMF obtained in the previous section.
The results obtained with optimal values of the parame-
ters for the CM are similar and thus are not reported. We
applied the same cut-off as before requesting at least 6 pre-

The distribution of the adjustable parameters for the 10 best predictions for CM and CMF protocolsFigure 4
The distribution of the adjustable parameters for the 10 best predictions for CM and CMF protocols. Solid bars 
are the results of CM and striped bars are the results of CMF protocols. Ten best predictions were selected for each sequence 
in the dataset I from the pool of predictions for this sequence obtained with all possible combinations of parameter values used 
in calculations.
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dictions per query. In cases of less than 6 predictions, we
performed sequential runs relaxing the fourth parameter
until the number of predictions became larger than six. As
can be seen, most of the points lie above the diagonal line
demonstrating that the selection rules preferentially cut
mostly false predictions, which in turn increases TPR. The
least-square linear fit of the data points (Figure 5) results
to a line slope of 1.5 indicating improvement of ~50%
(ratio of TPR of the CMF versus TPR of the CM).

Benchmarking the second dataset
The above results are obtained on the same dataset that
was used to obtain the optimal values for the four adjust-
able parameters. Therefore these results are considered
biased and a further test was performed using the second
dataset. Using the corresponding optimal values of the
parameters for the CM and the CMF, we obtained a mean
TPR of 0.09 for the CMF and a mean TPR of 0.07 for the
CM. Though these results are less impressive than the
results obtained from the first set, they still clearly indicate
the improvement made by the selection rules, which on
overall is 30% improvement of the mean value. The effect
of the selection rules is demonstrated in Figure 6, which
compares the TPR values of the CMF versus TPR values of
the CM (note that data in Figure 6 were obtained using the
optimal values of the CMF parameters for both the CMF
and the CM calculations). The vast majority of the points

again lie above the diagonal, which confirms that the
selection rules selectively reject mostly false positives. The
ratio between the TPR values of the CMF and the CM is
now 1.7.

The length of query sequences may be a possible explana-
tion for the less impressive results in the second dataset as
compared with the first. The first dataset was generated at
a resolution cut-off 0.9 Å and such high resolution struc-
tures are usually obtained for short-sequence proteins.
Relaxing the resolution criterion to 1.1 Å, as done in the
generation of the second dataset, longer query sequences
were included. As repeatedly demonstrated, the CM per-
formance degrades as the length of the protein increases.
Indeed, analyzing the results obtained from the second
dataset showed several outliers (very low TPR) corre-
sponding to very long query sequences (longer than 600
amino acids). Thus, we would not recommend applying
our method to predict contacts in sequences longer than
600 amino acids.

As it was mentioned in the introduction, the accuracy of
the current CM methods varies between 0.1 and 0.4
depending on the number of predicted contacts in respect
to the query length. Our implementation does not rank
the predictions and thus it is impossible to control how
many predictions will be made per query length. How-

True predictions ratio (TPR) of the correlated mutations protocol with biophysical filters plotted versus true predic-tion ratio of the correlated mutation protocol without the filtersFigure 6
True predictions ratio (TPR) of the correlated muta-
tions protocol with biophysical filters plotted versus 
true prediction ratio of the correlated mutation pro-
tocol without the filters. A solid line is the least-squares 
linear fit to the data points while a dashed line represents the 
diagonal. The results were obtained on the second dataset 
(see the text).

True predictions ratio (TPR) of the correlated mutations protocol with biophysical filters plotted versus true predic-tion ratios of the correlated mutation protocol without the filtersFigure 5
True predictions ratio (TPR) of the correlated muta-
tions protocol with biophysical filters plotted versus 
true prediction ratios of the correlated mutation 
protocol without the filters. The solid line is the least-
squares linear fit to the data points while the dashed line rep-
resents the diagonal. The results were obtained on the first 
dataset (see the text).
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ever, a plot of the number of the predictions for each
query as a function of the query length (L) resulted to fit-
ting line with a slope 1/4 for the predictions without fil-
ters and to 1/20 for the predictions with filters (data not
shown). Thus, on average the CM protocol predicted L/4
pairs, while the CMF protocol made L/20 predictions. We
would like to emphasize again that our protocol does not
rank the predictions, and thus the reduction of the
number of the predictions from an average of L/4 with the
CM protocol to L/20 with the CMF protocol does not
mean selecting the best L/20 predictions from the pool of
L/4 predictions. If the filtering rules were randomly
selected one should expect reduction of the number of
predictions but no change of the TPR, since true positives
and all predictions will be reduced by the same propor-
tion. The selectivity of the filters is illustrated in Figure 7
where the true and false predictions are plotted for the
CMF and the CM protocols, respectively. It can be seen
from the slope of the fitting line that the filters reduce the
true predictions made by the CM method by a factor of 3,
while the false predictions are reduced by a factor of 5.

The main finding of the paper is that the biophysical fil-
ters always improve the quality of the predictions. The
effect was tested against different versions of the sequence
database, using different versions of Ψ-Blast and CLUS-
TAL W and the results were found to be consistent (data
not shown). However, the individual predictions per pro-
tein were quite sensitive to the above factors. The reason
for that is our simplified implementation of the CM anal-
ysis that uses cut-offs for the parameters rather than apply-
ing a scoring function to rank the predictions.

What could be the reason for the improvement intro-
duced by the physico-chemical filters? Perhaps this is the
combination of the statistical approach of the CM analysis
in conjunction with the filters that makes the difference
since the physical-chemical filters alone cannot make pre-
dictions. In many cases the CM analysis finds a correlation
between two positions in the multiple sequence align-
ment, but these positions may be far apart in the 3D struc-
ture of the representative protein since a reason for the
evolutionally related correlation would not necessarily be
a physical contact. There could be other reasons of a dif-
ferent nature, for instance, functional cooperativity when
the positions could be "connected" through rigid second-
ary structure elements. Thus, the CM predicts a pool of
correlated positions such that some of them are contact-
ing while some of them are not. Applying filters that
require physical-chemical complementarity favors the
fraction of the contacting positions and thus improves the
TPR (since the benchmarking is in respect to the contact-
ing positions).

Our method combines statistical and biophysical
approaches. The statistical approach (CM method) is used
to generate the initial predictions and then these predic-
tions are filtered based on biophysical considerations
(complementarity of the residues within the predicted
pair). Although these two approaches are applied inde-
pendently of each other, there certainly is an overlap since
the statistics reflect, to some extent, the biophysical inter-
actions between residues (for example among the native
3D structures of proteins). However, since the filters were

Comparison of the effect of the filters on the true and false positivesFigure 7
Comparison of the effect of the filters on the true 
and false positives. The upper panel shows the TRP of 
CMF versus the TRP obtained with CM methods. Applying 
filters reduces the TRP by an average factor of 3. The bottom 
panel shows the FPR of CMF versus the FPR calculated with 
CM protocols. The filters reduce the FPR by an overall factor 
of 5.
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not statistically delivered, we can not estimate this over-
lap.

Conclusion
The main goal of this study was to maximize the confi-
dence of the predictions of contacting residues in the new
implementation of the correlated mutations method. The
results presented in this paper show that a set of selection
criteria based upon the physico-chemical properties of
amino acids significantly improves the performance of the
CM protocol. The improvement coefficient per protein
was found to be 1.7 and overall improvement for the
entire set of 65 proteins was 30%. Though the absolute
value of the accuracy is not impressive (TPR = 0.09), we
argue that the filters can be implemented into a more
advanced CM method to improve the predictions (a work
currently in progress). The method was implemented into
a web server, freely available to the scientific community
and which can be used for residue contact predictions
needed in users research.

Availability and requirements
The RECON Web server for predicting residue contacts
using our implementation of the correlated mutation
method is freely available.

Project home page: http://www.ces.clemson.edu/comp
bio/recon

Operating systems: Internet Explorer on MS Windows and
Mozilla browser on Linux systems.

Other requirements: Allowing pop-up windows and ena-
bling Java in Internet browser

License: free

Abbreviations
CM – Correlated Mutations without Filters

CMF – Correlated Mutations with Filters

TPR – True Positive Ratio (true predictions divided by all
predictions)

FPR – False Positive Ratio (false predictions divided by all
predictions)

PDB – Protein Databank

RECON – Residue Contacts
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